ON GRADED 2-NIL-GOOD RINGS

EMIL ILIĆ-GEORGIJEVIĆ

Abstract. In this paper we introduce and study the notion of a graded 2-nil-good ring which is graded by a group. We discuss graded group ring and graded matrix ring extensions of graded 2-nil-good rings. The question of when the 2-nil-good property of the component, which corresponds to the identity element of the grading group, implies the graded 2-nil-good property of the whole graded ring is also examined.

1. Introduction

Ever since the introduction of clean rings in [20] as rings in which every element can be written as a sum of an idempotent and a unit, many papers have been written discussing the ring structure depending on the various ring element properties. In particular, many results are obtained concerning nil clean rings introduced in [6]. For instance, study of matrix rings over nil clean rings is related to the famous Köthe’s Conjecture (see [16] and references therein). Nil-cleaness of group rings has also attracted attention (see [17, 21]).

Theory of graded rings has also been studied by many authors (see [13, 19]). Graded nil clean rings are introduced in [10], and in this paper we continue with studying rings determined by various properties defined elementwise from the graded ring theory point of view. Namely, we introduce and study graded 2-nil-good rings as a graded version of the notion introduced recently in [1]. In [1], a 2-nil-good ring is defined as a ring whose every element is a sum of two units and a nilpotent and the main results deal with the question of when the matrix rings are 2-nil-good.

Here, by a graded 2-nil-good ring we mean a group graded ring whose every homogeneous element can be written as a sum of two homogeneous units and a homogeneous

Key words and phrases. Graded rings and modules, 2-nil-good rings, group rings, matrix rings.

2010 Mathematics Subject Classification. Primary: 16W50. Secondary: 16U99, 16S34, 16S50.

Received: June 09, 2018.

Accepted: August 22, 2018.
nilpotent. We start by giving the basic properties of graded 2-nil-good rings which represent graded versions of results concerning 2-nil-good rings. We are also interested in the question of when the (graded) group ring is (graded) 2-nil-good, which is the content of several theorems. These yield an interesting question of how the graded 2-nil-good property of a group graded ring depends on the 2-nil-good property of the component which corresponds to the identity element of the grading group. It is shown that 2-nil-good property of the component corresponding to the identity element of the grading group does not imply the graded 2-nil-good property of the whole graded ring in general. However, under some additional assumptions, this implication does hold true. Finally, we prove that the graded matrix ring over a crossed product, which is graded 2-nil-good, is also a graded 2-nil-good ring.

2. Preliminaries

All rings are assumed to be associative with identity. If \(R \) is a ring, then, as usual, \(J(R) \) denotes the Jacobson radical of \(R \), and \(U(R) \) stands for the multiplicative group of units of \(R \).

Next we recall the notions of a group graded ring and module, and how the group ring and the matrix ring over a group graded ring can be graded. For other graded ring theory notions and further details, we refer to [13,19].

Let \(R \) be a ring, \(G \) a group with the identity element \(e \), and let \(\{R_g\}_{g \in G} \) be a family of additive subgroups of \(R \). \(R \) is said to be \(G \)-graded if \(R = \bigoplus_{g \in G} R_g \) and \(R_g R_h \subseteq R_{gh} \) for all \(g, h \in G \). The set \(H = \bigcup_{g \in G} R_g \) is called the homogeneous part of \(R \), elements of \(H \) are called homogeneous, and subgroups \(R_g \ (g \in G) \) are called components. If \(a \in R_g \), then we say that \(a \) has the degree \(g \).

A \(G \)-graded ring \(R = \bigoplus_{g \in G} R_g \) is called a crossed product if \(U(R) \cap R_g \neq \emptyset \) for all \(g \in G \).

A right ideal (left, two-sided) \(I \) of a \(G \)-graded ring \(R = \bigoplus_{g \in G} R_g \) is called homogeneous or graded if \(I = \bigoplus_{g \in G} I \cap R_g \). If \(I \) is a two-sided homogeneous ideal (homogeneous ideal in the rest of the paper), then \(R/I \) is a \(G \)-graded ring with components \((R/I)_g = R_g/I \cap R_g \). A graded ring \(R \) is graded-nil if every homogeneous element of \(R \) is nilpotent.

Let \(R = \bigoplus_{g \in G} R_g \) be a \(G \)-graded ring, and observe the group ring \(R[G] \). According to [18], we have that \(R[G] \) is \(G \)-graded with the \(g \)-component \((R[G])_g = \sum_{h \in G} R_{gh^{-1}}h \) and with the multiplication defined via the rule \((r_g g')(r_h h') = r_g r_h (h^{-1} g' h h')\), where \(g, g', h, h' \in G \) and \(r_g \in R_g, \ r_h \in R_h \).

If \(H \) is a normal subgroup of \(G \), then, according to [19], we may observe \(R[H] \) as a \(G \)-graded ring \(\bigoplus_{g \in G} (R[H])_g \), where \((R[H])_g = \bigoplus_{h \in H} R_{gh^{-1}}h \), and where the multiplication is given by \((r_g g')(r_h h') = r_g r_h (h^{-1} g' h h')\), where \(g, h \in G, \ g', h' \in H \) and \(r_g \in R_g, \ r_h \in R_h \).

All of the group rings in this paper, if observed as graded rings, are assumed to be graded in one of the above described ways.

If \(R \) is a \(G \)-graded ring and \(n \) a natural number, then the matrix ring \(M_n(R) \) can
be made into a G-graded ring in the following manner. Let $\sigma = (g_1, \ldots, g_n) \in G^n$, $\lambda \in G$ and $M_n(R)_{\lambda}(\sigma) = (a_{ij})_{n \times n}$, where $a_{ij} \in R_{g_i\lambda g_j^{-1}}$, $i, j \in \{1, 2, \ldots, n\}$. Then $M_n(R) = \bigoplus_{\lambda \in G} M_n(R)_{\lambda}(\sigma)$ is a G-graded ring with respect to the usual matrix addition and multiplication. This ring is usually denoted by $M_n(R)(\sigma)$.

If $R = \bigoplus_{g \in G} R_g$ is a G-graded ring, then a right G-graded R-module is a right R-module M such that $M = \bigoplus_{x \in G} M_x$, where M_x are additive subgroups of M, and such that $M_x R_g \subseteq M_{xg}$ for all $x, g \in G$. A submodule N of a G-graded R-module $M = \bigoplus_{x \in G} M_x$ is called homogeneous if $N = \bigoplus_{x \in G} N \cap M_x$.

A right G-graded R-module M is said to be graded irreducible if $MR \neq 0$ and if the only homogeneous submodules of M are trivial submodules. The graded Jacobson radical $J^g(R)$ of a G-graded ring R is defined to be the intersection of annihilators of all graded irreducible graded R-modules. It is known that $J^g(R)$ coincides with the intersection of all maximal homogeneous right ideals of R, and that it is left-right symmetric.

3. Graded 2-Nil-Good Rings

Let G be a group with the identity element e.

Definition 3.1. A homogeneous element of a G-graded ring is said to be graded 2-nil-good if it can be written as a sum of two homogeneous units and a homogeneous nilpotent. A G-graded ring is said to be graded 2-nil-good if every of its homogeneous elements is graded 2-nil-good.

Example 3.1. Let $p > 2$ be a prime number, $G = \{e, g\}$ a cyclic group of order 2, and $R = \left(\begin{array}{cc} \mathbb{Z}_p & \mathbb{Z}_p \\ \mathbb{Z}_p & \mathbb{Z}_p \end{array}\right)$. The ring \mathbb{Z}_p is a 2-nil-good ring (see [1, Example 2.1]). Then $R = \left(\begin{array}{cc} \mathbb{Z}_p & 0 \\ 0 & \mathbb{Z}_p \end{array}\right) \bigoplus \left(\begin{array}{cc} 0 & \mathbb{Z}_p \\ \mathbb{Z}_p & 0 \end{array}\right)$ is a G-graded 2-nil-good ring.

Remark 3.1. Let us notice that if $R = \bigoplus_{g \in G} R_g$ is a G-graded ring which is graded 2-nil-good, then R_e is a 2-nil-good ring. Namely, even if $a \in R_e$ is a nilpotent, we can always write $a = 1 + (-1) + a$, and $1 \in R_e$. If $g \neq e$, for a nilpotent element $a \in R_g$, we may have a different situation, that is, it may be the case that a is written as a sum of itself and of two units which are not of degree g, for instance $a = 1 + (-1) + a$. However, if we assume that R is a crossed product, then every homogeneous element can be written as a sum of two homogeneous units and a homogeneous nilpotent, all of which are of the same degree.

In [22], 2-good rings are defined as rings in which every element can be written as a sum of two units. Since 2-good rings are closely related to 2-nil-good rings, as every 2-good ring is 2-nil-good, it is natural to introduce the following notion as well.

Definition 3.2. A homogeneous element of a G-graded ring is said to be graded 2-good if it can be written as a sum of two homogeneous units. A G-graded ring is said to be graded 2-nil-good if every of its homogeneous elements is graded 2-good.
Remark 3.2. Let us notice that all graded 2-good rings are crossed products. Also, obviously, every graded 2-good ring is graded 2-nil-good. Example 3.1 also serves as an example of a graded 2-good ring.

In [1] it is proved that R is a 2-nil-good ring if and only if R/I is 2-nil-good, whenever I is a nil ideal of R. Here we have the following result.

Theorem 3.1. Let R be a G-graded ring and I a graded-nil ideal of R. Then R is graded 2-nil-good if and only if R/I is graded 2-nil-good.

Proof. If R is graded 2-nil-good, then R/I is also graded 2-nil-good as a graded homomorphic image of R.

Conversely, let R/I be a graded 2-nil-good ring and let $\bar{x} = x + I \in R_g/I_g$, where $g \in G$. Then $\bar{x} = \bar{u} + \bar{v} + \bar{w}$, where \bar{u}, \bar{v} are homogeneous units of R/I, and \bar{w} is a nilpotent element of degree g in R/I. Since I is graded-nil, we have that w is a homogeneous nilpotent of degree g in R. Also, since I, as a graded-nil ideal, is contained in the graded Jacobson radical $J^g(R)$, homogeneous units lift modulo I (see [19, Proposition 2.9.1]), and the claim follows. \square

Corollary 3.1. Let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring, where G is a finite group, and R_e is a PI-ring. Also, let $I \subseteq J(R)$ be a homogeneous ideal of R such that I_e is nil. Then R is graded 2-nil-good if and only if R/I is graded 2-nil-good.

Proof. Since G is finite and R_e is a PI-ring, by [12] we know that R is also a PI-ring. This and the fact that $I \subseteq J(R)$ is a homogeneous ideal with I_e nil together imply that I is nil by [14, Lemma 5]. In particular, I is graded-nil, and the claim follows by the previous theorem. \square

Definition 3.3 ([10]). A homogeneous element a of a G-graded ring is said to be graded strongly π-regular if it can be written as a sum of a homogeneous idempotent element f and a homogeneous unit u such that $fa = af$ and faf is nilpotent.

Naturally, by a graded strongly π-regular ring we mean a G-graded ring whose every homogeneous element is graded strongly π-regular.

The following result represents a graded version of [1, Theorem 2.1].

Theorem 3.2. Let $R = \bigoplus_{g \in G} R_g$ be a graded strongly π-regular ring. The following statements are equivalent:

i) R is graded 2-nil-good;

ii) $1 = u + v$ for some units u, v from R_e.

Proof. i)⇒ii) If R is a graded 2-nil-good ring, it follows that R_e is 2-nil-good. Since $1 \in R_e$, the claim follows by [1, Theorem 2.1] applied to the ring R_e.

ii)⇒i) Again, if we apply [1, Theorem 2.1] to the ring R_e, we have that R_e is 2-nil-good. Let $0 \neq x \in R_g$, where $g \neq e$. Then, since R is graded strongly π-regular, it follows that x is a unit. Since $1 = u + v$, with $u, v \in U(R_e)$, we have that $x = 1x = ux + vx + 0$, hence x is graded 2-nil-good. \square
By [3, Proposition 10], if R is a clean ring with $2 \in U(R)$, then R is 2-good. We end this section with a graded version of this result.

Theorem 3.3. Let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring. If R is graded clean and $2 \in U(R)$, then R is graded 2-good.

Proof. By assumption, R is graded clean, which means that R_e is clean (see [10]). Since $2 \in R_e$, we have that R_e is 2-good by [3, Proposition 10]. Now, let $0 \neq x \in R_g$, where $g \neq e$. Since R is by assumption graded clean, we have that x is a unit. Therefore $x/2 \neq 0$ is a homogeneous unit u of degree g. Hence $x = 2u = u + u$, and so, R is graded 2-good.

4. **Extensions of Graded 2-Nil-Good Rings**

4.1. **Group rings.** In this subsection we investigate graded 2-nil-good property of graded group rings. However, we first establish some sufficient conditions for a group ring to be 2-nil-good.

Theorem 4.1. Let R be a 2-nil-good ring, and let p be a prime number which is nilpotent in R. If G is a locally finite p-group, then $R[G]$ is a 2-nil-good ring.

Proof. As in the proof of [21, Theorem 2.3], we may assume that G is a finite p-group. Since p is nilpotent, by [5, Theorem 9], we have that the augmentation ideal $\Delta(R[G])$ is nilpotent. Since $R[G]/\Delta(R[G])$ and R are isomorphic as rings, by [1, Theorem 2.2], we then have that $R[G]$ is a 2-nil-good ring.

Remark 4.1. One example of a 2-nil-good ring satisfying the assumptions of the previous theorem is \mathbb{Z}_p, where $p > 2$ is a prime number.

Theorem 4.2. Let R be a clean ring with $2 \in U(R)$. If $p > 2$ is a prime number belonging to $J(R)$, and G a locally finite p-group, then $R[G]$ is 2-nil-good.

Proof. Since R is clean, G a locally finite p-group and $p \in J(R)$, according to [24, Theorem 4], we have that $R[G]$ is clean. Also, since 2 is a unit in R, it is also a unit in $R[G]$. By [3, Proposition 10], $R[G]$ is 2-good, and therefore, 2-nil-good.

Theorem 4.3. Let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring, where G is a finite group. If R is a semilocal ring with $2 \in U(R)$, then $R[G]$ is a 2-nil-good ring.

Proof. If R is semilocal with $2 \in U(R)$, then by [23, Proposition 2.10] we have that R is 2-good, and therefore 2-nil-good. Now, by [18, Proposition 2.1(4)], we have that $(R[G])_e$ and R are isomorphic as rings. Therefore $(R[G])_e$ is a semilocal ring. According to [2], we have that $R[G]$ is semilocal too. Also, as 2 is a unit in R it is also a unit in $R[G]$. Hence, $R[G]$ is 2-good, and therefore 2-nil-good.

Next we deal with the graded 2-nil-good property of graded group rings. It is convenient now to recall that if G is a group, and H a normal subgroup of G, then a G-graded ring $R = \bigoplus_{g \in G} R_g$ can be viewed as a G/H-graded ring $R = \bigoplus_{C \in G/H} R_C$, where $R_C = \bigoplus_{x \in C} R_x$ (see, for instance, [13,19]).
Theorem 4.4. Let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring, where G is a locally finite p-group, and let H be a normal subgroup of G. Also, let us assume that p is nilpotent in R. If R is graded 2-nil-good as a G/H-graded ring, then $R[H]$ is graded 2-nil-good as a G/H-graded ring.

Proof. Again, as in the proof of [21, Theorem 2.3], we may assume that H is a finite p-group. We know from [19], page 180, that $R[H]/\Delta(R[H])$ and R are graded isomorphic as G/H-graded rings. Since p is nilpotent, according to [5, Theorem 9], we have that $\Delta(R[H])$ is nilpotent, and in particular, graded-nil. Hence, by Theorem 3.1, $R[H]$ is graded 2-nil-good as a G/H-graded ring. \qed

Theorem 4.5. Let R be a G-graded ring and H a normal subgroup of G. Also, let R be graded clean as a G/H-graded ring with $2 \in U(R)$. If $p > 2$ is a prime number belonging to the H-component of the graded Jacobson radical $J^{G/H}(R)$ of R, regarded as a G/H-graded ring, and G a locally finite p-group, then $R[H]$ is graded 2-nil-good as a G/H-graded ring.

Proof. According to our assumptions, since R is graded clean as a G/H-graded ring, we have that $R[H]$ is graded clean as a G/H-graded ring. This follows by Theorem 4.1 in [E. Ilić-Georgijević, On graded clean group rings, preprint]. We give here a short proof for readers’ convenience. We may assume that G is a finite p-group. Since $R[H]/\Delta(R[H])$ and R are graded isomorphic as G/H-graded rings, we have that $R[H]/\Delta(R[H])$ is graded clean. In particular, $(R[H]/\Delta(R[H]))^H$ is clean, that is, $R[H]^H \cong R_H$ is clean by [19, Proposition 6.2.1]. Since G is finite, $J^{G/H}(R)^H \subseteq J^G(R) \subseteq J(R)$, by [4, Theorem 4.4]. Now, by [24, Lemma 2], we have that $\Delta(R[H])$ is contained in $J(R[H])$. By [4, Theorem 4.4], we have that $\Delta(R[H]) \subseteq J^{G/H}(R[H])$. This, together with the fact that $R[H]^H \cong R_H$, and [19, Proposition 2.9.1vi)], implies that $R[H]$ is a graded clean G/H-graded ring. Now, as 2 is a unit in R, we have that 2 is also a unit in $R[H]$. Therefore by Theorem 3.3, $R[H]$ is graded 2-nil-good as a G/H-graded ring. \qed

Theorem 4.6. Let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring, where G is a locally finite 2-group, and let H be a normal subgroup of G. Also, let us assume that R_e is a nil clean ring. If R is graded 2-nil-good as a G/H-graded ring, then $R[H]$ is graded 2-nil-good as a G/H-graded ring.

Proof. We again can assume that H is finite. We know from [19], page 180, that $R[H]/\Delta(R[H])$ and R are graded isomorphic as G/H-graded rings. Since R_e is by assumption nil clean, we have that 2 is nilpotent by [6, Proposition 3.14] applied to R_e. Hence, according to [5, Theorem 9], $\Delta(R[H])$ is nilpotent, and in particular, graded-nil. Now, by Theorem 3.1, it follows that $R[H]$ is graded 2-nil-good ring as a G/H-graded ring. \qed

Let us return to Theorem 4.1 for a moment. Since R and $(R[G])_e$ are isomorphic as rings, we have that $(R[G])_e$ is 2-nil-good. If we moreover assume that the units and
nilpotents of $R[G]$ are all homogeneous, then we of course get that $R[G]$ is graded 2-nil-good. Also, let us take a look at the following example.

Example 4.1. Let S be a 2-nil-good ring, $G = \{e, g\}$ a cyclic group of order 2, and $R = \begin{pmatrix} S & S \\ 0 & S \end{pmatrix}$. Then $R = \begin{pmatrix} S & 0 \\ 0 & S \end{pmatrix} \oplus \begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix}$ is a G-graded ring whose e-component $R_e = \begin{pmatrix} S & 0 \\ 0 & S \end{pmatrix}$ is a 2-nil-good ring, and also R is a graded 2-nil-good ring since elements of $R_g = \begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix}$ are nilpotent and therefore, graded 2-nil-good, as every $\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ can be written as $\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$.

These observations lead to the question of when the following implication holds true

\[(4.1) \quad R_e \text{ is 2-nil-good } \Rightarrow R = \bigoplus_{g \in G} R_g \text{ is graded 2-nil-good.}\]

The following example proves that the above implication does not hold in general.

Example 4.2. Let R be a commutative 2-good ring which is moreover reduced, and let $R[x]$ be a polynomial ring with indeterminate x. Then $R[x]$ is \mathbb{Z}-graded with i-component Rx^i if $i \geq 0$ and 0 if $i < 0$ (see for instance [19]). Then $R_0 = R$ is a 2-nil-good ring. Also, since R is reduced, we have that $U(R[x]) = U(R)$ by [11, Corollary 1.7]. Hence if x is graded 2-nil-good, then $x = u + v + w$, where $u, v \in U(R)$ and $w \in N(R[x])$. In other words, $x - u - v$ is nilpotent, which is impossible. Therefore $R[x]$ is not graded 2-nil-good.

Theorem 4.7. Let $R = \bigoplus_{g \in G} R_g$ be a G-graded PI-ring which is graded local, that is, it has a unique maximal homogeneous right ideal, and let G be a finite group such that the order of G is a unit in R. Also, let $R_g R_{g^{-1}} = 0$ for every $g \in G \setminus \{e\}$. If R_e is 2-nil-good ring with nil Jacobson radical $J(R_e)$, then R is graded 2-nil-good.

Proof. Assumptions on R_e imply that $R_e/J(R_e)$ is a 2-nil-good ring. Further, [4, Corollary 4.2, Theorem 4.4] and [14, Theorem 3] together imply that $J(R)$ is a graded-nil ideal of R. According to [10, Theorem 3.27] (see also the proof of [9, Theorem 3.2]), we have that every homogeneous element of $R/J(R)$ is a 2-nil-good element of $R_e/J(R_e)$. Hence $R/J(R)$ is graded 2-nil-good, and thus by Theorem 3.1, R is graded 2-nil-good. \square

Theorem 4.8. Let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring of finite support, where G is a torsion free group. Also, let R be a semiprimary ring with R_e local and $2 \in U(R)$. Then R is graded 2-nil-good.

Proof. Since $2 \in R_e$, and R_e is local, by [23, Proposition 2.10] we know that R_e is 2-nil-good. It follows that $R_e/J(R_e)$ is 2-nil-good. By [19, Proposition 9.6.4], we have
that \(J^2(R) = J(R) \) and that \(R/J(R) = R_e/J(R_e) \). Since \(R \) is semiprimary, \(J(R) \) is nil and so the claim follows by Theorem 3.1. \(\square \)

4.2. Matrix rings. Since graded 2-good rings are graded 2-nil-good, let us start with the question of whether the graded matrix ring over a graded 2-good ring is also a graded 2-good ring. In [23] this is answered in affirmative for the classical, that is, ungraded case. Their proof relies on the technique which can be seen in the proof of [8, Lemma], that is, they prove (see [23, Proposition 3.6]) that a ring \(R \) is 2-good if the corner rings, with respect to some idempotent of a ring, are 2-good. The following theorem represents a graded version of that result.

Theorem 4.9. Let \(R = \bigoplus_{g \in G} R_g \) be a \(G \)-graded ring and \(f \in R_e \) an idempotent. Let us write \(\bar{f} = 1 - f \). If \(fRf \) and \(\bar{f}R\bar{f} \) are graded 2-good rings, then \(R \) is also a graded 2-good ring.

Proof. Since graded 2-good rings are crossed products, the proof of [23, Proposition 3.6] can be easily modified to our setting. We give a sketch of the proof. Let \(R = \left(\begin{array}{cc} fRf & fR\bar{f} \\ \bar{f}Rf & \bar{f}R\bar{f} \end{array} \right) \) be the Pierce decomposition of \(R \), and let \(A = \left(\begin{array}{cc} a & x \\ y & b \end{array} \right) \in R_g \), where \(g \in G \). Since \(fRf \) is by assumption graded 2-good ring, and graded 2-good rings are crossed products, there exist \(u_1, u_2 \in U(fRf) \cap R_g \) such that \(a = u_1 + u_2 \). Now, \(b - yu_2^{-1}x \in \bar{f}R\bar{f} \). Again, by assumption, \(\bar{f}R\bar{f} \) is a graded 2-good ring, and as it is a crossed product, there exist \(v_1, v_2 \in U(\bar{f}R\bar{f}) \cap R_g \) such that \(b - yu_2^{-1}x = v_1 + v_2 \). The rest of the proof goes as in the proof of [23, Proposition 3.6] (see also [8, Lemma]). \(\square \)

This theorem by mathematical induction implies the following corollaries.

Corollary 4.1. Let \(R = \bigoplus_{g \in G} R_g \) be a \(G \)-graded ring. If \(1 = f_1 + \cdots + f_n \) in \(R \), where \(f_i \in R_e \) are orthogonal idempotents and each \(f_iRf_i \) is graded 2-good, then \(R \) is graded 2-good.

Corollary 4.2. Let \(R = \bigoplus_{g \in G} R_g \) be a \(G \)-graded ring. If \(R \) is graded 2-good and \(n \) a natural number, then \(M_n(R) \) is graded 2-good for every \(\sigma \in G^n \).

In order to obtain a similar result for graded 2-nil-good rings, we first give a graded version of [1, Theorem 4.1].

However, let us first recall from [7] what a \(G \)-graded Morita context is. So, let \(A = \bigoplus_{g \in G} A_g \) and \(B = \bigoplus_{g \in G} B_g \) be \(G \)-graded rings, and let \(V = \bigoplus_{g \in G} V_g \) and \(W = \bigoplus_{g \in G} W_g \) be \(G \)-graded \(A \rightarrow B \) and \(B \rightarrow A \)-bimodules, respectively. Then a quadruple \((A, V, W, B)\) is a \(G \)-graded Morita context if \((A, V, W, B)\) is a Morita context and if \(V_gW_h \subseteq A_{gh} \) and \(W_hV_g \subseteq B_{hg} \) for all \(g, h \in G \) (see [7]). The ring \(R = \left(\begin{array}{cc} A & V \\ W & B \end{array} \right) \) can be \(G \)-graded with respect to any \(\sigma \in G^2 \) as it is described in Preliminaries (see [19]) and then it will be denoted by \(R(\sigma) = \bigoplus_{\lambda \in G} R_{\lambda}(\sigma) \).
Theorem 4.10. Let \((A, V, W, B)\) be a \(G\)-graded Morita context. If \(A\) and \(B\) are graded 2-nil-good rings which are crossed products, then \(R(\sigma)\) is a graded 2-nil-good ring for every \(\sigma = (g_1, g_2) \in G \times G\).

Proof. First, let us notice that, since \(A\) and \(B\) are crossed products, that \(R(\sigma)\) is also a crossed product. Let \(M \in R(\sigma)), where \(\lambda \in G\). Then \(M = \left(\begin{array}{cc} a & x \\ y & b \end{array} \right), \) where \(a \in A_{g_1\lambda g_1^{-1}}, x \in V_{g_1\lambda g_2^{-1}}, b \in B_{g_2\lambda g_2^{-1}}.\) Since \(A\) and \(B\) are moreover crossed products, there exist \(u^a_1, u^a_2 \in U(A) \cap A_{g_1\lambda g_1^{-1}},\) and \(u^b_1, u^b_2 \in U(B) \cap B_{g_2\lambda g_2^{-1}}\) such that \(a = u^a_1 + u^a_2 + n^a\) and \(b = u^b_1 + u^b_2 + n^b\) for some nilpotents \(n^a \in A_{g_1\lambda g_1^{-1}}, n^b \in B_{g_2\lambda g_2^{-1}}.\) Therefore \(M = \left(\begin{array}{cc} u^a_1 & x \\ 0 & u^a_1 \end{array} \right) + \left(\begin{array}{cc} u^b_1 & 0 \\ y & u^b_1 \end{array} \right) + \left(\begin{array}{cc} n^a & 0 \\ 0 & n^b \end{array} \right)\) is a graded 2-nil-good element. \(\square\)

Corollary 4.3. Let \(R = \bigoplus_{g \in G} R_g\) be a crossed product. If \(R\) is graded 2-nil-good and \(n\) a natural number, then \(M_n(R)(\sigma)\) is graded 2-nil-good for every \(\sigma \in G^n.\)

Proof. This follows by the previous theorem by using mathematical induction (cf. [1, Corollary 4.2]). \(\square\)

Acknowledgements. This research was supported by the Faculty of Civil Engineering, University of Sarajevo, No. 04-53-44/18.

REFERENCES

1Faculty of Civil Engineering, University of Sarajevo, Patriotske lige 30, 71000 Sarajevo, Bosnia and Herzegovina

Email address: emil.ilic.georgijevic@gmail.com