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FRACTIONAL POWER SERIES METHODS FOR SOLVING
FRACTIONAL DIFFERENTIAL EQUATIONS

YOUNESS ASSEBBANE1, MOHAMED ECHCHEHIRA1, MUSTAPHA ATRAOUI1,
MOHAMED HANNABOU2, AND MOHAMED BOUAOUID3

Abstract. In this study, we develop a novel Modified Generalized Fractional Power
Series (MGFPS) method for solving ordinary and fractional differential equations
within the Caputo fractional derivative framework. This approach extends and
refines classical and fractional power series techniques, overcoming their inherent
limitations through dynamic exponent adjustment based on the equation charac-
teristics. The proposed framework is supported by rigorous analytical foundations
ensuring enhanced accuracy and flexibility in solutions. Applications to linear
fractional-order equations demonstrate superior precision and computational effi-
ciency compared to existing techniques, providing a robust tool bridging classical
and fractional calculus.

1. Introduction

The power series method was first introduced by Newton in his work [7] for solving
differential equations. The extension of the power series method to the so-called
fractional calculus is presented in the work [3]. Specifically, the authors proposed
solutions of fractional differential equations expressed in power series of the form

+∞∑
n=0

γn(t− t0)nν = γ0 + γ1(t− t0)ν + γ2(t− t0)2ν + · · · ,

where 0 ≤ m− 1 < ν ≤ m and t ≥ t0, which is referred to as an FPS centered at t0,
with t as a variable and γn as constants known as the coefficients of the series.
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derivatives, Riemann-Liouville derivatives.
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In the same spirit, many authors have generalized the form of the last series,
including the so-called generalized fractional power series [2] of the following form:

+∞∑
n≥0,m≥0

γ(n,m)t
nν+m = γ(0,0) + γ(0,1)t+ γ(1,0)t

ν + γ(0,2)t
2 + γ(1,1)t

ν+1 + γ(2,0)t
2ν + · · · ,

(1.1)

where n,m ∈ N, t ≥ 0 and γ(n,m) are the series coefficients. Comprehensive treatments
of fractional power series theory and applications can be found in [1–6].

We note, however, that the previous forms of power series are not suitable for a large
class of concrete problems, as several examples in the book [8] show. For example,
the following fractional differential equation cannot simply be solved using the latest
approaches:

CDν
0y(t) = ρtµy(t), ρ ̸= 0,(1.2)

y(k)(0) = ck, ck ∈ R, k = 0, 1, . . . , j − 1,

where j − 1 < ν ≤ j, j ∈ N∗ and µ ∈ R+, with µ /∈ N.
Motivated by this remark, we propose the following form of the power series:

y(t) =
+∞∑

n0=0

+∞∑
n1=0

· · ·
+∞∑

nm=0
γ(n0, . . . , nm)t

∑m

k=0 nkνk , νk ∈ R+,

where n0, . . . , nm ∈ N, t ≥ 0 and γ(n0, . . . , nm) are the series coefficients.
This form will be used to find solutions for several examples of fractional differential

equations, in particular for the significant problem in (1.2).
The rest of this work is organized as follows. In Section 2, we give an overview of

the main definitions and properties of fractional derivatives. In Section 3, we give
further details and explanations of our method and examine some important examples
known in the literature to shed light on our present method. In the last section, we
provide an overview of the main results and advances presented in this paper.

2. Definitions and Properties

In this section, we present the essential definitions and properties that will be
referenced in the subsequent discussions [8].

Definition 2.1. The Riemann-Liouville integral of order ν for ν ∈ R+ and t ≥ 0 is
given by

(Iν
0+y)(t) = 1

Γ(ν)

∫ t

0

y(ξ)
(t− ξ)1−ν

dξ.

The Euler gamma function Γ(·) is defined as:

Γ(ϵ) =
∫ +∞

0
tϵ−1e−t dt, Re(ϵ) > 0.
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Definition 2.2. For n− 1 < ν ≤ n and t ≥ 0, the Riemann-Liouville derivative of y
of order ν is defined by

RLDν
a+y(t) = 1

Γ(n− ν) · d
n

dtn

∫ t

a

y(ξ)
(t− ξ)ν−n+1dξ.

Definition 2.3. For n− 1 < ν ≤ n and t ≥ 0, the Caputo derivative of y of order ν
is

CDν
ay(t) = 1

Γ(n− ν)

∫ t

a

y(n)(ξ)
(t− ξ)ν−n+1dξ.(2.1)

Property 2.1. If ν ∈ R+ and µ > 0, then
(

CDν
0 t

µ−1
)

(ξ) = Γ(µ)
Γ(µ− ν)ξ

µ−ν−1.

In particular, if µ = 1 and ν ∈ R+, the Caputo fractional derivatives of a constant
are generally zero: (

CDν
01
)

(ξ) = 0.

Moreover, for j = 0, 1, . . . , [ν], (
CDν

0 t
j
)

(ξ) = 0.

Definition 2.4. For ν ∈ R+ and ξ ∈ R, the Mittag-Leffler function is defined as

Eν(ξ) =
+∞∑
n=0

ξn

Γ(νn+ 1) .

Definition 2.5. For ν, µ ∈ R+ and ξ ∈ R, the generalized Mittag-Leffler function is
defined as

E(ν,µ)(ξ) =
+∞∑
n=0

ξn

Γ(νn+ µ) .

Definition 2.6. For ν, µ and γ ∈ R+ and ξ ∈ C, the Mittag-Leffler function of three
indices is defined as

E(ν,µ,γ)(ξ) = 1 +
+∞∑
k=1

[
k−1∏
i=0

Γ[ν(iµ+ γ) + 1]
Γ[ν(iµ+ γ + 1) + 1]

]
ξk.

Definition 2.7. If ν, µ ∈ R+ and ξ ∈ R, the Wright function is defined as

W(ν,µ)(ξ) :=
+∞∑
n=0

ξn

n!Γ(νn+ µ) .
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3. Methods, Theory and Calculations

In this section, we present a new general form of generalized fractional power series
designed to address both ordinary and fractional differential equations within the
Caputo framework.

Definition 3.1. The new general form of fractional power series, defined by

y(t) =
+∞∑

n0=0

+∞∑
n1=0

· · ·
+∞∑

nm=0
γ(n0, . . . , nm)t

∑m

k=0 nkνk , νk ∈ R+,(3.1)

where m ∈ N and t ≥ 0 serves as an indeterminate variable, while γ(n0, . . . , nm)
represents the coefficients of the series.

For simplicity, we assume that the center of the generalized fractional power series
is at zero, which is always possible by performing a linear transformation on the
variable, namely (t− t0) 7→ t.

Definition 3.2. If νk ∈ R+, then a Cauchy product fractional power series for a real
function y(t) is an infinite series of the form

y(t) =
+∞∑

n0=0

+∞∑
n1=0

· · ·
+∞∑

nm=0
γ(n0, . . . , nm)t

∑m

k=0 nkνk

=
 +∞∑

n0=0
an0t

n0ν0

 +∞∑
n1=0

an1t
n1ν1

 · · ·

 +∞∑
nk=0

anmt
nmνm

 ,
where γ(n0, . . . , nm) = an0an1 · · · anm for all n0, n1, . . . , nm.

Proposition 3.1 ([2]). If ∑+∞
i=0 ait

iν converges for some t = c > 0, then it converges
absolutely for t ∈ (0, c).

Corollary 3.1. If ∑+∞
k=0 dkt

k converges for some t = d > 0, then it converges absolutely
for t ∈ (0, d).

To derive a fractional power series solution characterized by m+1 fractional indices
νk ∈ R+ \ N for each k ∈ {0, . . . ,m}, the method determines the number of indices
in the exponent based on the varying orders of fractional derivatives. This approach
also accommodates cases where terms in the equation involve powers of t raised to
the exponent νk . Consequently, for a fractional derivative of order νk, the term nkνk

appears in the exponent, as well as when any term is multiplied by tνk . In the case
of classical derivatives, we include nkνk in the exponent, where νk = 1.

To demonstrate the application of the fundamental method and highlight its key
properties, we present several examples. Specifically, we will use this method to solve
the following fractional differential equation.
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Example 3.1. The initial value problem for the fractional differential equation is defined
by

CDν
0y(t) + λy(t) = 0,

y(0) = y0,

where 0 < ν ≤ 1, has a solution given by
y(t) = y0Eν (−λtν) .

Consider the following expression for a fractional power series:

y(t) =
+∞∑
n≥0

γnt
nν .

The selection of iν as the exponent is based on the fractional derivative CDν
0 . The

fractional derivative can be applied term by term to represent

CDν
0y(t) =

+∞∑
n≥1

γn
Γ(nν + 1)

Γ((n− 1)ν + 1)t
(n−1)ν .

By re-indexing the summation, we obtain the balance equations
+∞∑
n≥1

γn
Γ(nν + 1)

Γ((n− 1)ν + 1)t
(n−1)ν + λ

+∞∑
n≥1

γn−1t
(n−1)ν = 0.

We can immediately deduce that

γn = −λΓ((n− 1)ν + 1)
Γ(nν + 1) γn−1, n ≥ 1.

Equivalently we can write

γn = γ0
(−λ)n

Γ(nν + 1) , with γ0 = y(0).

We can now express the solution as

y(t) = y0

+∞∑
n=0

(−λ)ntnν

Γ(nν + 1) = y0Eν (−λtν) .(3.2)

The plot shows the behavior of the function y(t) for different values of ν. The
parameter λ = 1 and the coefficient y0 = 1. The curves are plotted for ν ∈
{0.6, 0.7, 0.8, 0.9, 1}, presenting the following relaxation behavior (see Figure 1).
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Figure 1. Plot of y(t) for different values of 0 < ν ≤ 1 in the time
range 0 ≤ t ≤ 20

Let us move on to another example. This one concerns the fractional oscillation
equation, a subject that has been thoroughly examined by various authors (see [13,16])
using the Laplace transform for its solution. Here, we will address it using a generalized
fractional power series.

Lemma 3.1 ([8]). Let n− 1 < ν ≤ n, n ∈ N∗. The equality (cDν
0y) (t) = 0 is valid if

and only if

y(t) =
n−1∑
j=0

cjt
j,

where cj ∈ R.

Example 3.2. The initial value problem associated with the fractional differential
equation is defined as follows:

CDν
0y(t) + λy(t) = 0,

y(0) = c0,

y′(0) = c1,

where 1 < ν ≤ 2 and c0, c1 ∈ R. The solution to this equation can be expressed as
y(t) = c0E(ν,1) (−λtν) + c1tE(ν,2) (−λtν) .

Proof. The generalized fractional power series representation of y(t) is expressed as
an infinite series:

y(t) =
+∞∑

n≥0,m≥0
γ(n,m)t

nν+m.(3.3)



FRACTIONAL POWER SERIES METHODS 101

The selection of nν as the exponent in (3.3) is dictated by the fractional derivative
CDν

0 , while the integer m associated with the initial value stems from the classical
derivative. Applying the fractional derivative term by term, by using Lemma 3.1 we
obtain:

CDν
0y(t) =

+∞∑
m≥2

γ(0,m)
Γ(m+ 1)

Γ(−ν +m+ 1)t
−ν+m

+
+∞∑

n≥1,m≥0
γ(n,m)

Γ(nν +m+ 1)
Γ((n− 1)ν +m+ 1)t

(n−1)ν+m.

We have also

λy(t) = λ
+∞∑

n≥1,m≥0
γ(n−1,m)t

(n−1)ν+m.

The balance equations are obtained by re-indexing the summation
+∞∑
m≥2

γ(0,m)
Γ(m+ 1)

Γ(−ν +m+ 1)t
−ν+m +

+∞∑
n≥1,m≥0

γ(n,m)
Γ(nν +m+ 1)

Γ((n− 1)ν +m+ 1)t
(n−1)ν+m

− λ
+∞∑

n≥1,m≥0
γ(n−1,m)t

(n−1)ν+m = 0.

We can immediately deduce that
γ(0,m) = 0, m ≥ 2,(3.4)

γ(n,m) = −λΓ((n− 1)ν +m+ 1)
Γ(nν +m+ 1) γ(n−1,m), n ≥ 1,m ≥ 0.(3.5)

It can be deduced from (3.4) and through successive applications of (3.5) that γ(n,m) =
0 for all n ≥ 0 and m ≥ 2. As a result, the only non-zero coefficients are those where
m < 2, yielding a solution of the form:

y(t) =
1∑

m=0

+∞∑
n=0

γ(n,m)t
nν+m =

1∑
m=0

tm
+∞∑
n=0

γ(n,m)t
nν .

Then, from (3.5), we have

γ(n,m) = −λΓ((n− 1)ν +m+ 1)
Γ(nν +m+ 1) γ(n−1,m), n ≥ 1,m ≤ 1.

Equivalently, we can write

γ(n,m) = (−1)n λnΓ(m+ 1)
Γ(nν +m+ 1)γ(0,m), n ≥ 1,m ≤ 1,(3.6)

where γ(0,m) = y(m)(0)
m! and from (3.6) we have

γ(n,m) = (−1)n λn

Γ(nν +m+ 1)y
(m)(0), n ≥ 1,m ≤ 1.
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The solution can now be expressed as:

y(t) = c0E(ν,1) (−λtν) + c1tE(ν,2) (−λtν) . □

The plot shows the behavior of the function y(t) for different values of α. The
parameter λ = 1, and the coefficients c0 and c1 are chosen as 1 and 0.25, respectively.
The curves are plotted for ν ∈ {1.5, 1.6, 1.7, 1.8, 1.9, 2}, presenting the following
oscillation behavior (see Figure 2).

Figure 2. Plot of y(t) for different values of alpha 1 < ν ≤ 2 in the
time range 0 ≤ t ≤ 20

One of the contributions of this paper lies in the utilization of a generalized fractional
power series to address a specific class of classical differential equations. To illustrate
this approach, we consider the following equation.

Proposition 3.2. Let l ∈ N and µ ∈ R+. Consider the initial value problem defined
by the differential equation

y(l)(t) = ρtµy(t), 0 ≤ t < +∞, ρ ∈ R+,(3.7)
y(k−1)(0) = ck, k = 1, 2, . . . , l,(3.8)

where ck ∈ R. The solution to this problem can be written as:

y(t) =
l∑

k=1

ck

(k − 1)!t
k−1E(l,1+ µ

l
, µ+k−1

l
)

(
ρtµ+l

)
.

Proof. Consider the expansion of the fractional power series for y(t):

y(t) =
+∞∑

n≥0,m≥0
γ(n,m)t

nµ+m.(3.9)
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The selection of nµ and m in (3.9) is influenced by the monomial tµ in (3.9) and
the classical derivative as presented in (3.8) then we have:

tµy(t) =
+∞∑

n≥0,m≥0
γ(n,m)t

(n+1)µ+m =
+∞∑

n≥1,m≥l

γ(n−1,m−l)t
nµ+m−l.(3.10)

Additionally, we have

y(l)(t) =
+∞∑

n≥0,m≥0
γ(n,m)(nµ+m)(nµ+m− 1) · · · (nµ− l + 1)tnµ+m−l.

y(l)(t) =
+∞∑

n≥1,m≥l

γ(n,m)
Γ(nµ+m+ 1)

Γ(nµ+m− l + 1)t
nµ+m−l +

+∞∑
m≥l

γ(0,m)
Γ(m+ 1)

Γ(m− l + 1)t
m−l

+
l−1∑

m=0

+∞∑
n≥1

γ(n,m)
Γ(nµ+m+ 1)

Γ(nµ+m− l + 1)t
nµ+m−l.

(3.11)
We then substitute (3.10) and (3.11) into (3.7) and adjust the summation indices to
obtain the balance equations:

+∞∑
n≥0,m≥0

γ(n,m)
Γ(nµ+m+ 1)

Γ(nµ+m− l + 1)t
nµ+m−l − ρ

+∞∑
n≥1,m≥l

γ(n−1,m−l)t
nµ+m−l = 0.

It can be concluded that
γ(0,m) = 0, m ≥ l,(3.12)
γ(n,m) = 0, n ≥ 1,m ≤ l − 1(3.13)

γ(n,m) = ρ
Γ(nµ+m− l + 1)

Γ(nµ+m+ 1) γ(n−1,m−l), n ≥ 1,m ≥ l.(3.14)

It can be deduced from (3.12) and the recursive applications of (3.14) that γ(n,m) = 0
for all n ≥ 1 and m > nl + l − 1. Similarly, from (3.13) in conjunction with (3.14)
it follows that γ(n,m) = 0 for all m ≥ 1 and m < nl. Therefore, the only non-zero
coefficients that remain are those for which nl ≤ m ≤ nl + l − 1. Consequently, we
can express the solution in the following form:

y(t) =
l−1∑
k=0

+∞∑
n=0

γ(n,nl+k)t
nµ+nl+k =

l−1∑
k=0

tk
+∞∑
n=0

γ(n,nl+k)t
n(µ+l),

where ϕ(n, k) = γ(n,nl+k) is derived from the recurrence relation (3.14). Then,

ϕ(n, k) = ρ
Γ(nµ+ nl + k − l + 1)

Γ(nµ+ nl + k + 1) ϕ(n− 1, k), n ≥ 1, k ≤ l − 1.

This can be represented in closed form, resulting in

ϕ(n, k) =
n−1∏
j=0

ρ
Γ((j + 1)(µ+ l) + k − l + 1)

Γ((j + 1)(µ+ l) + k + 1) ϕ(0, k), n ≥ 1, k ≤ l − 1.
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Alternatively, this can be represented as

ϕ(n, k) =
n−1∏
j=0

ρ
Γ(l(j(µ

l
+ 1) + µ

l
+ k

l
) + 1)

Γ(l(j(µ
l

+ 1) + µ
l

+ 1 + k
l
) + 1)

ϕ(0, k), n ≥ 1, k ≤ l − 1,

where ϕ(0, k) = γ(0,k) = y(k)(0)
k! . We can now express the solution in the form:

y(t) =
l−1∑
k=0

y(k)(0)
k! tkE(l,1+ µ

l
, µ+k

l
)

(
ρtµ+l

)
=

l∑
k=1

ck

(k − 1)!t
k−1E(l,1+ µ

l
, µ+k−1

l
)

(
ρtµ+l

)
.

(3.15)

□

To further demonstrate our method and highlight the limitations of the generalized
fractional power series in solving such equations, let us consider another example. In
this study, we will apply our modified power series approach to solve it.

Proposition 3.3. Let µ ∈ R+. The fractional differential equation, defined as an
initial value problem, is given by

CDν
0y(t) = ρtµy(t), 0 ≤ t < +∞, ρ ∈ R+,(3.16)
y(0) = y0,

where 0 < ν < 1. This problem admits a modified generalized power series solution
expressed as y(t) = y0E(ν,1+ µ

ν
, µ

ν
) (ρtν+µ) .

Proof. Consider the following modified generalized power series:

y(t) =
+∞∑

n≥0,m≥0
γ(n,m)t

nν+mµ.

The selection of the exponent nν + mµ is determined by the monomial tµ and the
fractional derivative CDν

0 . Applying the fractional derivative term by term, we obtain
the following expression:

CDν
0y(t) =

+∞∑
n+m≥1

n≥0,m≥0

γ(n,m)
Γ(nν +mµ+ 1)

Γ((n− 1)ν +mµ+ 1)t
(n−1)ν+mµ.(3.17)

We also have an alternative expression

tµy(t) =
+∞∑

n≥0,m≥0
γ(n,m)t

nν+(m+1)µ =
+∞∑

n≥1,m≥1
γ(n−1,m−1)t

(n−1)ν+mµ.(3.18)

Next, we substitute (3.17) and (3.18) into (3.16) and adjust the summation indices
to derive the balance equations

+∞∑
n+m≥1

n≥0,m≥0

γ(n,m)
Γ(nν +mµ+ 1)

Γ((n− 1)ν +mµ+ 1)t
(n−1)ν+mµ − ρ

+∞∑
n≥1,m≥1

γ(n−1,m−1)t
(n−1)ν+mµ = 0.
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It follows directly that

γ(0,m) = 0, m ≥ 1,(3.19)
γ(n,0) = 0, n ≥ 1,(3.20)

γ(n,m) = λ
Γ((n− 1)ν +mµ+ 1)

Γ(nν +mµ+ 1) γ(n−1,m−1), n ≥ 1,m ≥ 1.(3.21)

From (3.19) and by recursively applying (3.21), it can be established that γ(n,m) = 0
for n ≥ 1 and m > n. Similarly, from (3.20) in conjunction with (3.21), we conclude
that γ(n,m) = 0 for m ≥ 1 and m < n. Consequently, the only non-zero coefficients
correspond to the case where m = n, resulting in the solution of the form:

y(t) =
+∞∑
n=0

γ(n, n)tnν+nµ =
+∞∑
n=0

γ(n, n)tn(ν+µ),

where ψ(n) = γ(n,n) is obtained from the recurrence relation (3.21) by setting m = n,
leading to a solution of the form

ψ(n) = ρ
Γ((n− 1)ν + nµ+ 1)

Γ(nν + nµ+ 1) ψ(n− 1), n ≥ 1.

This can be expressed as

ψ(n) =
n−1∏
j=0

ρ
Γ(j(ν + µ) + µ+ 1)

Γ(j(ν + µ) + ν + µ+ 1)ψ(0), n ≥ 1.

Thus, we can deduce that

ψ(n) =
n−1∏
j=0

ρ
Γ(ν(j(µ

ν
+ 1) + µ

ν
) + 1)

Γ(ν(j(µ
ν

+ 1) + µ
ν

+ 1) + 1)ψ(0), n ≥ 1,

where ψ(0) = γ(0,0) = y(0). The solution can be expressed in the following expression:

y(t) = y0E(ν,1+ µ
ν

, µ
ν

)

(
ρtν+µ

)
. □

The plot shows the behavior of the function y(t) for different values of ν. The
parameter ρ = 1, and the coefficient y0 = 1. The curves are plotted for µ ∈
{0,−0.3,−0.5,−0.6} and ν = 1, presenting the following relaxation behavior (see
Figure 3).

To enhance the applicability of our method in various situations, we propose a
generalized equation that extends equations (3.7) and (3.16) as follows.

Theorem 3.1. Let j − 1 < ν ≤ j, where j ∈ N∗ and µ ∈ R+. Consider the initial
value problem given by

CDν
0y(t) = ρtµy(t), ρ ̸= 0,(3.22)

y(k)(0) = ck, ck ∈ R, k = 0, 1, . . . , j − 1.(3.23)
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Figure 3. Plot of y(t) for different values of mu in the time range
0 ≤ t ≤ 5

Therefore, the solution to this problem is expressed as:

y(t) =
j−1∑
k=0

ck

k! t
kE(ν,1+ µ

ν
, µ+k

ν )
(
ρtµ+ν

)
.

Proof. We assume that the solution to this equation takes the form:

y(t) =
+∞∑

n,m,k⩾0
γ(n,m,k)t

nν+mµ+k.(3.24)

The selection of nν + mµ + k in (3.24) raised to a power is contingent upon the
monomial tµ and the fractional derivative CDν

0 in the equation (3.22). Moreover, the
integer k see (3.23) for the initial value is determined by the classical derivative. We
can apply the fractional derivative term by term to represent:

CDν
0

 +∞∑
n,m,k≥0

γ(n,m,k)t
nν+mµ+k

 =
+∞∑
k≥j

γ(0,0,k)
Γ(k + 1)

Γ(−ν + k + 1)t
−ν+k

+
+∞∑

n,m,k≥0
n+m≥1

γ(n,m,k)
Γ(nν +mµ+ k)

Γ((n− 1)ν +mµ+ k)t
(n−1)ν+mµ+k.(3.25)

We additionally have

tµy(t) =
+∞∑

n,m,k≥0
γ(n,m,k)t

nν+(m+1)µ+k =
+∞∑
k≥0

+∞∑
n≥1,m≥1

γ(n−1,m−1,k)t
(n−1)ν+mµ+k.(3.26)
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We subsequently substitute equations (3.25) and (3.26) into (3.22) and adjust the
summation indices, leading us to the balance equations:

+∞∑
k≥j

γ(0,0,k)
Γ(k + 1)

Γ(−ν + k + 1)t
−ν+k +

+∞∑
n,m,k≥0
n+m≥1

γ(n,m,k)
Γ(nν +mµ+ k)

Γ((n− 1)ν +mµ+ k)t
(n−1)ν+mµ+k

− ρ
+∞∑
k≥0

+∞∑
n≥1,m≥1

γ(n−1,m−1,k)t
(n−1)ν+mµ+k = 0.

(3.27)

Immediate deduction yields
γ(0,0,k) = 0, k ≥ j,(3.28)
γ(0,m,k) = 0, m ≥ 1, k ≥ 0,(3.29)
γ(n,0,k) = 0, n ≥ 1, k ≥ 0,(3.30)

γ(n,m,k) = ρ
Γ((n− 1)ν +mµ+ k + 1)

Γ(nν +mµ+ k + 1) γ(n−1,m−1,k), n ≥ 1,m ≥ 1, k ≥ 0.(3.31)

From (3.28) and the iterative application of (3.31), it can be deduced that γ(n,m,k) = 0
for all n ≥ 0, m ≥ 0 and k ≥ j. Therefore, the only non-zero coefficients correspond
to the case where k < j.

From (3.29) and recursively from (3.31), γ(n,m,k) = 0 for n ≥ 1, k ≥ 0 and m > n.
Similarly, from (3.30) and (3.31), γ(n,m,k) = 0 for m ≥ 1, k ≥ 0 and m < n. As a
result, the only non-zero coefficients occur when m = n, leading to a solution of the
form:

y(t) =
j−1∑
k=0

+∞∑
n≥0

γ(n,n,k)t
nν+nµ+k =

j−1∑
k=0

tk
+∞∑
n≥0

γ(n,n,k)t
n(ν+µ),

where φ(n, k) = γ(n,n,k) are found from the recurrence relation (3.31), with m = n,
and we then have

φ(n, k) = ρ
Γ((n− 1)ν + nµ+ k + 1)

Γ(nν + nµ+ k + 1) φ(n− 1, k), n ≥ 1, k ≤ j − 1.

This can be written as

φ(n, k) =
n−1∏
i=0

ρ
Γ(i(ν + µ) + µ+ k + 1)

Γ(i(ν + µ) + ν + µ+ k + 1)φ(0, k), n ≥ 1, k ≤ j − 1.

Equivalently, we deduce that

φ(n, k) =
n−1∏
i=0

ρ
Γ(ν(i(µ

ν
+ 1) + µ+k

ν
) + 1)

Γ(ν(i(µ
ν

+ 1) + µ+k
ν

+ 1) + 1)
φ(0, k), n ≥ 1, k ≤ j − 1.

Given that φ(0, k) = γ(0,0,k) = y(k)(0)
k! the series solution can now be expressed as:

y(t) =
j−1∑
k=0

ck

k! t
kE(

ν,1+ µ
ν

, µ+k
ν

) (ρtµ+ν
)
. □
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Let us consider another equation to enhance the applicability of our methodology
for multiple derivatives. This examples, presented by Francesco Mainardi [14] in
the context of Wright functions applied to fractional differential equations. We now
present the following examples.

Example 3.3. Let 0 < µ < 1 and ν ∈ R+, with ν /∈ N. The fractional differential
equation is formulated as follows:

CDµ
0

(
tν
dy(t)
dt

)
= tν−1y(t),(3.32)

with the initial condition y(0) = y0. The solution to this equation is given by

y(t) = Γ(ν)y0W(µ,ν)

(
tµ

µ

)
.

Proof. We hypothesize that the solution to this equation has the form

y(t) =
+∞∑

n,m,k⩾0
γ(n,m,k)t

nµ+mν+k.(3.33)

The decision to raise nµ+mν+k to a power in (3.33) is influenced by the fractional
derivative CDµ

0 and the monomial tν , whereas the integer k is determined by the
classical derivative. One can easily observe that

tν−1y(t) =
+∞∑

n,m,k⩾0
γ(n,m,k)t

nµ+(m+1)ν+k−1.

On the other hand, it is known that:

tν
dy(t)
dt

=
+∞∑

n,m,k⩾0
n+m+k⩾1

γ(n,m,k) (nµ+mν + k) tnµ+(m+1)ν+k−1.

Then, one has

CDµ
0

(
tν
dy(t)
dt

)
=

+∞∑
n,m,k⩾0

n+m+k⩾1

γ(n,m,k) (nµ+mν + k)

× Γ(nµ+ (m+ 1)ν + k)
Γ((n− 1)µ+ (m+ 1)ν + k)t

(n−1)µ+(m+1)ν+k−1.

By modifying the summation indices, we derive the balance equations
+∞∑

n,m,k⩾0
n+m+k⩾1

γ(n,m,k) (nµ+mν + k) Γ(nµ+ (m+ 1)ν + k)
Γ((n− 1)µ+ (m+ 1)ν + k)t

(n−1)µ+(m+1)ν+k−1

−
+∞∑

n≥1m,k⩾0
γ(n−1,m,k)t

(n−1)µ+(m+1)ν+k−1 = 0.
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It can be readily concluded that

γ(0,m,k) = 0, m+ k ≥ 1,

(3.34)

γ(n,m,k) = Γ((n− 1)µ+ (m+ 1)ν + k)
(nµ+mν + k)Γ(nµ+ (m+ 1)ν + k)γ(n−1,m,k), n ≥ 1,m ≥ 0, k ≥ 0.

(3.35)

From equations (3.34) and (3.35), we find that γ(n,m,k) = 0 for all n ≥ 0 and m+k ≥ 1.
The only term that remains in the series for which m+ k is zero is when m+ k = 0,
leading to a simplification of the recurrence relation to

γ(n,0,0) = 1
nµ

· Γ((n− 1)µ+ ν)
Γ(nµ+ ν) γ(n−1,0,0).

We subsequently obtain

γ(n,0,0) = 1
n!µn

· Γ(ν)
Γ(nµ+ ν)γ(0,0,0).

The series solution can now be written as

y(t) = y0Γ(ν)W(µ,ν)

(
tµ

µ

)
. □

Remark 3.1. Through direct calculations, we find that

CDµ
0

(
tν
d

dt

)
Wµ,ν

(
tµ

µ

)
= CDµ

0

+∞∑
k=1

tkµ+ν−1

(k − 1)!µk−1Γ(kµ+ ν)

=
+∞∑
k=1

tkµ+ν−1−µ

(k − 1)!µk−1Γ(kµ+ ν − µ) = tν−1W(µ,ν)

(
tµ

µ

)
.

Conclusion and Comments

In this paper, we have explored the application of generalized fractional power series
methods to solve linear fractional order differential equations with both constant and
variable coefficients. We have identified the limitations of traditional methods such
as the Laplace transform, particularly when dealing with inhomogeneous equations
and variable coefficients. To address these challenges, we developed a new method
that extends the power series method to fractional differential equations, offering a
more comprehensive and effective approach.

Our findings demonstrate that this new method not only generalizes the classical
and fractional power series method but also provides a robust solution framework for
equations involving fractional derivatives. Through various examples, we illustrated
the efficacy and versatility of our approach in solving complex differential equations.
However, applying our method to solve a special type of recurrence relation with more
than two indices presents significant challenges because there is no general procedure
for solving such recurrence relations. This implies that when an equation contains
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more than two terms, it becomes more challenging to apply our algorithm, except in
some particular cases.

Overall, the contributions of this paper lie in extending the power series method
to a broader class of differential equations, thereby opening new avenues for research
and application in various scientific domains.
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