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GENERALIZED SUZUKI TYPE Z-CONTRACTION IN COMPLETE
METRIC SPACES

A. PADCHAROEN1,2, P. KUMAM1,2, P. SAIPARA1,2, AND P. CHAIPUNYA1,2

Abstract. In this paper, we introduce the notion of Suzuki type Z-contraction and
study the corresponding fixed point property. This kind of contraction generalizes
the Banach contraction and unifies several known type of nonlinear contractions.
We consider a nonlinear operator satisfying a nonlinear contraction in a metric space
and prove fixed point results. As an application, we apply our result to show the
solvability of nonlinear Hammerstein integral equations.

1. Introduction and Preliminaries

One of the attractive research subjects in the fixed point theory is the investigation
of the existence and uniqueness of fixed point of various operators in the setting of
metric space. The classical results of Banach [2] and Suzuki [8] have inspired many
scientists and hence there is a wide literature available for interested readers, see for
instance [1, 3, 5, 7, 9–11]. We give some details on the notions and ideas used in this
study.

Recall the following result on metric space which is introduced in 2009 by Suzuki.
He also proved the following generalized Banach contraction principle in compact
metric spaces as follows.

Theorem 1.1. [8] Let (X, d) be a compact metric space and F : X → X be a mapping.
Assume that

1
2d (x, Fx) < d (x, y)⇒ d (Fx, Fy) < d (x, y) ,
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for all distinct x, y ∈ X. Then F has a unique fixed point in X.
In 2015, Khojasteh et al. [4] introduced the notion of Z-contraction which generalizes

the Banach contraction. The notion of Z-contraction is given as follows.
Definition 1.1. [4] Let ζ : [0,+∞)× [0,+∞)→ R be a mapping, then ζ is called a
simulation function if it satisfies the following conditions:
ζ(i) ζ (0, 0) = 0;
ζ(ii) ζ (t, s) < s− t, for all t, s > 0;
ζ(iii) if {tn}, {sn} are sequences in (0,+∞) such that limn→+∞ tn = limn→+∞ sn > 0

then
lim sup
n→+∞

ζ (tn, sn) < 0.

We denote the set of all simulation functions by Z.
The following functions ζ : [0,+∞)× [0,+∞)→ R belong to Z.

Definition 1.2. [4] Let (X, d) be a metric space, F : X → X a mapping and ζ ∈ Z.
Then F is called a Z-contraction with respect to ζ, if the following condition is satisfied

ζ (d (Fx, Fy) , d (x, y)) ≥ 0, for all x, y ∈ X.
Recently, Kumam et al. [6] introduce the motion Suzuki type Z-contraction as

follows.
Definition 1.3. [6] Let (X, d) be a metric space, F : X → X a mapping and ζ ∈ Z.
Then F is called a Suzuki type Z-contraction with respect to ζ, if the following
condition is satisfied

1
2d (x, Fx) < d (x, y)⇒ ζ (d (Fx, Fy) , d (x, y)) ≥ 0,

for all distinct x, y ∈ X.
Remark 1.1. [6] It is clear from the definition of simulation function that ζ (t, s) < 0,
for all t ≥ s > 0. Therefore if F is a Suzuki type Z-contraction with respect to ζ,
then

1
2d (x, Fx) < d (x, y)⇒ d (Fx, Fy) < d (x, y) ,

for all distinct x, y ∈ X.
Theorem 1.2. [6] Let (X, d) be a metric space and F : X → X be a Suzuki type
Z-contraction with respect to ζ ∈ Z. Then F has at most one fixed point.
Remark 1.2. [4] Every Z-contraction is contractive and hence Banach contraction.
Theorem 1.3. [2] Let (X, d) be a complete metric space. Then every contraction
mapping has a unique fixed point. It is known as Banach contraction principle.

Motivated by the above results, we introduce the notion Generalized Suzuki type
Z-contraction and prove the corresponding fixed point theorem. Our fixed point
result is then applied to guarantee the existence of solution of nonlinear Hammerstein
integral equations.
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2. Main Results

We introduce the concept of generalized Suzuki type Z-contraction on metric spaces
with the following auxiliary definition. Let X 6= ∅, F : X → X, x0 ∈ X and
xn = Fxn−1, for all n ∈ N. Then {xn} is called sequence of Picard of initial point at
x0.

Definition 2.1. Let (X, d) be a metric space and F : X → X be a mapping and
ζ ∈ Z. Then F is called generalized Suzuki type Z-contraction with respect to ζ if
the following condition is satisfied

(2.1) 1
2d (x, Fx) < d (x, y)⇒ ζ (d (Fx, Fy) ,M (x, y)) ≥ 0,

for all distinct x, y ∈ X, where

M (x, y) = max

d (x, y) , d (x, Fx) , d (y, Fy) , d (x, Fy) + d (y, Fx)
2

.
Remark 2.1. It is clear from the definition of simulation function that ζ (t, s) < 0, for
all t ≥ s > 0. Therefore F is a generalized Suzuki type Z-contraction with respect to
ζ, then

1
2d (x, Fx) < d (x, y)⇒ d (Fx, Fy) < M (x, y) ,

for all distinct x, y ∈ X.

Lemma 2.1. Every generalized Suzuki type Z-contraction with respect to ζ on metric
space has at most one fixed point.

Proof. Suppose that w and z be two fixed points of F , which is a generalized Suzuki
type Z-contraction self-mappings of a metric space (X, d). Since 0 = 1

2d (w,Fw) <
d (w, z), then by applying (2.1), we obtain that
(2.2) 0 ≤ ζ (d (Fw, Fz) ,M (w, z)) ,
where

M (w, z) = max

d (w, z) , d (w,Fw) , d (z, Fz) , d (w,Fz) + d (z, Fw)
2

 = d (w, z) .

This together with (2.2) shows that
0 ≤ ζ (d (Fw, Fz) ,M (w, z)) = ζ (d (w, z) , d (w, z)) .

This is a contradiction. Thus, we have w = z. �

Theorem 2.1. Let (X, d) be a metric space, F is a generalized Suzuki type Z-
contraction with respect to ζ. Let {xn} be a sequence of Picard of initial point at
x0 ∈ X. Then

lim
n→+∞

d (xn, xn+1) = 0.
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Proof. Take x0 = x ∈ X and let {xn} be the Picard sequence, that is, xn = Fxn−1,
for all n ∈ N. If there exists n ∈ N such that d (xn, Fxn) = 0 then x = xn becomes a
fixed point of F , which completes the proof. So, in the rest of the proof, we suppose
that

0 < d (xn, Fxn) , for all n ∈ N.
Hence, we have

1
2d (xn, Fxn) < d (xn, Fxn) = d (xn, xn+1) .

Since F is a generalized Suzuki type Z-contraction, we have
0 ≤ ζ

(
d
(
Fxn, F

2xn

)
,M (xn, Fxn)

)
= ζ (d (Fxn, Fxn+1) ,M (xn, xn+1)) .

Then
M (xn, xn+1)

= max

d (xn, xn+1) , d (xn, xn+1) , d (xn+1, xn+2) ,
d (xn, xn+2) + d (xn+1, xn+1)

2


= max

d(xn, xn+1), d(xn+1, xn+2),
d(xn, xn+2)

2

.
The triangle inequality yields

d (xn, xn+2)
2 ≤ max{d (xn, xn+1) , d (xn+1, xn+2)}.

Therefore,
M (xn, xn+1) = max{d (xn, xn+1) , d (xn+1, xn+2)},

from (2.1), we get that

(2.3)
0 ≤ ζ (d (Fxn, Fxn+1) ,M (xn, xn+1))

= ζ (d (xn+1, xn+2) ,max{d (xn, xn+1) , d (xn+1, xn+2)})
< max{d (xn, xn+1) , d (xn+1, xn+2)} − d (xn+1, xn+2) .

The inequality (2.3) shows that
(2.4) M (xn, xn+1) = d (xn, xn+1) , for all n ∈ N,
which implies that the sequence {d (xn, xn+1)} is a monotonically decreasing sequence
of non-negative reals. So there is some r ≥ 0 such that

lim
n→+∞

d (xn, xn+1) = r.

If r > 0 then since F is a generalized Suzuki type Z-contraction with respect to ζ ∈ Z

therefore by ζ(iii), we have
0 ≤ lim sup

n→+∞
ζ (d (xn+1, xn+2) , d (xn, xn+1)) < 0.

This is a contradiction. Then we conclude that r = 0, that is, limn→+∞ d (xn, xn+1) =
0. �
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Theorem 2.2. Let (X, d) be a metric space, F is a generalized Suzuki type Z-
contraction with respect to ζ. Then the sequence {xn} is bounded.

Proof. Suppose that {xn} is not bounded sequence. Then there a subsequence {xnk
}

of {xn} such that n1 = 1 and for each k ∈ N, nk+1 is the minimum integer such that

d
(
xnk+1 , xnk

)
> 1

and
d (xm, xnk

) ≤ 1 for nk ≤ m ≤ nk+1 − 1.
Thus, by the triangle inequality, we get

1 < d
(
xnk+1 , xnk

)
≤ d

(
xnk+1 , xnk+1−1

)
+ d

(
xnk+1−1, xnk

)
≤ d

(
xnk+1 , xnk+1−1

)
+ 1.

Letting k → +∞ and by using Theorem 2.1, we obtain

lim
k→+∞

d
(
xnk+1 , xnk

)
= 1.

Since
1
2d
(
xnk+1−1, Fxnk−1

)
= 1

2d
(
xnk+1−1, xnk

)
< d

(
xnk+1−1, xnk

)
,

by generalized Suzuki type Z-contraction with respect to ζ, we get that

d
(
xnk+1 , xnk

)
≤M

(
xnk+1−1, xnk−1

)
.

Now,

1 < d
(
xnk+1 , xnk

)
≤M

(
xnk+1−1, xnk−1

)

= max


d
(
xnk+1−1, xnk−1

)
, d
(
xnk+1−1, xnk+1

)
, d (xnk−1, xnk

) ,
d(xnk+1−1, xnk

) + d(xnk−1, xnk+1)
2


= max


d
(
xnk+1−1, xnk

)
+ d (xnk

, xnk−1) , d
(
xnk+1−1, xnk+1

)
, d (xnk−1, xnk

) ,
d
(
xnk+1−1, xnk

)
+ d

(
xnk−1, xnk+1

)
2


≤ max

1 + d (xnk
, xnk−1) , d

(
xnk+1−1, xnk+1

)
, d (xnk−1, xnk

) ,
1 + d

(
xnk−1, xnk+1

)
2


≤ max


1 + d (xnk

, xnk−1) , d
(
xnk+1−1, xnk+1

)
, d (xnk−1, xnk

) ,
1 + d (xnk−1, xnk

) + d
(
xnk

, xnk+1

)
2

 .
Letting k → +∞, we obtain

1 ≤ lim
k→+∞

M
(
xnk+1−1, xnk−1

)
≤ 1,
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that is,
lim

k→+∞
M
(
xnk+1−1, xnk−1

)
= 1.

Further, since 1
2d
(
xnk+1−1, xnk−1

)
< d

(
xnk+1−1, xnk−1

)
. Therefore, F is a generalized

Suzuki type Z-contraction with respect to ζ, we obtain
0 ≤ ζ

(
d
(
Fxnk+1−1, Fxnk−1

)
,M

(
xnk+1−1, xnk−1

))
≤ lim sup

k→+∞
ζ
(
d
(
xnk+1 , xnk

)
,M

(
xnk+1−1, xnk−1

))
< 0.

This is a contradiction. Hence, {xn} is bounded. �

Theorem 2.3. Let (X, d) be a metric space, F is a generalized Suzuki type Z-
contraction with respect to ζ. Then the sequence {xn} is a Cauchy sequence.

Proof. Let Cn = sup{d (xi, xj) : i, j ≥ n}, n ∈ N. From Theorem 2.2, we know
that Cn < +∞ for every n ∈ N. Since Cn is a positive monotonically decreasing
sequence, there exists C ≥ 0 such that limn→+∞Cn = C. We will show that C = 0.
If C > 0 then by the definition of Cn, for every k ∈ N, there exists nk,mk such that
mk > nk ≥ k and

Ck −
1
k
< d (xmk

, xnk
) ≤ Ck.

Therefore,
(2.5) lim

k→+∞
d (xmk

, xnk
) = C.

Moreover, by
d (xmk

, xnk
) ≤ d (xmk

, xmk−1) + d (xmk−1, xnk−1) + d (xnk−1, xnk
)

and
d (xmk−1, xnk−1) ≤ d (xmk−1, xmk

) + d (xmk
, xnk

) + d (xnk
, xnk−1) .

Letting k → +∞, using Theorem 2.1 and equation (2.5), we get
(2.6) lim

k→+∞
d (xmk−1, xnk−1) = C.

From Theorem 2.1 and (2.6), we obtain that 1
2d (xmk−1, Fxmk−1) < 1

2d (xmk−1, xnk−1)
< d (xmk−1, xnk−1) . By F is a generalized Suzuki type Z-contraction with respect to
ζ, we have 0 ≤ ζ (d (Fxmk−1, Fxnk−1) ,M (xmk−1, xnk−1)). It follows from condition
ζ(ii) we get

d (xmk
, xnk

) = d (Fxmk−1, Fxnk−1) < M (xmk−1, xnk−1)

= max


d (xmk−1, xnk−1) , d (xmk−1, xmk

) , d (xnk−1, xnk
) ,

d (xmk−1, xnk
) + d (xmk

, xnk−1)
2


= max


d (xmk−1, xnk−1) , d (xmk−1, xmk

) , d (xnk−1, xnk
) ,

d (xmk−1, xmk
) + d (xmk

, xnk
) + d (xmk

, xnk
) + d (xnk

, xnk−1)
2

 .
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Letting k → +∞, using Theorem 2.1 and equation (2.5), we get
(2.7) lim

k→+∞
M (xmk−1, xnk−1) = C.

By (2.6), (2.7) and the condition ζ(iii), we get
0 ≤ lim sup

k→+∞
ζ (d (xmk

, xnk
) ,M (xmk−1, xnk−1)) < 0.

This is a contradiction. Hence, C = 0. This is {xn} is a Cauchy sequence. �

Theorem 2.4. Let (X, d) be a complete metric space, F is a generalized Suzuki type
Z-contraction with respect to ζ. Then F has fixed point.

Proof. By Theorem 2.3, {xn} is a Cauchy sequence and X is complete there exists
w ∈ X such that
(2.8) lim

n→+∞
xn = w.

Now, we show that w is a fixed point of F . We claim that

1
2d (xn, Fxn) < d (xn, w) or 1

2d (xn+1, Fxn+1) < d (xn+1, w) , for all n ∈ N.

This is,

(2.9) 1
2d (xn, Fxn) < d (xn, w) or 1

2d
(
Fxn, F

2xn

)
< d (Fxn, w) , for all n ∈ N.

It follows from (2.9).
Let (I) := 1

2d (xn, Fxn) < d (xn, w) and (II) := 1
2d (Fxn, F

2xn) < d (Fxn, w).
Assume that there exists m ∈ N such that

(2.10) 1
2d (xm, Fxm) ≥ d (xm, w) and 1

2d
(
Fxm, F

2xm

)
≥ d (Fxm, w) .

Hence,
2d (xm, w) ≤ d (xm, Fxm) ≤ d (xm, w) + d (w,Fxm) .

This implies that
(2.11) d (xm, w) ≤ d (w,Fxm) .
Form (2.4) and (2.11), we have

(2.12)
d
(
Fxm, F

2xm

)
< d (xm, Fxm) ≤ d (xm, w) + d (w,Fxm)
< 2d (w,Fxm) .

It follows, from (2.10) and (2.12), that d (Fxm, F
2xm) < d (Fxm, F

2xm). This is a
contradiction. Thus, (2.9) holds. If part (I) of (2.9) is true, by F is a generalized
Suzuki type Z-contraction with respect to ζ, we have

0 ≤ ζ (d (Fxn, Fw) ,M (xn, w)) .(2.13)
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It follows from condition ζ(ii) we get
d (Fxn, Fw) < M (xn, w)

= max
{
d (xn, w) , d (xn, Fxn) , d (w,Fw) , d (xn, Fw) + d (w,Fxn)

2

}
.

Letting n→ +∞ and by using (2.8), we obtain
(2.14) lim

n→+∞
M (xn, w) = d (w,Fw) .

By (2.13), (2.14) and condition ζ(iii) we have for every n ∈ N,
0 ≤ ζ (d (Fxn, Fw) ,M (xn, w))
≤ lim sup

n→+∞
ζ (d (Fxn, Fw) ,M (xn, w))

≤ lim sup
n→+∞

(d (w,Fw)− d (w,Fw)) .

According to the property ζ(iii) from Definition 1.1, since the both sequences
d (Fxn, Fw), M (xn, w) converge to the d (w,Fw) > 0 (by assumption) it is clear that
lim supn→+∞ ζ (d (Fxn, Fw) ,M (xn, w)) < 0. So, the mention inequality is redundant.
This is a contradiction. Hence, w = Fw, i.e., w is a fixed point of F . If part (II) of
(2.9) is true, by F is a generalized Suzuki type Z-contraction with respect to ζ, we
have

0 ≤ ζ
(
d
(
F 2xn, Fw

)
,M (Fxn, w)

)
.(2.15)

It follows from condition ζ(ii), we get

d
(
F 2xn, Fw

)
< M (Fxn, w)

= max


d (Fxn, w) , d (Fxn, F

2xn) , d (w,Fw) ,
d (Fxn, Fw) + d (w,F 2xn)

2


= max


d (Fxn, w) , d (Fxn, F

2xn) , d (w,Fw) ,
d (Fxn, Fw) + d (w,Fw) + d (Fw, F 2xn)

2

 .
Letting n→ +∞ and by using (2.8), we obtain
(2.16) lim

n→+∞
M (Fxn, w) = d (w,Fw) .

By (2.15), (2.16) and condition ζ(iii) we have for every n ∈ N,

0 ≤ ζ
(
d
(
F 2xn, Fw

)
,M (Fxn, w)

)
≤ lim sup

n→+∞
ζ
(
d
(
F 2xn, Fw

)
,M (Fxn, w)

)
≤ lim sup

n→+∞
(d (w,Fw)− d (w,Fw)) .

According to the property ζ(iii) from Definition 1.1, since the both sequences
d (F 2xn, Fw), M (Fxn, w) converge to the d (w,Fw) > 0 (by assumption) it is clear
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that lim supn→+∞ ζ (d (F 2xn, Fw) ,M (Fxn, w)) < 0. So, the mention inequality is
redundant. This is a contradiction. Hence, w = Fw, i.e., w is a fixed point of F .
Uniqueness of fixed point follows from Lemma 2.1. �

Example 2.1. Let X = [0, 1] and d is a usual metric on X. Define a mapping
F : X → X by

Fx =


4
9 , if x ∈

[
0, 4

5

)
,

1
9 , if x ∈

[
4
5 , 1

]
,

for all x ∈ X, then
d (Fx, Fy) < M (x, y) .

Therefore, we have
ζ (d (Fx, Fy) ,M (x, y)) ≥ 0,

for all distinct x, y ∈ X. Hence, F is a generalized Suzuki type Z-contraction with
respect to ζ. Thus, all the condition of Theorem 2.4 are satisfied and F has a unique
fixed point w = 4

9 ∈ X. Since F is not continuous, then it is not Z-contraction and
so not contractive.

Corollary 2.1. Let (X, d) be a complete metric space, F : X → X be a mapping
such that there exists k ∈ (0, 1) verifying

d (Fx, Fy) < kM (x, y) , for all distinct x, y ∈ X,
where

M (x, y) = max

d (x, y) , d (x, Fx) , d (y, Fy) , d (x, Fy) + d (y, Fx)
2

.
Then F has a fixed point.

3. Application

In this section, we present an application of Theorem to guarantee the existence
and uniqueness problem of solutions for some kind of nonlinear Hammerstein integral
equations.

We consider nonlinear Hammerstein integral equation as follows

(3.1) x (t) = f (t) +
∫ t

0
K (t, s)h (s, x (s)) ds,

where the unknown function x (t) takes real values.
Let X = C ([0, 1]) be the space of all real continuous functions defined on [0, 1]. It

is well known that C ([0, 1]) endowed with the metric
(3.2) d (x, y) = ‖x− y‖ = max

t∈[0,1]
|x (t)− y (t) |.

So, (X, d) is a complete metric space. Define a mapping F : X → X by

(3.3) F (x) (t) = f (t) +
∫ t

0
K (t, s)h (s, x (s)) ds, for all t ∈ (0, 1) .
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Assumption 3.1
(I)∗ f ∈ C ([0, 1]× (−∞,+∞)) , f ∈ X and K ∈ C ([0, 1]× [0, 1]) such that

K (t, s) ≥ 0;
(II)∗ h (t, ·) : (−∞,+∞)→ (−∞,+∞) is increasing for all t ∈ (0, 1), such that

1
2d (x, F (x)) < d (x, y)

implies |h (t, x)−h (t, y) | <M (x, y), for all distinct x, y ∈ X, t ∈ (0, 1), where

M (x, y) = max

|x− y|, |x− Fx|, |y − Fy|, |x− Fy|+ |y − Fx|2

;
(III)∗ max

t,s∈[0,1]
|Kv (t, s) | ≤ 1.

Theorem 3.1. Let X = C ([0, 1]), (X, d) , F , h, K (t, s) are satisfied in Assumption
3.1, then the nonlinear Hammerstein integral equation (3.1) has a unique solution
w ∈ C ([0, 1]) and for each x ∈ C ([0, 1]) the iterative sequence {xn = F nx} converges
to the unique solution w ∈ X of equation (3.1).

Proof. First, we show that the mapping F : X → X define by (3.2) is a Suzuki
type Z-contraction. From condition (II)∗ and (III)∗, for all distinct x, y ∈ C ([0, 1]),
t ∈ (0, 1), we have

|Fx (t)− Fy (t) | =
∣∣∣∣∫ t

0
K (t, s) (h (s, x (s))− h (s, y (s))) ds

∣∣∣∣
≤
∫ t

0
|K (t, s) ||h (s, x (s))− h (s, y (s)) |ds

≤
∫ t

0
|h (s, x (s))− h (s, y (s)) |ds

<
∫ t

0
M (x (s) , y (s)) ds

=
∫ t

0
max


|x (s)− y (s) |, |x (s)− Fx (s) |, |y (s)− Fy (s) |,

|x (s)− Fy (s) |+ |y (s)− Fx (s) |
2

 ds
≤
∫ t

0
max

d (x, y) , d (x, Fx) , d (y, Fy) , d (x, Fy) + d (y, Fx)
2

ds
= M (x, y)

∫ t

0
ds

= tM (x, y)
≤M (x, y) .

Hence, the mapping F is a Suzuki type Z-contraction and Theorem 2.4 applies to F ,
which guarantee the existence of a unique fixed point w ∈ X. That is, w is the unique
solution of the nonlinear Hammerstein integral equations (3.1). For each x ∈ X, the
sequence {xn = F nx} converges to w. �
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