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PARANORMED RIESZ DIFFERENCE SEQUENCE SPACES OF
FRACTIONAL ORDER

TAJA YAYING!

ABSTRACT. In this article we introduce paranormed Riesz difference sequence
spaces of fractional order a, rf (p, A@), rt (p,A) and rt, (p, A®)) defined
by the composition of fractional difference operator A(® defined by (A™z), =
S} .

> (—1)11,F((57+;)1)xk i, and Riesz mean matrix R'. We give some topological prop-
i=0

erties, obtain the Schauder basis and determine the -, 8- and - duals of the new
spaces. Finally, we characterize certain matrix classes related to these new spaces.

1. INTRODUCTION

Throughout the paper T'(m) will denote the gamma function of all real numbers
m ¢ {0,—1,—2,...}. T'(m) can be expressed as an improper integral given by

(1.1) ['(m) = /OOO e “a™ .

Using (1.1), we state some properties of gamma function which are used throughout
the text:

1. forme N, I'(m+1) =ml;

2. for any real number m ¢ {0, — .}, T(m+ 1) = mI(m);
3. for particular cases, we have F( ) ( )=1,T'3)=2,T4)=3,...
Throughout the paper N = {0,1,2,3,...} and let w be the space of all real valued

sequences. By (., ¢g and ¢ we mean the spaces all bounded, null and convergent
sequences, respectively, normed by ||z ||, = sup |z|. Also by ¢;, cs and bs, we mean the
k

Key words and phrases. Riesz difference sequence spaces, difference operator A(®), Schauder basis,
a-, (-, v- duals, matrix transformation.

2010 Mathematics Subject Classification. Primary: 46A45. Secondary: 46A35, 46B45.

Received: May 18, 2019.

Accepted: September 20, 2019.

175



176 T. YAYING

spaces of absolutely summable, convergent series and bounded series, respectively. The
space (1 is normed by Y, |zx| and the spaces cs and bs are normed by sup,, |>p_q Zk| -
Here and henceforth, the summation without limit runs from zero to co. Also, let
e={1,1,1...} and e® be the sequences whose only non-zero term is 1 in the k"
place for each k € N.

Let p = (px) be a bounded sequence of strictly positive real numbers with M =
max{1l, H}, where H = supy px. Then, Maddox [43,44] defined the sequence spaces

loo(p), co(p), c(p) and ¢(p) as follows:

loo(p) = {w = (zk) € w: sup |a[™ < 00} :
keN

CO(p> - {x - (I’k) cw: hm |[L‘k|pk = 0}7
k—o0

C(p> = {l’ - (l‘k) cw: khm |Q’}k — l|pk =0 for some l c R}
—00

and
{(p) = {x = (zk) €w: Y |zl < oo},
k
which are complete spaces paranormed by

1

. e
g(x) = sup ]xk|ﬁk and h(z) = <Z \xk\p’“> )
keN k

Let X and Y be two sequence spaces and A = (a,;) be an infinite matrix of real or
complex entries. Then A defines a matrix mapping from X to Y if for every sequence
x = (z1,), the A-transform of z, i.e., Ax = {(Az),} € Y, where

(1.2) (Az), = apery, neN.
k

The sequence space X4 defined by
(1.3) Xa={r=(ap) ew: Az € X}

is called the domain of matrix A.

By (X,Y), we denote the class of all matrices A from X to Y. Thus A € (X,Y) if
and only if the series on the R.H.S. of the (1.2) converges for each n € N and z € X
such that Az € Y for all x € X.

The notion of difference sequence space X (A) for X = {l, ¢, co} was introduced
by Kizmaz [40]. Since then several authors [15-19,21-24] generalized the notion of
difference operator A and studied various sequence spaces of integer order. However,
for a positive proper fraction «, Baliarsingh and Dutta [10] (see also [11,12,20]) have
defined a generalized fractional difference operator A(® and its inverse as

(14) (A ) =3 (1) Y

iT(a—i+1) "
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['(—a+1)
ilMN(—a—i+1

(15) (Az), = 3 (~1)

Throughout the paper it is assumed that the series on the R.H.S. of (1.4) and (1.5)
are convergent for z = (z;) € w. It is more convenient to express A(®) as a triangle

(_1)nfk F(Oé + 1) ’
(A@), . = n—kTMa—n+k+1)
0, if k> n.

)xk_i.

if 0 <k <n,

Moreover, Dutta and Baliarsingh [20] also studied the paranormed difference sequence
spaces of fractional order X (T', A% u, p) for X = {cy, ¢, s}, Where

(Adx)k = i)(_l)imxkﬂ.

Furthermore, Baliarsingh and Dutta [11] studied the sequence spaces X (", A%, p) for
X = {co, ¢, 0 }. For some nice papers on fractional difference operator and related
sequence spaces, one may refer to [10-13,20,25-34] and the references mentioned
therein.

Let (tx) be a sequence of positive numbers and let

Tn = Ztk, n € N.
k=0

The Riesz mean matrix R' = (r!,) was defined in [1,3] as

178

— 0<k<n,
Tk = In -

0, k> n.

The Riesz sequence spaces 1%, rh and rf were introduced by Malkowsky [3] as follows:

' = lo)rt, 76 =(co)re and 7’ = (c)p.

Altay and Basgar [1] introduced the paranormed Riesz sequence spaces r'(p) as

rt(p):{:c:(:ck)Ew:Z p"<oo}.

The paranormed Riesz sequence spaces 1% (p), r§(p) and r(p) were studied by Altay
and Bagar [2] as follows:

n

1
T > thak

n k=0

1 n Pn
7”20(1?) :{x: (x) € w : sup —Ztka:k <oo},
neN Tn k=0
1 n Pn
" k=0

Pn

:OforsomeleR}.
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Since then various authors studied Riesz sequence spaces. One may refer to [1-7]
and the references cited therein for more studies on Riesz sequence spaces. Following
Altay and Basar [1,2] and Baliarsingh [12], we construct a more generalised Riesz
paranormed difference sequence spaces of fractional order and study in detail the
related problems.

2. RI1ESZ DIFFERENCE OPERATOR OF FRACTIONAL ORDER AND SEQUENCE
SPACES

In this section, we define the product matrix R(A()), obtain its inverse, intro-
duce paranormed Riesz difference sequence spaces of fractional order rf_ (p, A(a)) ,
rt ( ,A(a)> and 7 ( ,A(a)) and give some topological properties of the spaces.

Combining the Riesz mean matrix R and the difference operator A(®, we obtain
a new product matrix R(A(®) = (7,) given by

- L H0<k<
D P I T LA
0 it k> n.
Equivalently,
_ 1 0 0 ...]
tO tl tl O
— — s
o Ty Ty T,
T T 2! T, Ty T, T,

Now, by simple calculation, one may obtain the inverse of the matrix RY(A(®) as
given in the following lemma.

Lemma 2.1. The inverse of the product matriz R'(A®) is given by

kil I(—a+1 T
(—1)mk (ot 1) A ifo<k<n,

(R(AN) = T

n ) ka:n,
0, if k> n.

Let us define a sequence y = (y,,) which will be frequently used as the RY(A()-
transform of the sequence x = (xy) as follows:

n—1 n . F(OZ+ 1) t "
2.1 = —1 i—k ti tn |
R k:z::() i;( e =itk T, nEN




PARANORMED RIESZ DIFFERENCE SEQUENCE SPACES OF FRACTIONAL ORDER 179

Now, we define the paranormed Riesz difference sequence spaces of fractional order
b (p> A(O‘)) LT (p, A(a)) and r§ (p, A(a)) as follows:

e (p, A = {a
(p:6) =
i (p.4) =
Using the notation (1.3), the above sequence spaces may be rewritten as:
L (P AY) =(lao(p)) (s,
rt (0, A) =(c(p)) pr(a
b (p, A®) =(c <p>>Rt<A<a>>

The above sequence spaces reduce to the following classes of sequence spaces in the
special cases of a and p = (py):

1. if & = 0 then above classes reduce to X (p) for X = {rf_ rL r{} as studied by
Altay and Basgar [2], which further reduce to X in the case of p = (p) = e as
studied by Malkowsky [3];

2. if & = 1 then above classes reduce to X (p, AM) for X = {r?
(A(l)ﬁ)k =Tk — Tk-1;

3. if a = m then above classes reduce to X (p, A™) for X = {r!_ i rt}, where

(M) = 52 (1) (7 )

We begin with the following result.

(2n) € w: R(A™)z € Lo(p) },
(zn) € w: RY(A)z € ¢(p }
(xn,) €Ew: Rt(A(O‘ )z € co(p)}

t
c

T T
X

Lorb}, where

[oop) C7

Lemma 2.2. The operator RY(A®) 1w — w is linear.
Proof. The proof is a routine verification and hence omitted. O

Theorem 2.1. The sequence space r} (A(O‘)) is a linear metric space paranormed by

(2:2) gaw(x) = sup|(R'(A)z) | ™

keN k

ga s paranorm for the spaces rt_(p, A®) and r (p,A(a ) only in the trivial case,
with inf p, > 0 when rt_(p, Al¥)) = rt (A @) and 7t (p, Al®) = rf(A).

Proof. We prove the theorem for the space rf(A®).

Clearly, gaw (0) = 0 and ga (—2) = gac (z) for all z € rf (A(O‘)) . To show the
linearity of g with respect to coordinate wise addition and scalar multiplication, we
take any two sequences u,v € 75(p, A®) and scalars a; and ay in R. Since R*(A(®))
is linear and using Maddox [45], we get
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ga (a1u + asv)

Pr
k—1 k i
i—J F(a + 1) ti tk
= —1 =] e ) ) Yk
Pl {2( S e — it 0 |\ o)+ (et azu)

Pk

M

<max{1, ||} sup ‘(Rt(A(a))u)k

Pi
M+ max{1, |ag|} sup ’(Rt(A(a))v)k
k

= max{1, |a1[}ga (u) + max{l, |as[}gac (v).
This follows the subadditivity of gaw), i.e.,
ga (@ +1) < ga (@) + gaw (y),  for all 2,y € 1§ (p, A®)).

Let {z"} be any sequence of points in 74(p, A)) such that gaw (2" — z) — 0 and
also (f,) be any sequence of scalars such that 3, — 3 as n — oco. Then by using the
subadditivity of gaw), we get

ga@ (2") < gaw (@) + gaw (2" — ).

Now, since {ga (™)} is bounded, we have

N = i D(a+1) t; N
gA(Dt)(ﬁnx _ﬁx) _Sgp]z:;] Lz:;(_l) j(i—j)!r(&—i—l—j—i- 1)?16 (B”xj _ij)

Pk
M

+;§;(5an ~ By)

Pk n Pk n
< By — B ga (") + 5] ™ g (2" — )
—0 as n— 0.

Thus, scalar multiplication for g is continuous. Consequently, ga) is a paranorm
on the sequence space 7§(p, A®). This completes the proof of the theorem. O

Theorem 2.2. The sequence space r(p, A(a)) s a complete linear metric space para-
normed by gaw defined in (2.2).

Proof. Let x* = {:v,(;)} be any Cauchy sequence in r§(p, A(®). Then for ¢ > 0 there
exists a positive integer Ny(e) such that
gaw (@' —a?) <e,

for all 4,5 > Ny(¢). This implies that {(R{(A@)20),, (R (A)z!)y, ...} is a Cauchy
sequence of real numbers for each fixed £ € N. Since R is complete, the sequence
((RY(A)z7),) converges. We assume that (RY(A®)2?), — (RY(A®)1), as i — oco.
Now, for each k € N, j — oo and i > Ny(¢), it is clear that

(2.3) (R(A)at) — (R(A)a)] < 5.
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Again, ' = {2’} € ri(p, A®). This implies that

bva €
M
< 2’

for all & € N. Therefore, using (2.3) and (2.4), we obtain

(2.4) (RH(A®)a),

M Rt(A(a))l’)k i (Rt(A(a))xi)k‘ﬁ + ‘(Rt(A(a))xz’)k M
9

|(R(A®)a),

IA

A

"3

(
= e
2 )

for all i > Ny(g). This shows that the sequence ((Rf(A(®)z);) belongs to the space
co(p). Since (z') is any arbitrary Cauchy sequence, the space 7§(p, A®) is complete.

O

Theorem 2.3. The paranormed Riesz difference sequence spaces rh(p, A,
ri(p, A and rt_(p, A are linearly isomorphic to co(p), c(p) and ls(p), respec-
tively, where 0 < pr, < H < .

Proof. We prove the result for the space rf_(p, A®). Using the notation (2.1), we
define a mapping ¢ : 7t _(p, A®) — £o(p) by x +— y = px. Clearly, ¢ is linear and
x = 0 whenever px = 0. Thus, ¢ is injective.

Let y = (yx) € loo(p) and using (2.1) define the sequence x = (xy) by

k=1 [j+1 , [(—a+1) T} T,
25 _ —1)k—J =Yy —yr, k€N
25) @ Z:hl N ey AT A
7=0 |i=j
Then
k-1 [ & o
- o Na+1) t; (7%
o (x) = su —1)"7 — — el KL Bl
g () k@g;o[;( S e =i+ 0T | T T
Pk
k M
— St
= sup [y ¥ < o0,
keN
where

s L k=g,
Yo, itk #7.

Thus, x € % (p, A

p, A1), Consequently, ¢ is surjective and paranorm preserving. Thus,
rle(p, A®) = Lo (p).

O
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3. SCHAUDER BASIS

In this section, we shall construct the Schauder basis for the sequence spaces
rh(p, A®) and 1! (p, A®),

We recall that a sequence (zy) of a normed space (X, ||-]|) is called a Schauder basis
for X if for every u € X there exist a unique sequence of scalars (ay) such that

u — Zakxk

k=0

= 0.

lim
n—o0

Theorem 3.1. Let \i(t) = (RY(A®)x), for all k € N and 0 < pp, < H < 0o. Define
the sequence b (t) = (b%)(t)) of the elements of the space r4(p, AY) for every fized
keN by

J+1 A M(—a+1) T
—1)k—J T -
;( ) - )(a—ktitD s k=m
b (t) = T, |
ty if k =n,
0, k>n.

Then
(a) the sequence (b¥)(t)) is basis for the space v4(p, AY) and every x € r(p, A(®)
has a unique representation of the form

(3.1) T = Z Ak (0) 6™ (¢

(b) the set {(R{(AW)) e, b (1)} is a basis for the space rt(p, A1) and every
x €7t (p, AY) has a unique representation of the form

z=1le+ > |\(t) = 1| 0" (2),
k
where | = limy_,o (RY(A®)) ),
Proof. (a) By the definition of RY(A®)) and b®)(¢), it is clear that
(3.2) (R(A@I (1)) = e® € eo(p),

for 0 < pp, < H < oo. Let o € rf(p, A®) and for every non-negative integer m, we
put

(3.3) 2™ = 3" A ()p)
k=0
From (3.2) and (3.3), we obtain

RYA@) 2 = 3™ X () RY AP (£) = (RYA)z) e ®,
k=0
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and
0 ifo<i<m
Rt A(a) _ plm] = ’ o ’
( ( R ))i (RHA) D), if i > m.

Now, for € > 0 there exists an integer mg such that

P
sup [(RY(A)a) | ™ <

i>m

€
2
for all m > mg. Hence,

Pk
M

IA(e) (.CE — x[m]> = sup ‘(Rt(A(a))x)i

>m
t( A(Q) M _ €
< sup [(R(AD)a)| " < <,
i>mo 2

for all m > my.
To show the uniqueness of the representation, we suppose that

r =" m(t)p®(1).
Then, we have
(RH(A@)), = 3 ue(t) (RAADH (1))
k

= > (el = pn(t), neN.
k

This contradicts the fact that (R/(A®)2), = \x(t), k € N. Thus, the representation
(3.1) is unique.
(b) The proof is analogous to the previous theorem and hence omitted. O

4. a-, f- AND y-DUALS

In this section we shall compute a-, $- and y-duals of 75(A@), rt(A®) and
rt_(A®). Note that the notation a used for a-dual has different meaning to that of
the operator A®.

For the sequence spaces X and Y, define multiplier sequence space M (X,Y’) by

M(X,)Y)={p=(pr) € w:pr = (prxy) €Y, forall x = (x;) € X}.
Then the a-, - and y-duals of X are given by
X=M(X,t), X°=M(X,cs), X?"=M(X,bs),

respectively. Now, we give the following lemmas given in [41] which will be used to
obtain the duals. Throughout JF will denote the collection of all finite subsets of N.

Lemma 4.1. Let A = (ank) be an infinite matriz. Then, the following statement
hold:
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(a) A€ ({c(p),€(q)) if and only if
dn
sup Z Z ankBi

KeF n |kek

(b) A € (Yoo(p),l(q)) if and only if

< 0o, for all integers B > 1 and q, > 1 for all n;

1\ I
sup (Z [ B"’“) < o0, for all integers B > 1;
neN k

(c) A € (lo(p), c(q)) if and only if

1
sup »_ |ank| B < oo,  for all integers B > 1,
neN k

qn
ezists (ag) C R such that lim (Z | — ol B;k) =0, forallB>1;
k
(d) A€ (lx(p),co(q)) if and only if

1 qn
lim (Z | @] B”’c) =0, for all integers B > 1.
2

n—oo

Lemma 4.2. Let A = (an) be an infinite matriz. Then, the following statement
hold:

(a) A € (co(p), les(q)) if and only if

L\
(4.1) sup <Z |G| Bpk> < oo, for all integers B > 1;
neN k
(b) A € (co(p), c(q)) if and only if
(4.2) supz || B;’Tcl < oo, forallintegers B > 1,
neN k
(4.3) exists (o) C R such that sup Y |an, — o Min B < 00,
neN k

for all integers M, B > 1,

(4.4) exists (o) C R such that Jim lane — a|™ =0,  forallk eN;
(c) A€ (co(p),co(q)) if and only if
(4.5)
1 =1
exists (o) C R such that sup Y |an,| Man BPe < oo,  for all integers M, B > 1,
neN k
(4.6) exists () C R such that 1im lane|™ =0,  forall k € N.

Lemma 4.3. Let A = (ani) be an infinite matriz. Then the following statement hold:
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(a) A € (c(p),loo(q)) if and only if (4.1) holds and
Z Qnk
k

(b) A € (¢(p),c(q)) if and only if (4.2), (4.3) and (4.4) hold and

qn

< 00;

sup
neN

n—oo

exists a € R such that lim ‘Z Unp — O
k
(c¢) A€ (c(p),colq)) if and only if (4.5) and (4.6) hold and

dn
lim ’z -
k

= 0.
n— 00

Theorem 4.1. Define the sets v1(p), va(p), v3(p), va(p), vs(p) and vs(p) as follows:

vi(p) = m {a:(ak) Ew:

B>1
k+1
. P(-a+1) B o In 7
1) k —_ —Qnp, Bre < 3
?é%zn: k%; LZ; ) (n—jT(—a—n+j+1)t, " o

N Ty 1
Bplk < oo and (a;; kBplk) GCO}a
k

Bf%k- < 00 and {A(O‘) (?) Tk} S &X,},
k

v = { = (o w3 ‘M (tk) 7

B>1
A <“k) T,
173

Vg(p):ﬂ {az(ak)ewzz

k

B>1
V4(p) = U {a: (ak) cw:
B>1
k+1 Mot 1) , . B
n—~k Lk Ty =
’2%2 kz [Z(l) (=)' (~a—-n+j+1)t, W+ P Bre <oop,
n eK |j=k
vs(p) = {a: (ar) € w:
B>1
-« MN—a+1) T, T
_1\n—k Lk T,
zn: zk: Lz_;;( ) - (a-—ntit04 % 55 =%
ve(p) = ﬂ {a = (ay) Ew: Z Al (ak) T.| B < oo},
B>1 . 22
where
n ) k+1 F(—Oé + 1)
(4.7) tr t jzzk;rl( ) Ji:Zk (=) (—a—j+i+ 1)
Then
¥

t

o A" =), [0 )] = (), (e A@)]" = (o),

o
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[MnN%} —s(p) M), [rhp, A@)]” = vep) Nes,

(
i, A =vs(p) ks, [, A)] = wa(p),
[0, A@)]° = [r (0, A@)]" = ve(p).

Proof. We prove the theorem for the space rf_(p, A®). Consider the sequence a =
(ar) € w and = = (xy) is as defined in (2.5), then we have

nol 7] . M(—a+1) T T,
ndn = —1)" — nYj —= nYn
nt ;) E;( S T Ca—n st Y| T g, Y
(4.8) = (Gy)n, foreachn e N,

where G = (gnr) is a matrix defined by

k+1(—1)"—’“ [(zat1) T ifo<k<n
= (n—HT(—a—n+j+1)t; " - ’
nk = \ In .
Ink t—an, if k =n,
0, if k> n.

Thus, we deduce from (4.8) that ax = (a,z,)

if and only if Gy € ¢; whenever y = (yx) €

[rtoo(p, A(a))]a if and only if G € ({uo(p), l1).
Thus, by using Lemma 4.1(a) with g, = 1 for all n, we conclude that

€ (, whenever x = (z;,) € rt_(p, A®)
ls(p). This yields that a = (a,) €

(o, A" = i (p).

Now, consider the following equation

Zakxk = Zak

k=1 [j+1 g D(—a+1) T T,
Z (Z (=1)* (k- (—a—k+itl )ty]) +Eyk:

7=0
—ZyT Z 1y a’g I'(—a+1) —I—Tnay
j=k+1 ’ — i) (~a—j+i+1)t; 2
n—1 " Tn
(49 =X whA“ ( ) + " anYn
k=0 tk tn

(4.10)
= (Hy),, foreachn e N,
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where H = (h,;) is a matrix defined by
A<a>( )Tk, it0<k<n,
Ly,

3

Pk = —a,, if k =n,
ln

, if k> n,

S

and A(®) (?—:) is as defined in (4.7). Thus, we deduce from (4.10) that ax = (axxy) € cs

whenever x = (1) € r%_(p, A®) if and only if Hy € ¢ whenever y = (yi) € loo(p).
Therefore, by using Lemma 4.1 (c¢) with ¢ = (¢,) = 1, we get that

(a)
Zk: A (t,)T’“
B
Thus, [t (p, A)]" = 1a(p).
Similarly, by using Lemma 4.1 (b), with ¢, = 1 for all n, we can deduce that
[réo (p, A(a))} T = (p). This completes the proof of the theorem. The duals of the other
spaces can be obtained by the similar proceedings and using Lemma 4.2 and 4.3. [

T, 1
B < oo and lim ~Fa, B = 0.

k—oo tk:

5. MATRIX TRANSFORMATIONS

In this section, we give certain results regarding matrix transformation of the Riesz
sequence spaces of fractional order to X (p) where X = {l,, ¢, c}. Let ¢ = (¢,,) be a
non-decreasing bounded sequence of positive real numbers. For brevity, we write

. kt1 I'(—a+1)
Al <ank> =y )Y a, _—
ty tr J%l JZ — ) (—a—j+i+ 1)
and
A(a) <ank> CLnk + Z j k(l Ig F(_Oé + 1)
<\t 2 ] ! ST (—a—j+i+ 1)t

for all n,k € N. Let 2,y € w be connected by the relation y = R*(A®))z. Then we
have by (4.9)

s tin
(5.1) > kT = Z Al ( > Thyr + aan Ym, n,m €N,
k=0

Now, let us consider the followmg conditions before we proceed:

(5.2)  lim —TkBPk =0, foralln,BeN,

k—o00 k
1 dn
(5.3) sup [Z Ag‘;‘) <atnk> T.|Brr | < oo, forall BeN,
neN k k

(5.4) sup> |A

neN k

(a'nk ) Tk
ty,

Bpk < oo, forall BeN,
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1 qn

(5.5) exists () C R such that lim lz ‘Ag‘;‘) (?’“) T — oy, BM] =0,

for all B € N,

_ q7L

(5.6) sup [Z A <ank> T} B < oo, forall BeN,

neN | g tk’

in

(5.7) sup ZA (a”’“> Tl <oo, forallneN,

neN

a qn

(5.8) exists o € R such that lim ‘Z Al <tnk> T, —al =0,

qn

(5.9) exists (o) C R such that lim ’Ag) <atnk> Ty —ap] =0, forallkeN,
k

n—oo
A(Og) <ank> Tk — O
Ly

(5.10) exists (o) C R such that sup Lo > B < 00,

neN k

for all L exists B € N.

Theorem 5.1. Let A = (anx) be an infinite matriz. Then the following hold:

(a) A€ (rl.(p, A a)) lso(q)) if and only if (5.2) and (5.3) hold;

(b) A€ (rt (p, A), c(q)) if and only if (5.2), (5.4) and (5.5) hold;

(c) A e (rt (p, A(a ), co(q)) if and only if (5.2) holds and (5.5) holds, with oy, =0
for all k € N.

Proof. We give the proof of (a) as the rest can be obtained in the similar manner.
Let A = (au) € (rl (p, AW), l(q)) and = = (1) € rt_(p, A®). Consider equation
(5.1). Since Ax exists and belongs to the space ¢, (q), therefore the necessity of the
condition (5.2) is obvious. Now, letting m — oo in equation (5.1), we straightly get

k+1
U , I'(—a+1)
Ar=3 S (1), >3 iy
! (tk " ani 2 T —j+z’+1)ti) KOk

j=k+1

(5.11) - ZA(Q (a"’“> Tos.

This implies that A(RY(A®))™ly € £,(q). That is, A(RH(A)) ™! € (lo(p), lo(q)).
Therefore, A(R!(A®))~! satisfies the lemma 4.1(b) which is equivalent to the condi-
tion (5.3). This shows the necessity of the condition (5.3).

Conversely, let the conditions (5.2) and (5.3) hold and = € r!_(p, A®). Then it
is clear that Ax exists. Now, using equation (5.11) and the condition (5.3) with
B > max{1,sup |yx|"*}, we get

k

an

Az = su
Al = sup

Z AnkLk
k



PARANORMED RIESZ DIFFERENCE SEQUENCE SPACES OF FRACTIONAL ORDER 189

Adn

. . Lk I'(—a+1)
%:(m+-iibh amg;U—UTFﬂ_j+i+U)ﬂ%

= sup
neN j=k+1
a an
< sup (Z AL (nk) Tyyk )
neN k tk
Ank 1 "
< sup Z Ag? () Ti.| Brx < 00.
neN \ ‘% 172
This concludes that A € (r!_(p, A), £ (q)). O

By the similar proceedings, we can derive the following results.

Theorem 5.2. Let A = (a,i) be an infinite matriz. Then the following hold:

(a) A€ (rt(p, A), lo(q)) if and only if (5.2), (5.6) and (5.7) hold;

(b) A € (rt(p, A), c(q)) if and only if (5.2), (5.8), (5.9) and (5.10) hold and
(5.6) also holds, with q, =1 for alln € N;

(c) A € (rt(p, A), co(q)) if and only if (5.2) holds and (5.8), (5.9) and (5.10)
also hold, with o =0, oy, = 0 for all k € N.

Theorem 5.3. Let A = (ani) be an infinite matriz. Then the following hold:

(a) A€ (rb(p, A), loo(q)) if and only if (5.2) and (5.6) hold;

(b) A € (ri(p, A), c(q)) if and only if (5.2), (5.9) and (5.10) hold and (5.6) also
holds, with q, =1 for all n € N;

(c) A€ (rhi(p, A), colq)) if and only if (5.2) holds and (5.9) and (5.10) also hold,
with o = 0 for all k € N.

CONCLUSION

In this article, we introduce paranormed difference sequence spaces 7! (A(®),
rt(A@) and 75(A@) of fractional order a, investigate their topological properties,
Schauder basis, a-, 8- and 7- duals and characterize the matrix classes related to
these spaces. We conclude that the results obtained from the matrix domain of the
product matrix R(A®) are more general and extensive than the existent results of
the previous authors. We expect that our results might be a reference for further
studies in this field. In our next paper, we will investigate the results obtained from
the matrix domain R*(A(®) in the spaces ¢, of absolutely p-summable sequences,
1<p<oo.
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