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ON A DETERMINANTAL FORMULA FOR DERANGEMENT
NUMBERS

MILICA ANÐELIĆ1 AND CARLOS M. DA FONSECA2,3

Abstract. The aim of this note is to provide succinct proofs for a recent formula
of the derangement numbers in terms of the determinant of a tridiagonal matrix.

1. Preliminaries

The nth derangement number !n, also known as subfactorial of n, is the number
of permutations on n elements, such that no element appears in its original position,
i.e., is a permutation that has no fixed points.

Derangement numbers were first combinatorially studied by the French mathemati-
cian and Fellow of the Royal Society, Pierre Rémond de Montmort in his celebrated
book Essay d’analyse sur les jeux de hazard published in 1708.

The two well-known recurrence relations
(1.1) !n = (n− 1)(!(n− 1)+!(n− 2)) , for n > 2,
and
(1.2) !n = n (!(n− 1)) + (−1)n , for n > 1,
with !0 = 1 and !1 = 0, were established and proved by Euler. They can be written
in the explicit forms

!n = n!
n∑

i=0

(−1)i

i! =
n∑

i=0
(−1)n−i

(
n

i

)
i!,
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which coincide with the permanent of the all ones matrix minus the identity matrix,
all of order n [4].

The arithmetic properties of the sequence of derangements are very interesting,
as we can find in [5]. There, they are studied in terms of the periodicity modulo a
positive integer, p-adic valuations, and prime divisors. We can also find attractive
relations to other number sequences. For example, in [11], for any prime number p
co-prime with a positive integer m, we have∑

0<k<p

Bk

(−m)k
≡ (−1)m−1 !(m− 1) (mod p),

where Bk denotes the kth Bell number.
Among the most relevant generalizations we have the so-called r-derangement

numbers [12], when some of the elements are restricted to be in distinct cycles in
the cycle decomposition. For more details on this matter, recent formulas, and
interpretations, the reader is referred to [1, 6, 10].

The first terms of this sequence are
1 , 0 , 1 , 2 , 9 , 44 , 265 , 1854 , 14833 , 133496 , 1334961 , 14684570

and it was coined by The On-Line Encyclopedia of Integer Sequences [9] as the
sequence A000166.

Another interesting representation of the derangement numbers is in terms of the
determinant of a certain family tridiagonal matrices. Kittappa [3] and Janjić [2]
showed independently two similar formulas:

(1.3) !(n + 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1
3 3 −1

4 . . . . . .
. . . . . . −1

n n

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

for n > 2, and

(1.4) !(n + 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1
1 1 −1

3 3 −1
4 . . . . . .

. . . . . . −1
n n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

for any positive integer n, respectively. Subtracting to the second row the first one,
in (1.4), it is a straightforward exercise to check that both representations are exactly
the same. Moreover they trivially satisfy (1.1)–(1.2).

In two recent replicated papers [7, 8], Qi, Wang, and Guo claim the discovery of
a new representation for the derangement numbers in terms of the determinant of a
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new tridiagonal matrix. The aim of this short note is to show that this can be proven
using elementary matrix theory and the above well-known representations.

2. Derangement Numbers and Tridiagonal Matrices

In [7, 8] it is simultaneously claimed the discovery of a new representation for !n in
terms of the determinant of the tridiagonal matrix of order n + 1, namely,

(2.1) !n = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1
0 0 −1

1 1 −1
2 2 −1

3 . . . . . .
. . . . . . −1

n− 1 n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

for any nonnegative integer. The proof is intricate and based on the higher derivatives
of the generating function of !n.

However, using the elementary operations on rows Ri and columns Ci

R1 ← −R1 , C2 ← C2 − C1 , R4 ← R4 + 2R2 , C4 ← C4 + C2 ,

it follows that (2.1) equals∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
0 −1
1 1

2 −1
3 . . . . . .

. . . . . . −1
n− 1 n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and this determinant is exactly (1.3).

Yet, there is also another way to check (2.1). For, expanding of the determinant
along last row (or column) we immediately get (1.3). The conclusion now follows
from the fact that for n = 0 and n = 1 the determinant (2.1) is, respectively, 1 and 0.
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