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NUMERICAL RADIUS INEQUALITIES IN 2-INNER PRODUCT
SPACES

PANACKAL HARIKRISHNAN1, HAMID REZA MORADI2,
AND MOHSEN ERFANIAN OMIDVAR3

Abstract. In this paper, we have obtained the analogue results on numerical
radius inequalities from the classical inner product spaces to 2-inner product spaces.
We have established several related reverse inequalities and some well known results
in 2-inner product spaces.

1. Introduction and Preliminaries

Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that (·, ·|·) is a K-valued
function defined on X ×X ×X satisfying the following conditions:
(I1) (x, x|z) ≥ 0, and (x, x|z) = 0 if and only if x and z are linearly dependent;
(I2) (x, x|z) = (z, z|x);
(I3) (y, x|z) = (x, y|z);
(I4) (αx, y|z) = α (x, y|z) for any scalar α ∈ K;
(I5) (x+ x′, y|z) = (x, y|z) + (x′, y|z).
(·, ·|·) is called a 2-inner product on X and (X , (·, ·|·)) is called a 2-inner product
space (or 2-pre-Hilbert sapce). Some basic properties of 2-inner product (·, ·|·) can be
immediately obtained as follows (see [3]):
(P1) (0, y|z) = (x, 0|z) = (x, y|0) = 0;
(P2) (x, αy|z) = α (x, y|z);
(P3) (x, y|αz) = |α|2 (x, y|z), for all x, y, z ∈X and α ∈ K.
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Using the above properties, one has proved that Cauchy-Schwartz inequality (see [5])

|(x, y|z)|2 ≤ (x, x|z) (y, y|z) .

It should be noticed that, the most standard example for a linear 2-inner product
(·, ·|·) is defined on X by

(1.1) (x, y|z) := det
(
〈x, y〉 〈x, z〉
〈z, y〉 〈z, z〉

)
,

for all x, y, z ∈ X . In [2], it is shown that, in any given 2-inner product space
(X , (·, ·|·)), we can define a function

(1.2) ‖x, z‖ =
√

(x, x|z),

for all x, z ∈ X . It is not hard to see that this function satisfies the following
conditions (see [6]):
(N1) ‖x, y‖ = 0 if and only if x and y are linearly dependent;
(N2) ‖x, y‖ = ‖y, x‖;
(N3) ‖αx, y‖ = |α| ‖x, y‖ for any real number α;
(N4) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖.
Any function ‖·, ·‖ defined on X ×X and satisfying the above conditions is called a
2-norm induced from a 2-inner product on X and (X , ‖·, ·‖) is called linear 2-normed
space.

Some of the basic properties of 2-norms are that they are non-negative and
‖x, y + αx‖ = ‖x, y‖, for all x, y ∈ X and all α ∈ R. Whenever a 2-inner prod-
uct space (X , (·, ·|·)) is given, we consider it as a linear 2-normed space (X , ‖·, ·‖)
with the 2-norm defined by (1.2).

An operator A ∈ B (X ) is said to be bounded if there exists a real number M > 0
such that

‖Ax, y‖ ≤M ‖x, y‖ ,
for every x, y ∈X . The norm of the b-operator is defined by [9]:

(1.3) ‖A‖b = sup {‖Ax, b‖ : ‖x, b‖ = 1} ,

where b is fixed element in X . We can easily verify that the left-hand side of (1.3),
is equivalent with sup {|(Ax, x|b)| : ‖x, b‖ ≤ 1}.

Harikrishnan et al. in [8] proved the Riesz theorem in 2-inner product spaces. As a
consequence of their work, we have

(Ax, y|b) = (x,A∗y|b) ,

for each x, y ∈X and fixed element b ∈X .
Recently, M. E. Omidvar et al. [10] established various reverses of the Cauchy-

Schwarz and triangle inequalities in 2-inner product spaces.
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In this paper, we introduce the concepts of b-numerical radius in 2-inner product
spaces. Some fundamental inequalities related to the b-numerical radius of bounded
linear operators in 2-inner product spaces are established.

2. Main Results

We first review some basic facts about numerical range and numerical radius in
Hilbert space H , then try to define them in a 2-inner product space. Let (H , 〈·, ·〉)
be a complex Hilbert space and B (H ) denote the C∗-algebra of all bounded linear
operators on H . An operator A ∈ B (H ) is called positive if 〈Ax, x〉 ≥ 0 for all
x ∈H . We write A ≥ 0 if A is positive. The numerical radius is defined by

ω (A) = sup {|λ| : λ ∈ W (A)} ,

where W (A) is the numerical range of A given by

W (A) = {〈Ax, x〉 : x ∈H , ‖x‖ = 1} .

The following properties of W (A) are immediate:
(a) W (αI + βA) = α + βW (A) for α, β ∈ C;
(b) W (A∗) =

{
λ : λ ∈ W (A)

}
, where A∗ is the adjoint operator of A;

(c) W (U∗AU) = W (A) for any unitary operator U .
The most important classical fact about the geometry of the numerical range is that
it is convex and its closure contains the spectrum of the operator. The usual operator
norm of A, is defined by

‖A‖ = sup
‖x‖=1

‖Ax‖ , for all x ∈H ,

where ‖x‖ = 〈x, x〉
1
2 . It is well known that ω (·) defines a norm on B (H ) and that

for every A ∈ B (H ), we have

(2.1) 1
2 ‖A‖ ≤ ω (A) ≤ ‖A‖ .

Thus, the usual operator norm and the numerical radius norm are equivalent. See [7]
for a discussion and further references.

Now we are in a position to state the main result of this section. The b-numerical
range of A ∈ B (X ), denoted by Wb (A), is the subset of the complex numbers given
by

Wb (A) = {(Ax, x|b) : ‖x, b‖ ≤ 1} .
The b-numerical radius of A ∈ B (X ), denoted by ωb (A), is defined by

ωb (A) = sup {|(Ax, x|b)| : ‖x, b‖ ≤ 1} .

It is easy to see that, for any (x, b) ∈X × 〈b〉, we have

|(Ax, x|b)| ≤ ωb (A) ‖x, b‖2.
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The b-numerical radius ωb (A) of an operator A on X is a norm on B (X ) , this norm
is equivalent to the b-operator norm. In order to get our main result, we need the
following lemmas:

Lemma 2.1 ([1]). Let A ∈ B (X ), then
4 (Ax, y|z) = (A (x+ y) , x+ y|z)− (A (x− y) , x− y|z)

+ i (A (x+ iy) , x+ iy|z)− i (A (x− iy) , x− iy|z) ,
for any x, y, z ∈X .

Lemma 2.2 ([4]). For every x, y ∈X , we have

‖x+ y, b‖2 + ‖x− y, b‖2 = 2
(
‖x, b‖2 + ‖y, b‖2

)
.

We shall, however, present another result, which is a possible generalization of (2.1).

Proposition 2.1. For each A ∈ B (X ), we get
1
2‖A‖b ≤ ωb (A) ≤ ‖A‖b.

Proof. If λ = (Ax, x|b) with ‖x, b‖ ≤ 1, by Schwartz inequality we obtain
|λ| ≤ |(Ax, x|b)| ≤ ‖Ax, b‖ ‖x, b‖ ≤ ‖A‖b.

On the other hand, by Lemma 2.1 and Lemma 2.2 we get
4 |(Ax, y|b)| ≤ ωb (A)

[
‖x+ y, b‖2 + ‖x− y, b‖2 + ‖x+ iy, b‖2 + ‖x− iy, b‖2

]
= 2ωb (A)

[
‖x, b‖2 + ‖y, b‖2 + ‖x, b‖2 + ‖iy, b‖2

]
≤ 8ωb (A) .

By taking supremum over ‖x, b‖ = ‖y, b‖ = 1, we deduce the desired result. �

Theorem 2.1. Let A,B ∈ B (X ) and AB = BA, then
ωb (AB) ≤ 2ωb (A)ωb (B) .

Proof. We may assume ωb (A) = ωb (B) = 1 and show that ωb (AB) ≤ 2. By the
triangle inequality, the power inequality theorem, and the subadditivity of ω (·), we
have

ωb (AB) ≡ ωb

(1
4
[
(A+B)2 − (A−B)2

])
≤ 1

4ωb
[
(A+B)2 − (A−B)2

]
≤ 1

4
[
(ωb (A+B))2 + (ω2 (A−B))2

]
≤ 1

4
[
(ωb (A) + ωb (B))2 + (ωb (A) + ωb (B))2

]
= 2,

as desired. �
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The following simple result provides a connection between the numerical radius and
b-numerical radius as follows:

Theorem 2.2. Let A ∈ B (X ), then
(2.2) ω (A) ≤ ωb (A) + ‖A‖′b,
where

‖A‖′b = sup {|(Ax, x|b)| : ‖x, b‖ ≤ 1} ,
and b ∈X is a fixed element.

Proof. We observe that

|(Ax, x|b)| =
∣∣∣(Ax, x) ‖b‖2 − (Ax, b) (b, x)

∣∣∣ (by (1.1))

≥ |(Ax, x)| ‖b‖2 − |(Ax, b)| |(b, x)| .

By taking supremum over ‖x, b‖ ≤ 1 we deduce the desired result (2.2). �

The following inequalities may be stated as well.

Theorem 2.3. Let A ∈ B (X ) be a bounded linear operator on the linear 2-normed
space X . If λ ∈ C\ {0} and α > 0 are such that

(2.3) ‖A− λI‖b ≤ α,

where I is the identity operator on X , then

(2.4) ‖A‖b − ωb (A) ≤ 1
2
α2

|λ|
.

Proof. For (x, b) ∈X , 〈b〉 with ‖x, b‖ = 1, we have from (2.3) that
‖(A− λ)x, b‖ ≤ ‖A− λI‖b ≤ α,

giving

(2.5)
‖Ax, b‖2 + |λ|2 ≤ 2 Re

[
λ (Ax, x|b)

]
+ α2

≤ 2 |λ| (Ax, x|b) + α2.

Taking supremum over (x, b) ∈X , 〈b〉, with ‖x, b‖ = 1 we get the following inequality

(2.6) ‖A‖2
b + |λ|2 ≤ 2ωb (A) |λ|+ α2.

Since
(2.7) 2‖A‖b |λ| ≤ ‖A‖

2
b + |λ|2,

hence by (2.6) and (2.7) we deduce the desired inequality (2.4). �

Corollary 2.1. In particular, if ‖A− λI‖b ≤ α and |λ| = ωb (A), λ ∈ C, then

‖A‖b − ω
2
b (A) ≤ α2.



420 P. K. HARIKRISHNAN, H. R. MORADI, AND M. E. OMIDVAR

Proposition 2.2. Let A ∈ B (X ) be a non zero bounded linear operator on the linear
2-normed space X and λ ∈ C\ {0} and α > 0 with |λ| > α. If

‖A− λI‖b ≤ α,

then

(2.8)
√√√√1− α2

|λ|2
≤ ωb (A)
‖A‖b

.

Proof. From (2.6) of Theorem 2.3, we have
‖A‖2

b + |λ|2 − α2 ≤ 2 |λ|ωb (A) ,

which implies, on dividing with
√
|λ|2 − α2 > 0 that

(2.9) ‖A‖2
b√

|λ|2 − α2
+
√
|λ|2 − α2 ≤ 2 |λ|ωb (A)√

|λ|2 − α2
.

Whence

2‖A‖b ≤
‖A‖2

b√
|λ|2 − α2

+
√
|λ|2 − α2,

and by (2.9) we deduce

‖A‖b ≤
ωb (A) |λ|√
|λ|2 − α2

,

which is equivalent to (2.8). �

Corollary 2.2. Squaring (2.8), we get the inequality

‖A‖2
b − ω

2
b (A) ≤ α2

|λ|2
‖A‖2

b .

Corollary 2.3. Let A ∈ B (X ) be a bounded linear operator on the linear 2-normed
space and λ ∈ C\ {0} and α > 0 with |λ| > α then −

√
3

2 ≤
α
|λ| ≤

√
3

2 .

Proof. From Proposition 2.1, we infer that 1
2 ≤

ωb(A)
‖A‖b

.

By (2.8) we have
√

1− α2

|λ|2 ≤
ωb(A)
‖A‖b

. Combining the above two inequalities one can

obtain
√

1− α2

|λ|2 ≥
1
2 implies

(
α
|λ|

)2
≤ 3

4 , which implies −
√

3
2 ≤

α
|λ| ≤

√
3

2 . �
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