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PARANORMED RIESZ DIFFERENCE SEQUENCE SPACES OF
FRACTIONAL ORDER

TAJA YAYING1

Abstract. In this article we introduce paranormed Riesz difference sequence
spaces of fractional order α, rt0

(
p,∆(α)) , rtc (p,∆(α)) and rt∞

(
p,∆(α)) defined

by the composition of fractional difference operator ∆(α), defined by (∆(α)x)k =
∞∑
i=0

(−1)i Γ(α+1)
i!Γ(α−i+1)xk−i, and Riesz mean matrix Rt. We give some topological prop-

erties, obtain the Schauder basis and determine the α-, β- and γ- duals of the new
spaces. Finally, we characterize certain matrix classes related to these new spaces.

1. Introduction

Throughout the paper Γ(m) will denote the gamma function of all real numbers
m /∈ {0,−1,−2, . . .} . Γ(m) can be expressed as an improper integral given by

(1.1) Γ(m) =
∫ ∞

0
e−xxm−1dx.

Using (1.1), we state some properties of gamma function which are used throughout
the text:

1. for m ∈ N, Γ(m+ 1) = m!;
2. for any real number m /∈ {0,−1,−2, . . .} , Γ(m+ 1) = mΓ(m);
3. for particular cases, we have Γ(1) = Γ(2) = 1, Γ(3) = 2!, Γ(4) = 3!, . . .

Throughout the paper N = {0, 1, 2, 3, . . .} and let w be the space of all real valued
sequences. By `∞, c0 and c we mean the spaces all bounded, null and convergent
sequences, respectively, normed by ‖x‖∞ = sup

k
|xk| . Also by `1, cs and bs, we mean the
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spaces of absolutely summable, convergent series and bounded series, respectively. The
space `1 is normed by ∑k |xk| and the spaces cs and bs are normed by supn |

∑n
k=0 xk| .

Here and henceforth, the summation without limit runs from zero to ∞. Also, let
e = {1, 1, 1 . . .} and e(k) be the sequences whose only non-zero term is 1 in the kth

place for each k ∈ N.
Let p = (pk) be a bounded sequence of strictly positive real numbers with M =

max{1, H}, where H = supk pk. Then, Maddox [43, 44] defined the sequence spaces
`∞(p), c0(p), c(p) and `(p) as follows:

`∞(p) =
{
x = (xk) ∈ w : sup

k∈N
|xk|pk <∞

}
,

c0(p) =
{
x = (xk) ∈ w : lim

k→∞
|xk|pk = 0

}
,

c(p) =
{
x = (xk) ∈ w : lim

k→∞
|xk − l|pk = 0 for some l ∈ R

}
and

`(p) =
{
x = (xk) ∈ w :

∑
k

|xk|pk <∞
}
,

which are complete spaces paranormed by

g(x) = sup
k∈N
|xk|

pk
M and h(x) =

(∑
k

|xk|pk
) 1
M

.

Let X and Y be two sequence spaces and A = (ank) be an infinite matrix of real or
complex entries. Then A defines a matrix mapping from X to Y if for every sequence
x = (xk), the A-transform of x, i.e., Ax = {(Ax)n} ∈ Y, where

(1.2) (Ax)n =
∑
k

ankxk, n ∈ N.

The sequence space XA defined by

(1.3) XA = {x = (xk) ∈ w : Ax ∈ X}

is called the domain of matrix A.
By (X, Y ), we denote the class of all matrices A from X to Y. Thus A ∈ (X, Y ) if

and only if the series on the R.H.S. of the (1.2) converges for each n ∈ N and x ∈ X
such that Ax ∈ Y for all x ∈ X.

The notion of difference sequence space X(∆) for X = {`∞, c, c0} was introduced
by Kızmaz [40]. Since then several authors [15–19, 21–24] generalized the notion of
difference operator ∆ and studied various sequence spaces of integer order. However,
for a positive proper fraction α, Baliarsingh and Dutta [10] (see also [11,12,20]) have
defined a generalized fractional difference operator ∆(α) and its inverse as

(∆(α)x)k =
∑
i

(−1)i Γ(α + 1)
i!Γ(α− i+ 1)xk−i,(1.4)
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(∆(−α)x)k =
∑
i

(−1)i Γ(−α + 1)
i!Γ(−α− i+ 1)xk−i.(1.5)

Throughout the paper it is assumed that the series on the R.H.S. of (1.4) and (1.5)
are convergent for x = (xk) ∈ w. It is more convenient to express ∆(α) as a triangle

(∆(α))nk =

(−1)n−k Γ(α + 1)
(n− k)!Γ(α− n+ k + 1) , if 0 ≤ k ≤ n,

0, if k > n.

Moreover, Dutta and Baliarsingh [20] also studied the paranormed difference sequence
spaces of fractional order X(Γ,∆α̃, u, p) for X = {c0, c, `∞}, where

(∆α̃x)k =
∞∑
i=0

(−1)i Γ(α + 1)
i!Γ(α− i+ 1)xk+i.

Furthermore, Baliarsingh and Dutta [11] studied the sequence spaces X(Γ,∆α̃, p) for
X = {c0, c, `∞}. For some nice papers on fractional difference operator and related
sequence spaces, one may refer to [10–13, 20, 25–34] and the references mentioned
therein.

Let (tk) be a sequence of positive numbers and let

Tn =
n∑
k=0

tk, n ∈ N.

The Riesz mean matrix Rt = (rtnk) was defined in [1, 3] as

rtnk =


tk
Tn
, 0 ≤ k ≤ n,

0, k > n.

The Riesz sequence spaces rt∞, rt0 and rtc were introduced by Malkowsky [3] as follows:
rt∞ = (`∞)Rt , rt0 = (c0)Rt and rtc = (c)Rt .

Altay and Başar [1] introduced the paranormed Riesz sequence spaces rt(p) as

rt(p) =
{
x = (xk) ∈ w :

∑
n

∣∣∣∣∣ 1
Tn

n∑
k=0

tkxk

∣∣∣∣∣
pn

<∞
}
.

The paranormed Riesz sequence spaces rt∞(p), rt0(p) and rtc(p) were studied by Altay
and Başar [2] as follows:

rt∞(p) =
{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ 1
Tn

n∑
k=0

tkxk

∣∣∣∣∣
pn

<∞
}
,

rt0(p) =
{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣∣ 1
Tn

n∑
k=0

tkxk

∣∣∣∣∣
pn

= 0
}

and

rtc(p) =
{
x = (xk) ∈ w : lim

n→∞

∣∣∣∣∣ 1
Tn

n∑
k=0

tkxk − l
∣∣∣∣∣
pn

= 0 for some l ∈ R
}
.
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Since then various authors studied Riesz sequence spaces. One may refer to [1–7]
and the references cited therein for more studies on Riesz sequence spaces. Following
Altay and Başar [1, 2] and Baliarsingh [12], we construct a more generalised Riesz
paranormed difference sequence spaces of fractional order and study in detail the
related problems.

2. Riesz Difference Operator of Fractional Order and Sequence
Spaces

In this section, we define the product matrix Rt(∆(α)), obtain its inverse, intro-
duce paranormed Riesz difference sequence spaces of fractional order rt∞

(
p,∆(α)

)
,

rtc
(
p,∆(α)

)
and rt0

(
p,∆(α)

)
and give some topological properties of the spaces.

Combining the Riesz mean matrix Rt and the difference operator ∆(α), we obtain
a new product matrix Rt(∆(α)) = (r̃tnk) given by

r̃tnk =


n∑
i=k

(−1)i−k Γ(α + 1)
(i− k)!Γ(α− i+ k + 1)

ti
Tn
, if 0 ≤ k ≤ n,

0, if k > n.

Equivalently,

Rt(∆(α)) =



1 0 0 . . .
t0
T1
− α t1

T1

t1
T1

0 . . .

t0
T2
− α t1

T2
+ α(α− 1)

2!
t2
T2

t1
T2
− α t2

T2

t2
T2

. . .

... ... ... . . .


.

Now, by simple calculation, one may obtain the inverse of the matrix Rt(∆(α)) as
given in the following lemma.

Lemma 2.1. The inverse of the product matrix Rt(∆(α)) is given by

(Rt(∆(α)))−1
nk =


(−1)n−k

k+1∑
j=k

Γ(−α + 1)
(n− j)!Γ(−α− n+ j + 1)

Tk
tj
, if 0 ≤ k < n,

Tn
tn
, if k = n,

0, if k > n.

Let us define a sequence y = (yn) which will be frequently used as the Rt(∆(α))-
transform of the sequence x = (xk) as follows:

(2.1) yn =
n−1∑
k=0

[
n∑
i=k

(−1)i−k Γ(α + 1)
(i− k)!Γ(α− i+ k + 1)

ti
Tn

]
xk + tn

Tn
xn, n ∈ N.
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Now, we define the paranormed Riesz difference sequence spaces of fractional order
α, rt∞

(
p,∆(α)

)
, rtc

(
p,∆(α)

)
and rt0

(
p,∆(α)

)
as follows:

rt∞
(
p,∆(α)

)
=
{
x = (xn) ∈ w : Rt(∆(α))x ∈ `∞(p)

}
,

rtc
(
p,∆(α)

)
=
{
x = (xn) ∈ w : Rt(∆(α))x ∈ c(p)

}
,

rt0
(
p,∆(α)

)
=
{
x = (xn) ∈ w : Rt(∆(α))x ∈ c0(p)

}
.

Using the notation (1.3), the above sequence spaces may be rewritten as:

rt∞
(
p,∆(α)

)
=(`∞(p))Rt(∆(α)),

rtc
(
p,∆(α)

)
=(c(p))Rt(∆(α)),

rt0
(
p,∆(α)

)
=(c0(p))Rt(∆(α)).

The above sequence spaces reduce to the following classes of sequence spaces in the
special cases of α and p = (pk):

1. if α = 0 then above classes reduce to X(p) for X = {rt∞, rtc, rt0} as studied by
Altay and Başar [2], which further reduce to X in the case of p = (pk) = e as
studied by Malkowsky [3];

2. if α = 1 then above classes reduce to X(p,∆(1)) for X = {rt∞, rtc, rt0}, where
(∆(1)x)k = xk − xk−1;

3. if α = m then above classes reduce to X(p,∆(m)) for X = {rt∞, rtc, rt0}, where
(∆(m)x)k =

m∑
j=0

(−1)j
(
m
j

)
xm−j.

We begin with the following result.

Lemma 2.2. The operator Rt(∆(α)) : w → w is linear.

Proof. The proof is a routine verification and hence omitted. �

Theorem 2.1. The sequence space rt0
(
∆(α)

)
is a linear metric space paranormed by

(2.2) g∆(α)(x) = sup
k∈N

∣∣∣(Rt(∆(α))x
)
k

∣∣∣ pkM .

g∆(α) is paranorm for the spaces rt∞(p,∆(α)) and rtc(p,∆(α)) only in the trivial case,
with inf pk > 0 when rt∞(p,∆(α)) = rt∞(∆(α)) and rtc(p,∆(α)) = rt0(∆(α)).

Proof. We prove the theorem for the space rt0(∆(α)).
Clearly, g∆(α)(θ) = 0 and g∆(α)(−x) = g∆(α)(x) for all x ∈ rt0

(
∆(α)

)
. To show the

linearity of g∆(α) with respect to coordinate wise addition and scalar multiplication, we
take any two sequences u, v ∈ rt0(p,∆(α)) and scalars α1 and α2 in R. Since Rt(∆(α))
is linear and using Maddox [45], we get
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g∆(α)(α1u+ α2v)

= sup
k

∣∣∣∣∣∣
k−1∑
j=0

 k∑
i=j

(−1)i−j Γ(α + 1)
(i− j)!Γ(α− i+ j + 1)

ti
Tk

(α1uj + α2vj) + tk
Tk

(α1uk + α2vk)

∣∣∣∣∣∣
pk
M

≤max{1, |α1|} sup
k

∣∣∣(Rt(∆(α))u
)
k

∣∣∣ pkM + max{1, |α2|} sup
k

∣∣∣(Rt(∆(α))v
)
k

∣∣∣ pkM
= max{1, |α1|}g∆(α)(u) + max{1, |α2|}g∆(α)(v).

This follows the subadditivity of g∆(α) , i.e.,

g∆(α)(x+ y) ≤ g∆(α)(x) + g∆(α)(y), for all x, y ∈ rt0
(
p,∆(α)

)
.

Let {xn} be any sequence of points in rt0(p,∆(α)) such that g∆(α)(xn − x) → 0 and
also (βn) be any sequence of scalars such that βn → β as n→∞. Then by using the
subadditivity of g∆(α) , we get

g∆(α)(xn) ≤ g∆(α)(x) + g∆(α)(xn − x).

Now, since {g∆(α)(xn)} is bounded, we have

g∆(α)(βnxn − βx) = sup
k

∣∣∣∣∣∣
k−1∑
j=0

 k∑
i=j

(−1)i−j Γ(α + 1)
(i− j)!Γ(α− i+ j + 1)

ti
Tk

 (βnxnj − βxj)

+ tk
Tk

(βnxnk − βxk)

∣∣∣∣∣∣
pk
M

≤ |βn − β|
pk
M g∆(α)(xn) + |β|

pk
M g∆(α)(xn − x)

→ 0 as n→∞.

Thus, scalar multiplication for g∆(α) is continuous. Consequently, g∆(α) is a paranorm
on the sequence space rt0(p,∆(α)). This completes the proof of the theorem. �

Theorem 2.2. The sequence space rt0(p,∆(α)) is a complete linear metric space para-
normed by g∆(α) defined in (2.2).

Proof. Let xi = {x(i)
k } be any Cauchy sequence in rt0(p,∆(α)). Then for ε > 0 there

exists a positive integer N0(ε) such that

g∆(α)(xi − xj) < ε,

for all i, j ≥ N0(ε). This implies that {(Rt(∆(α))x0)k, (Rt(∆(α))x1)k, . . .} is a Cauchy
sequence of real numbers for each fixed k ∈ N. Since R is complete, the sequence
((Rt(∆(α))xi)k) converges. We assume that (Rt(∆(α))xi)k → (Rt(∆(α))x)k as i→∞.
Now, for each k ∈ N, j →∞ and i ≥ N0(ε), it is clear that

(2.3)
∣∣∣(Rt(∆(α))xi)k − (Rt(∆(α))x)k

∣∣∣ < ε

2 .
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Again, xi = {x(i)
k } ∈ rt0(p,∆(α)). This implies that

(2.4)
∣∣∣(Rt(∆(α))xi)k

∣∣∣ pkM <
ε

2 ,

for all k ∈ N. Therefore, using (2.3) and (2.4), we obtain
∣∣∣(Rt(∆(α))x)k

∣∣∣ pkM ≤ ∣∣∣(Rt(∆(α))x)k − (Rt(∆(α))xi)k
∣∣∣ pkM +

∣∣∣(Rt(∆(α))xi)k
∣∣∣ pkM

<
ε

2 + ε

2 = ε,

for all i ≥ N0(ε). This shows that the sequence ((Rt(∆(α))x)k) belongs to the space
c0(p). Since (xi) is any arbitrary Cauchy sequence, the space rt0(p,∆(α)) is complete.

�

Theorem 2.3. The paranormed Riesz difference sequence spaces rt0(p,∆(α)),
rtc(p,∆(α)) and rt∞(p,∆(α)) are linearly isomorphic to c0(p), c(p) and `∞(p), respec-
tively, where 0 < pk ≤ H <∞.

Proof. We prove the result for the space rt∞(p,∆(α)). Using the notation (2.1), we
define a mapping ϕ : rt∞(p,∆(α)) → `∞(p) by x 7→ y = ϕx. Clearly, ϕ is linear and
x = 0 whenever ϕx = 0. Thus, ϕ is injective.

Let y = (yk) ∈ `∞(p) and using (2.1) define the sequence x = (xk) by

(2.5) xk =
k−1∑
j=0

j+1∑
i=j

(−1)k−j Γ(−α + 1)
(k − i)!Γ(−α− k + i+ 1)

Tj
ti
yj

+ Tk
tk
yk, k ∈ N.

Then

g∆(α)(x) = sup
k∈N

∣∣∣∣∣∣
k−1∑
j=0

 k∑
i=j

(−1)i−j Γ(α + 1)
(i− j)!Γ(α− i+ j + 1)

ti
Tk

xj + tk
Tk
xk

∣∣∣∣∣∣
pk
M

= sup
k∈N

∣∣∣∣∣∣
k∑
j=0

δkjyj

∣∣∣∣∣∣
pk
M

= sup
k∈N
|yk|

pk
M <∞,

where

δkj =

1, if k = j,

0, if k 6= j.

Thus, x ∈ rt∞(p,∆(α)). Consequently, ϕ is surjective and paranorm preserving. Thus,
rt∞(p,∆(α)) ∼= `∞(p). �
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3. Schauder Basis

In this section, we shall construct the Schauder basis for the sequence spaces
rt0(p,∆(α)) and rtc(p,∆(α)).

We recall that a sequence (xk) of a normed space (X, ‖·‖) is called a Schauder basis
for X if for every u ∈ X there exist a unique sequence of scalars (ak) such that

lim
n→∞

∥∥∥∥∥u−
n∑
k=0

akxk

∥∥∥∥∥ = 0.

Theorem 3.1. Let λk(t) = (Rt(∆(α))x)k for all k ∈ N and 0 < pk ≤ H <∞. Define
the sequence b(k)(t) = (b(k)

n (t)) of the elements of the space rt0(p,∆(α)) for every fixed
k ∈ N by

b(k)
n (t) =



j+1∑
i=j

(−1)k−j Γ(−α + 1)
(k − i)!Γ(−α− k + i+ 1)

Tj
ti
, if k < n,

Tn
tn
, if k = n,

0, k > n.

Then
(a) the sequence (b(k)(t)) is basis for the space rt0(p,∆(α)) and every x ∈ rt0(p,∆(α))

has a unique representation of the form

(3.1) x =
∑
k

λk(t)b(k)(t);

(b) the set {(Rt(∆(α)))−1e, b(k)(t)} is a basis for the space rtc(p,∆(α)) and every
x ∈ rtc(p,∆(α)) has a unique representation of the form

x = le+
∑
k

|λk(t)− l| b(k)(t),

where l = limk→∞(Rt(∆(α))x)k.

Proof. (a) By the definition of Rt(∆(α)) and b(k)(t), it is clear that

(3.2)
(
Rt(∆(α))b(k)(t)

)
= e(k) ∈ c0(p),

for 0 < pk ≤ H < ∞. Let x ∈ rt0(p,∆(α)) and for every non-negative integer m, we
put

(3.3) x[m] =
m∑
k=0

λk(t)b(k)(t).

From (3.2) and (3.3), we obtain

Rt(∆(α))x[m] =
m∑
k=0

λk(t)Rt(∆(α))b(k)(t) = (Rt(∆(α))x)ke(k),
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and (
Rt(∆(α))(x− x[m])

)
i

=

0, if 0 ≤ i ≤ m,

(Rt(∆(α))x)i, if i > m.

Now, for ε > 0 there exists an integer m0 such that

sup
i≥m

∣∣∣(Rt(∆(α))x)i
∣∣∣ pkM <

ε

2
for all m ≥ m0. Hence,

g∆(α)

(
x− x[m]

)
= sup

i≥m

∣∣∣(Rt(∆(α))x)i
∣∣∣ pkM

≤ sup
i≥m0

∣∣∣(Rt(∆(α))x)i
∣∣∣ pkM <

ε

2 < ε,

for all m ≥ m0.
To show the uniqueness of the representation, we suppose that

x =
∑
k

µk(t)b(k)(t).

Then, we have

(Rt(∆(α))x)n =
∑
k

µk(t)
(
Rt(∆(α))b(k)(t)

)
n

=
∑
k

µk(t)e(k)
n = µn(t), n ∈ N.

This contradicts the fact that (Rt(∆(α))x)k = λk(t), k ∈ N. Thus, the representation
(3.1) is unique.

(b) The proof is analogous to the previous theorem and hence omitted. �

4. α-, β- and γ-duals

In this section we shall compute α-, β- and γ-duals of rt0(∆(α)), rtc(∆(α)) and
rt∞(∆(α)). Note that the notation α used for α-dual has different meaning to that of
the operator ∆(α).

For the sequence spaces X and Y, define multiplier sequence space M(X, Y ) by

M(X, Y ) = {p = (pk) ∈ w : px = (pkxk) ∈ Y, for all x = (xk) ∈ X} .

Then the α-, β- and γ-duals of X are given by

Xα = M(X, `1), Xβ = M(X, cs), Xγ = M(X, bs),

respectively. Now, we give the following lemmas given in [41] which will be used to
obtain the duals. Throughout F will denote the collection of all finite subsets of N.

Lemma 4.1. Let A = (ank) be an infinite matrix. Then, the following statement
hold:
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(a) A ∈ (`∞(p), `(q)) if and only if

sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

ankB
1
pk

∣∣∣∣∣∣
qn

<∞, for all integers B > 1 and qn ≥ 1 for all n;

(b) A ∈ (`∞(p), `∞(q)) if and only if

sup
n∈N

(∑
k

|ank|B
1
pk

)qn
<∞, for all integers B > 1;

(c) A ∈ (`∞(p), c(q)) if and only if

sup
n∈N

∑
k

|ank|B
1
pk <∞, for all integers B > 1,

exists (αk) ⊂ R such that lim
n→∞

(∑
k

|ank − αk|B
1
pk

)qn
= 0, for all B > 1;

(d) A ∈ (`∞(p), c0(q)) if and only if

lim
n→∞

(∑
k

|ank|B
1
pk

)qn
= 0, for all integers B > 1.

Lemma 4.2. Let A = (ank) be an infinite matrix. Then, the following statement
hold:

(a) A ∈ (c0(p), `∞(q)) if and only if

(4.1) sup
n∈N

(∑
k

|ank|B
−1
pk

)qn
<∞, for all integers B > 1;

(b) A ∈ (c0(p), c(q)) if and only if

sup
n∈N

∑
k

|ank|B
−1
pk <∞ , for all integers B > 1,(4.2)

exists (αk) ⊂ R such that sup
n∈N

∑
k

|ank − αk|M
1
qnB

−1
pk <∞,(4.3)

for all integers M,B > 1,

exists (αk) ⊂ R such that lim
n→∞

|ank − αk|qn = 0, for all k ∈ N;(4.4)

(c) A ∈ (c0(p), c0(q)) if and only if
(4.5)
exists (αk) ⊂ R such that sup

n∈N

∑
k

|ank|M
1
qnB

−1
pk <∞, for all integers M,B > 1,

(4.6) exists (αk) ⊂ R such that lim
n→∞

|ank|qn = 0, for all k ∈ N.

Lemma 4.3. Let A = (ank) be an infinite matrix. Then the following statement hold:
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(a) A ∈ (c(p), `∞(q)) if and only if (4.1) holds and

sup
n∈N

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

<∞;

(b) A ∈ (c(p), c(q)) if and only if (4.2), (4.3) and (4.4) hold and

exists α ∈ R such that lim
n→∞

∣∣∣∣∣∑
k

ank − α
∣∣∣∣∣
qn

= 0;

(c) A ∈ (c(p), c0(q)) if and only if (4.5) and (4.6) hold and

lim
n→∞

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

= 0.

Theorem 4.1. Define the sets ν1(p), ν2(p), ν3(p), ν4(p), ν5(p) and ν6(p) as follows:

ν1(p) =
⋂
B>1

{
a = (ak) ∈ w :

sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

k+1∑
j=k

(−1)n−k Γ(−α+ 1)
(n− j)!Γ(−α− n+ j + 1)

Tk
tj
ak + Tn

tn
an

∣∣∣∣∣∣B 1
pk <∞

 ,

ν2(p) =
⋂
B>1

{
a = (ak) ∈ w :

∑
k

∣∣∣∣∆(α)
(
ak
tk

)
Tk

∣∣∣∣B 1
pk <∞ and

(
akTk
tk

B
1

pk

)
∈ c0

}
,

ν3(p) =
⋂
B>1

{
a = (ak) ∈ w :

∑
k

∣∣∣∣∆(α)
(
ak
tk

)
Tk

∣∣∣∣B 1
pk <∞ and

{
∆(α)

(
ak
tk

)
Tk

}
∈ `∞

}
,

ν4(p) =
⋃
B>1

{
a = (ak) ∈ w :

sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

k+1∑
j=k

(−1)n−k Γ(−α+ 1)
(n− j)!Γ(−α− n+ j + 1)

Tk
tj
ak + Tn

tn
an

∣∣∣∣∣∣B −1
pk <∞

 ,

ν5(p) =
⋃
B>1

{
a = (ak) ∈ w :

∑
n

∣∣∣∣∣∣
∑
k

k+1∑
j=k

(−1)n−k Γ(−α+ 1)
(n− j)!Γ(−α− n+ j + 1)

Tk
tj
ak + Tn

tn
an

∣∣∣∣∣∣ <∞
 ,

ν6(p) =
⋂
B>1

{
a = (ak) ∈ w :

∑
k

∣∣∣∣∆(α)
(
ak
tk

)
Tk

∣∣∣∣B −1
pk <∞

}
,

where

(4.7) ∆(α)
(
ak
tk

)
= ak
tk

+
n∑

j=k+1
(−1)j−kaj

k+1∑
i=k

Γ(−α + 1)
(j − i)!Γ(−α− j + i+ 1)ti

.

Then[
rt∞(p,∆(α))

]α
=ν1(p),

[
rt∞(p,∆(α))

]β
= ν2(p),

[
rt∞(p,∆(α))

]γ
= ν3(p),
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[
rtc(p,∆(α))

]α
=ν4(p) ∩ ν5(p),

[
rtc(p,∆(α))

]β
= ν6(p) ∩ cs,[

rtc(p,∆(α))
]γ

=ν6(p) ∩ bs,
[
rt0(p,∆(α))

]α
= ν4(p),[

rt0(p,∆(α))
]β

=
[
rt0(p,∆(α))

]γ
= ν6(p).

Proof. We prove the theorem for the space rt∞(p,∆(α)). Consider the sequence a =
(ak) ∈ w and x = (xk) is as defined in (2.5), then we have

anxn =
n−1∑
j=0

j+1∑
i=j

(−1)n−j Γ(−α + 1)
(n− i)!Γ(−α− n+ i+ 1)

Tj
ti
anyj

+ Tn
tn
anyn

= (Gy)n, for each n ∈ N,(4.8)

where G = (gnk) is a matrix defined by

gnk =



k+1∑
j=k

(−1)n−k Γ(−α + 1)
(n− j)!Γ(−α− n+ j + 1)

Tk
tj
an, if 0 ≤ k < n,

Tn
tn
an, if k = n,

0, if k > n.

Thus, we deduce from (4.8) that ax = (anxn) ∈ `1 whenever x = (xk) ∈ rt∞(p,∆(α))
if and only if Gy ∈ `1 whenever y = (yk) ∈ `∞(p). This yields that a = (an) ∈[
rt∞(p,∆(α))

]α
if and only if G ∈ (`∞(p), `1).

Thus, by using Lemma 4.1(a) with qn = 1 for all n, we conclude that
[
rt∞(p,∆(α))

]α
= ν1(p).

Now, consider the following equation

n∑
k=0

akxk =
n∑
k=0

ak

k−1∑
j=0

j+1∑
i=j

(−1)k−j Γ(−α + 1)
(k − i)!Γ(−α− k + i+ 1)

Tj
ti
yj

+ Tk
tk
yk


=

n−1∑
k=0

ykTk

ak
tk

+
n∑

j=k+1
(−1)j−kaj

k+1∑
i=k

Γ(−α + 1)
(j − i)!Γ(−α− j + i+ 1)ti

+ Tn
tn
anyn

=
n−1∑
k=0

ykTk∆(α)
(
ak
tk

)
+ Tn
tn
anyn(4.9)

= (Hy)n, for each n ∈ N,
(4.10)
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where H = (hnk) is a matrix defined by

hnk =


∆(α)

(
ak
tk

)
Tk, if 0 ≤ k < n,

Tn
tn
an, if k = n,

0, if k > n,

and ∆(α)
(
ak
tk

)
is as defined in (4.7). Thus, we deduce from (4.10) that ax = (akxk) ∈ cs

whenever x = (xk) ∈ rt∞(p,∆(α)) if and only if Hy ∈ c whenever y = (yk) ∈ `∞(p).
Therefore, by using Lemma 4.1 (c) with q = (qn) = 1, we get that∑

k

∣∣∣∣∆(α)
(
ak
tk

)
Tk

∣∣∣∣B 1
pk <∞ and lim

k→∞

Tk
tk
akB

1
pk = 0.

Thus,
[
rt∞(p,∆(α))

]β
= ν2(p).

Similarly, by using Lemma 4.1 (b), with qn = 1 for all n, we can deduce that[
rt∞(p,∆(α))

]γ
= ν3(p). This completes the proof of the theorem. The duals of the other

spaces can be obtained by the similar proceedings and using Lemma 4.2 and 4.3. �

5. Matrix Transformations

In this section, we give certain results regarding matrix transformation of the Riesz
sequence spaces of fractional order to X(p) where X = {`∞, c, c0}. Let q = (qn) be a
non-decreasing bounded sequence of positive real numbers. For brevity, we write

∆(α)
(
ank
tk

)
= ank

tk
+

n∑
j=k+1

(−1)j−kanj
k+1∑
i=k

Γ(−α + 1)
(j − i)!Γ(−α− j + i+ 1)ti

and

∆(α)
∞

(
ank
tk

)
= ank

tk
+

∞∑
j=k+1

(−1)j−kanj
k+1∑
i=k

Γ(−α + 1)
(j − i)!Γ(−α− j + i+ 1)ti

,

for all n, k ∈ N. Let x, y ∈ w be connected by the relation y = Rt(∆(α))x. Then we
have by (4.9)

(5.1)
m∑
k=0

ankxk =
m−1∑
k=0

∆(α)
(
ank
tk

)
Tkyk + anm

tm
Tm

ym, n,m ∈ N.

Now, let us consider the following conditions before we proceed:

lim
k→∞

ank
tk
TkB

1
pk = 0, for all n,B ∈ N,(5.2)

sup
n∈N

[∑
k

∣∣∣∣∆(α)
∞

(
ank
tk

)
Tk

∣∣∣∣B 1
pk

]qn
<∞, for all B ∈ N,(5.3)

sup
n∈N

∑
k

∣∣∣∣∆(α)
∞

(
ank
tk

)
Tk

∣∣∣∣B 1
pk <∞, for all B ∈ N,(5.4)
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exists (αk) ⊂ R such that lim
n→∞

[∑
k

∣∣∣∣∆(α)
∞

(
ank
tk

)
Tk − αk

∣∣∣∣B 1
pk

]qn
= 0,(5.5)

for all B ∈ N,

sup
n∈N

[∑
k

∣∣∣∣∆(α)
∞

(
ank
tk

)
Tk

∣∣∣∣B −1
pk

]qn
<∞, for all B ∈ N,(5.6)

sup
n∈N

∣∣∣∣∣∑
k

∆(α)
∞

(
ank
tk

)
Tk

∣∣∣∣∣
qn

<∞, for all n ∈ N,(5.7)

exists α ∈ R such that lim
n→∞

∣∣∣∣∣∑
k

∆(α)
∞

(
ank
tk

)
Tk − α

∣∣∣∣∣
qn

= 0,(5.8)

exists (αk) ⊂ R such that lim
n→∞

∣∣∣∣∆(α)
∞

(
ank
tk

)
Tk − αk

∣∣∣∣qn = 0, for all k ∈ N,(5.9)

exists (αk) ⊂ R such that sup
n∈N

L
1
qn

∑
k

∣∣∣∣∆(α)
∞

(
ank
tk

)
Tk − αk

∣∣∣∣B −1
pk <∞,(5.10)

for all L exists B ∈ N.

Theorem 5.1. Let A = (ank) be an infinite matrix. Then the following hold:
(a) A ∈ (rt∞(p,∆(α)), `∞(q)) if and only if (5.2) and (5.3) hold;
(b) A ∈ (rt∞(p,∆(α)), c(q)) if and only if (5.2), (5.4) and (5.5) hold;
(c) A ∈ (rt∞(p,∆(α)), c0(q)) if and only if (5.2) holds and (5.5) holds, with αk = 0

for all k ∈ N.

Proof. We give the proof of (a) as the rest can be obtained in the similar manner.
Let A = (ank) ∈ (rt∞(p,∆(α)), `∞(q)) and x = (xk) ∈ rt∞(p,∆(α)). Consider equation
(5.1). Since Ax exists and belongs to the space `∞(q), therefore the necessity of the
condition (5.2) is obvious. Now, letting m→∞ in equation (5.1), we straightly get

Ax =
∑
k

ank
tk

+
∞∑

j=k+1
(−1)j−kanj

k+1∑
i=k

Γ(−α + 1)
(j − i)!Γ(−α− j + i+ 1)ti

Tkyk
=
∑
k

∆(α)
∞

(
ank
tk

)
Tkyk.(5.11)

This implies that A(Rt(∆(α)))−1y ∈ `∞(q). That is, A(Rt(∆(α)))−1 ∈ (`∞(p), `∞(q)).
Therefore, A(Rt(∆(α)))−1 satisfies the lemma 4.1(b) which is equivalent to the condi-
tion (5.3). This shows the necessity of the condition (5.3).

Conversely, let the conditions (5.2) and (5.3) hold and x ∈ rt∞(p,∆(α)). Then it
is clear that Ax exists. Now, using equation (5.11) and the condition (5.3) with
B > max{1, sup

k
|yk|pk}, we get

‖Ax‖`∞(q) = sup
n∈N

∣∣∣∣∣∑
k

ankxk

∣∣∣∣∣
qn
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= sup
n∈N

∣∣∣∣∣∣
∑
k

ank
tk

+
∞∑

j=k+1
(−1)j−kanj

k+1∑
i=k

Γ(−α + 1)
(j − i)!Γ(−α− j + i+ 1)

Tkyk
∣∣∣∣∣∣
qn

≤ sup
n∈N

(∑
k

∣∣∣∣∆(α)
∞

(
ank
tk

)
Tkyk

∣∣∣∣
)qn

≤ sup
n∈N

(∑
k

∣∣∣∣∆(α)
∞

(
ank
tk

)
Tk

∣∣∣∣B 1
pk

)qn
<∞.

This concludes that A ∈ (rt∞(p,∆(α)), `∞(q)). �

By the similar proceedings, we can derive the following results.

Theorem 5.2. Let A = (ank) be an infinite matrix. Then the following hold:
(a) A ∈ (rtc(p,∆(α)), `∞(q)) if and only if (5.2), (5.6) and (5.7) hold;
(b) A ∈ (rtc(p,∆(α)), c(q)) if and only if (5.2), (5.8), (5.9) and (5.10) hold and

(5.6) also holds, with qn = 1 for all n ∈ N;
(c) A ∈ (rtc(p,∆(α)), c0(q)) if and only if (5.2) holds and (5.8), (5.9) and (5.10)

also hold, with α = 0, αk = 0 for all k ∈ N.

Theorem 5.3. Let A = (ank) be an infinite matrix. Then the following hold:
(a) A ∈ (rt0(p,∆(α)), `∞(q)) if and only if (5.2) and (5.6) hold;
(b) A ∈ (rt0(p,∆(α)), c(q)) if and only if (5.2), (5.9) and (5.10) hold and (5.6) also

holds, with qn = 1 for all n ∈ N;
(c) A ∈ (rt0(p,∆(α)), c0(q)) if and only if (5.2) holds and (5.9) and (5.10) also hold,

with αk = 0 for all k ∈ N.

Conclusion

In this article, we introduce paranormed difference sequence spaces rt∞(∆(α)),
rtc(∆(α)) and rt0(∆(α)) of fractional order α, investigate their topological properties,
Schauder basis, α-, β- and γ- duals and characterize the matrix classes related to
these spaces. We conclude that the results obtained from the matrix domain of the
product matrix Rt(∆(α)) are more general and extensive than the existent results of
the previous authors. We expect that our results might be a reference for further
studies in this field. In our next paper, we will investigate the results obtained from
the matrix domain Rt(∆(α)) in the spaces `p of absolutely p-summable sequences,
1 ≤ p <∞.

Acknowledgements. The author would like to thank the anonymous referees for
their careful reading and necessary comments which have improved the presentation
of the paper.
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