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SPECTRAL EXPANSION FOR CONFORMABLE FRACTIONAL
STURM-LIOUVILLE PROBLEM ON THE WHOLE LINE

BİLENDER P. ALLAHVERDİEV1, HÜSEYİN TUNA2, AND YÜKSEL YALÇINKAYA1

Abstract. In this article, we discuss a conformable fractional Sturm-Liouville
boundary-value problem on the whole line. We prove the existence of a spectral
function for the singular conformable fractional Sturm-Lioville problem. Further,
we establish a Parseval equality and spectral expansion formula by terms of the
spectral function for conformable fractional Sturm-Liouville problem on the whole
line.

1. Introduction

Fractional order differential equations first appeared towards the end of the 17th
century with a letter of L’Hospital to Leibnitz in which he asked the meaning of
“fractional order derivative”. Up to the present time, many mathematicians such as
Liouville, Riemann, Weyl, Fourier, Lagrange, Grönwald, Letnikov, Abel, and Caputo
have made research in this field [2]. Fractional differential equations are used today in
many fields such as transmission line theory, signal processing, chemical analysis, heat
transfer, hydraulics of dams, material science, temperature field problems oil strata,
diffusion problems, waves in liquids and gases, Schrödinger equation, and fractal
equation [2–7]. Recently, based on the definition of the classical derivative, a new
fractional derivative is put forward by Khalil et al. and named as conformable fractional
derivative [1]. In this study Khalil et al. provided the linearity property for his new
definition of the fractional derivative, they proved the product rule, the quotient rule,
the fractional Rolle theorem, and the fractional mean value theorem. Later in [8],
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Abdeljawad defined the right and left conformable fractional derivatives, the fractional
chain rule, and fractional integrals of higher orders. Conformable fractional derivative
aims to expand the definition of the classical derivative by providing the natural
characteristics of the classical derivative and gain new perspectives for the theory of
differential equations [9]. Examples of these perspectives are [10–16, 31, 34]. In [10],
the form of the Wronskian for conformable fractional linear differential equations with
variable coefficients is discussed and Abel’s formula for fractional differential equations
with variable coefficients is proven. In [11], the exact solution of the heat conformable
fractional differential equation is given. In [12], being existent and uniqueness theories
of consecutive linear conformable fractional differential equations are demonstrated.
In [13], some of the conformable fractional partial equations including the wave
equation are solved. In [14], linear second-order conformable differential equations
using a proportional derivative are shown to be formally self-adjoint equations with
respect to a certain inner product and the associated self-adjoint boundary conditions.
Defining a Wronskian, a Lagrange identity, and Abel’s formula are established. Several
reduction-of-order theorems are given. Solutions of the conformable second-order
self-adjoint equation are then shown to be related to corresponding solutions of a
first-order Riccati equation and a related quadratic functional and a conformable
Picone identity. A Lyapunov inequality, factorizations of the second-order equation
are established. Boundary value problems and Green’s functions are studied. In
[31], a regular fractional generalization of the Sturm-Liouville eigenvalue problems is
suggested and some fundamental results of this suggested model are established. In
[34], a general notion of fractional derivative for functions defined on arbitrary time
scales is introduced. The basic tools for the time-scale fractional calculus are then
developed. In [15], a conformable fractional Dirac system with separated boundary
conditions on an arbitrary time scale is studied, some basic spectral properties of
the classical Dirac system are extended to the conformable fractional case. In [16],
a conformable fractional Sturm-Liouville equation with boundary conditions on an
arbitrary time scale is analyzed, basic spectral properties of the classical Sturm-
Liouville equation are extended to the conformable fractional case, some sufficient
conditions are established to guarantee the existence of a solution for this conformable
fractional Sturm-Liouville problem on T by using certain fixed point theorems.

Today, it is widely accepted that spectral expansion theorems are beneficial in
science and engineering. If, for example, a partial differential equation is solved by
the method of separation of variables (i.e., the Fourier method) then the problems
of expanding an arbitrary function to a series of eigenfunctions and showing that
the eigenfunctions form a complete system occur. The first study for the spectral
expansion problem is constructed by Weyl [17] (see [18–29,32,33,35,36]).

The primary aim of this study is to prove the existence of a spectral function for
singular conformable fractional (CF) Sturm-Liouville equation of the form

−T 2
αy(t) + v(t)y(t) = λy(t), −∞ < t <∞,
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where λ is a complex parameter, v(·) is a real-valued conformable fractional locally
integrable function on (−∞,∞). The article is structured as follows. In Section 2,
necessary concepts and properties are reviewed. In Section 3, we construct resolvent
in view of Green’s function. We show that the regular CF-Sturm-Liouville operator
has a compact resolvent, so it has a purely discrete spectrum. Finally, in Section 4, we
establish a Parseval equality and spectral expansion formula by terms of the spectral
function for the CF-Sturm-Liouville problem on the whole line.

2. Preliminaries

In this section, our goal is to present some basic definitions and properties of
conformable fractional calculus and operator theory. For more details, the reader may
want to consult [1–8,30,37]. Throughout this paper, we will fix α ∈ (0, 1).

Definition 2.1. Assume α be a positive number with 0 < α < 1. A function f : R→
R =(−∞,∞) the conformable fractional derivative of order α of f at t > 0 is defined
by

(2.1) Tαf(t) = lim
ε→∞

f (t+ εt1−α)− f (t)
ε

and the fractional derivative at 0 is defined by
(Tαf) (0) = lim

t→0+
Tαf(t).

Definition 2.2. The left conformable fractional derivative starting from a of a func-
tion f : [a,∞)→ R of order α is defined by

(T aα f)(t) = lim
ε→0

f(t+ ε (t− a)1−α)− f (t)
ε

, 0 < α ≤ 1.

Definition 2.3. The right conformable fractional derivative of order 0 < α ≤ 1 of f
is defined by

(bαTf)(t) = −lim
ε→0

f(t+ ε(b− t)1−α)− f(t)
ε

,

where f is terminating at b and (bTαf)(t) = limt→b−(bTαf)(t).

In the next lemma, we consider some properties of conformable derivatives.

Lemma 2.1. Let f, g be conformable differentiable of order α, 0 < α ≤ 1, at a point
t. Then

(i) Tα (λf + δg) = λTα (f) + δTα (g), λ, δ ∈ R;
(ii) Tα (fg) = fTα (g) + gTα (f);
(iii) Tα

(
f
g

)
= gTα(f)−fTα(g)

g2 ;
(iv) f is differentiable then T aα (f) (t) = (t− a)1−α f ′ (t).
(v) Tα (tn) = ntn−α for all n ∈ R.

Next, we present the conformable fractional integral and some of its properties.
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Definition 2.4. The conformable fractional integral starting from a of a function f
of order 0 < α ≤ 1 is defined by

(Iaαf) (t) =
t∫
a

f(x)dα (x, a) =
t∫
a

(x− a)α−1f(x)dx.

Similarly, in the right case, we have

(bIαf) (t) =
b∫
t

f(x)dα (b, x) =
b∫
t

(b− x)α−1f(x)dx.

Lemma 2.2. Assume that f is a continuous function on (a,∞) and 0 < α < 1. Then
we have

T aαI
a
αf (t) = f (t) ,

for all t > a.

Theorem 2.1. Let f, g : [a, b]→ R be two functions such that f and g are conformable
fractional differentiable. So, we have∫ b

a
f(t)T aα (g) (t) dα (t, a) +

∫ b

a
g (t)T aα (f) (t) dα (t, a) = f(b)g(b)− f(a)g(a).

Let L2
α(−b, b), −∞ ≤ −b < b ≤ ∞, is the space of all complex-valued functions

defined on (−b, b) as

‖f‖ :=
(∫ b

−b
|f (t)|2 dα (t)

)1/2

=
(∫ b

−b
|f (t)|2 tα−1dt

)1/2

<∞.

The space L2
α(−b, b) is a Hilbert space with the inner product

(f, g) :=
∫ b

−b
f (t) g (t)dα (t) , f, g ∈ L2

α(−b, b).

Let us define the conformable α-Wronskian of x and y by
Wα(x, y)(t) = x(t)Tαy(t)− y(t)Tαx(t), t ∈ (−b, b).

Definition 2.5. A function M(t, x) in C2 of two variables with −b < t, x < b is
called the α-Hilbert-Schmidt kernel if∫ b

−b

∫ b

−b
|M(t, x)|2dα(t)dα(x) <∞.

Theorem 2.2. If

(2.2)
∞∑

i,k=1
|aik|2 <∞,

then the operator A defined by the formula

A {xi} = {yi} , i ∈ N := {1, 2, 3, . . . },



SPECTRAL EXPANSION FOR C. F. STURM-LIOUVILLE PROBLEM 815

where

(2.3) yi =
∞∑
k=1

aikxk, i ∈ N,

is compact in the sequence space `2 [30].

Theorem 2.3 ([37]). Let (wn)n∈N be a uniformly bounded sequence of real non-
decreasing functions on a finite interval [c, d] . Then there exists a subsequence (wnk)k∈N
and a non-decreasing function w such that

lim
k→∞

wnk (λ) = w (λ) ,

where λ ∈ [c, d] .

Theorem 2.4 ([37]). Assume (wn)n∈N is a real, uniformly bounded, sequence of non-
decreasing functions on a finite interval [c, d] , and suppose

lim
n→∞

wn (λ) = w (λ) ,

where λ ∈ [c, d] . If f is any continuous function on [c, d] , then

lim
n→∞

∫ d

c
f (λ) dwn (λ) =

∫ d

c
f (λ) dw (λ) .

3. Regular CF-Sturm-Liouville Problem

In this part, we construct Green’s function and prove that the regular CF-Sturm-
Liouville operator has a compact resolvent, so it has a purely discrete spectrum.

We consider the regular CF-Sturm-Liouville equation defined by

(3.1) − T 2
αy(t) + v(t)y(t) = λy(t), −∞ < −b < x < b <∞.

Let γ and β be arbitrary real numbers and let y(t, λ) satisfies the boundary conditions

y(−b, λ) cos β + Tαy(−b, λ) sin β =0,(3.2)
y(b, λ) cos γ + Tαy(b, λ) sin γ =0,(3.3)

in which λ is a complex eigenvalue parameter, v(t) is a real-valued continuous function
defined on R and v ∈ L1

α,loc (R) , where

L1
α,loc (R) :=

{
f : R→ C :

∫ b

−b
|f (t)| dα(t) <∞ for all b ∈ R

}
.

Denote by θ1(t, λ), and θ2(t, λ) the linearly independent solutions of the (3.1) subject
to the initial conditions

θ1(−b, λ) = sin β, Tαθ1(−b, λ) = − cos β,(3.4)
θ2(b, λ) = sin γ, Tαθ2(b, λ) = − cos γ.(3.5)



816 B. P. ALLAHVERDİEV, H. TUNA, AND Y. YALÇINKAYA

In this way, the Green’s function of the problem is defined by (3.1)–(3.4) (see [23])

(3.6) G(t, x, λ) =


θ1(t,λ)θ2(x,λ)
Wα(θ1,θ2) , −b ≤ x < t,

θ2(t,λ)θ1(x,λ)
Wα(θ1,θ2) , t < x ≤ b.

In the next results, without restriction of generality, we assume that λ = 0 is not
an eigenvalue of the problem (3.1)–(3.3).

Theorem 3.1. G(t, x) defined by (3.6) is a α-Hilbert-Schmidt kernel.

Proof. By the upper half of the formula (3.6), we obtain∫ b

−b
dα(t)

∫ t

−b
|G(t, x)|2dα(x) <∞,

and by the lower half of (3.6), we have∫ b

−b
dα(t)

∫ b

t
|G(t, x)|2dα(x) <∞,

because the inner integral exists and is products θ1 (x) θ2 (t) , and these products belong
to L2

α(−b, b)×L2
α(−b, b) because each of the factors belongs to L2

α(−b, b). Then, we
obtain

�(3.7)
∫ b

−b

∫ b

−b
|G(t, x)|2dα(t)dα(x) <∞.

Theorem 3.2. The operator S defined by the formula

(Sf)(t) =
∫ b

−b
G(t, x)f(x)dα(x)

is compact and self-adjoint on L2
α(−b, b).

Proof. Let φi = φi(x), i ∈ N, is an orthonormal basis of L2
α(−b, b). Because G(t, x) is

a α−Hilbert-Schmidt kernel, it can be defined as

ti = (f, φi) =
∫ b

−b
f(x)φi(x)dα(x),

yi = (g, φi) =
∫ b

−b
g(x)φi(x)dα(x),

aik =
∫ b

−b

∫ b

−b
G(t, x)φi(t)φk(x)dα(t)dα(x), i, k ∈ N.

Then, L2
α(−b, b) is mapped isometrically `2. As a consequence, the integral operator

turns into the operator which is defined by the formula (2.3) in the space `2 by this
mapping, and the condition (3.7) is translated into the condition (2.2). So, the original
operator is compact.

Let f, g ∈ L2
α(−b, b). As G(t, x) = G(x, t) and we have

(Sf, g) =
∫ b

−b
(Sf)(t)g(t)dα(t)



SPECTRAL EXPANSION FOR C. F. STURM-LIOUVILLE PROBLEM 817

=
∫ b

−b

∫ b

−b
G(t, x)f(x)dα(x)g(t)dα(t)

=
∫ b

−b
f(x)

(∫ b

0
G(x, t)g(t)dα(t)

)
dα(x) = (f,Sg).

Thus, we have proved that the operator S is self-adjoint. �

4. Parseval Equality and Spectral Expansion In The Case of The
Whole Line

In this part, the existence of a spectral function for singular Sturm-Liouville problem
(3.1)–(3.2) will be proven. A Parseval equality and spectral expansion formula by
terms of the spectral function is set up.

Let λ1, λ2, . . . be the eigenvalues and y1, y1, . . . the corresponding eigenfunctions of
the problem (3.1)–(3.3). Let θ1(t, λ) and θ2(t, λ) be solutions of the problem (3.1)–(3.2)
satisfying the initial conditions

θ1(0, λ) = 0, Tαθ1(0, λ) = 1, θ2(0, λ) = 1, Tαθ2(0, λ) = 0,

and let
yn(t) = cnθ1(t, λn) + dnθ2(0, λn).

Let f be a real-valued function and f ∈ L2
α(−b, b). Then it follows from Theorem

3.2 and the Hilbert-Schmidt theorem that∫ b

−b
f 2(t)dα(t) =

∞∑
n=1

{∫ b

−b
f(t)yn(t)dα(t)

}2

=
∞∑
n=1

{∫ b

−b
f(t){cnθ1(t, λn) + dnθ2(t, λn)}dα(t)

}2

=
∞∑
n=1

c2
n

{∫ b

−b
f(t)θ1(t, λn)dα(t)

}2

+ 2
∞∑
n=1

cndn

{∫ b

−b
f(t)θ1(t, λn)dα(t)

∫ b

−b
f(t)θ2(t, λn)dα(t)

}

+
∞∑
n=1

d2
n

{∫ b

−b
f(t)θ2(t, λn)dα(t)

}2

.(4.1)

Now, we will define the step functions by

ξ−b,b(λ) =


− ∑
λ<λn<0

c2
n, for λ ≤ 0,∑

0≤λn<λ
c2
n for λ > 0,

ζ−b,b(λ) =


− ∑
λ<λn<0

cndn, for λ ≤ 0,∑
0≤λn<λ

cndn for λ > 0,
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ς−b,b(λ) =


− ∑
λ<λn<0

d2
n, for λ ≤ 0,∑

0≤λn<λ
d2
n for λ > 0.

Then the Parseval equality (4.1) can be stated as∫ b

−b
f 2(t)dα(t) =

∫ ∞
−∞

{∫ b

−b
f(t)cnθ1(t, λn)dα(t)

}2

dξ−b,b(λ)

+ 2
∫ ∞
−∞

{∫ b

−b
f(t)cnθ1(t, λn)dα(t)

}{∫ b

−b
f(t)dnθ2(t, λn)dα(t)

}
dζ−b,b(λ)

+
∫ ∞
−∞

{∫ b

−b
f(t)dnθ2(t, λn)dα(t)

}2

dς−b,b(λ).(4.2)

In the sequel, we shall present a lemma.

Lemma 4.1. For any s > 0, there exists a positive constantM = M (S) not depending
on b such that

(4.3)
S

V
−S
{%ij,b(λ)} < M, i, j = 1, 2,

where

%11,b(λ) = ξ−b,b(λ), %12,b(λ) = %21,b(λ) = ζ−b,b(λ), %22,b(λ) = ς−b,b(λ).

Proof. To see the validity of (4.3), it suffices to put i = j, because
S

V
−S
{%12,b(λ)} ≤ 1

2{%11,b(S)− %11,b(−S) + %22,b(S)− %22,b(S)}.

The Parseval equality (4.2) then takes the form

(4.4)
∫ b

−b
f 2(t)dα(t) =

∫ ∞
−∞

2∑
i,j=1

Fi(λ)Fj(λ)d%ij,b(λ),

where

Fi(λ) =
∫ b

−b
f(t)θi(t, λ)dα(t), i = 1, 2.

If follows from (4.4) that

T (j−1)
α θi(0, λ) = δi,j i, j = 1, 2,

where δi,j is the Kronecker delta. Thus, for any ε > 0 and given S > 0, there exists a
r > 0 such that

(4.5) |T (j−1)
α θi(t, λ)− δi,j| < ε,

where |λ| ≤ S, t ∈ [0, r] . �
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Let fr(t) be a non-negative twice continuously differentiable function such that fr(t)
vanishes outside the interval [0, r] , with

(4.6)
∫ r

0
fr(t)dα(t) = 1.

Now, if we apply the Parseval equality (4.4) to the functions T (j−1)
α fr(t), j = 1, 2,

then we get

(4.7)
∫ r

0

∣∣∣T (j−1)
α fr(t)

∣∣∣2 dα(t) ≥
∫ S

−S

2∑
i,k=1

Fi,j(λ)Fkj(λ)d%ik,b(λ),

where
Fij(λ) =

∫ r

0
T (j−1)
α fr(t)θi(t, λ)dα(t) = ±

∫ r

0
fr(t)T (j−1)

α θi(t, λ)dα(t).

Using (4.5) and (4.6), we obtain
(4.8) |Fij(λ)− δi,j| < ε, i, j = 1, 2.
It follows from (4.7) and (4.8) that

(4.9)
∫ r

0

∣∣∣T (j−1)
α fr (t)

∣∣∣2 dα(t) ≥
∫ S

−S

2∑
i,k=1

(δij − ε) (δkj − ε) |d%ik,b (λ)| .

If we take j = 1 in (4.8), we have∫ r

0
f 2
r (t) dα(t) > (1− ε)2

∫ S

−S
|d%11,b (λ)| − ε (1 + ε)

∫ S

−S
|d%12,b (λ)|

− ε (1 + ε)
∫ S

−S
|d%21,b (λ)|+ ε2

∫ S

−S
|d%22,b (λ)|

> (1− ε)2 (%11,b (S)− %11,b (−S))− 2ε (1 + ε)
S∨
−S
{%12,b (λ)} .

Since

(4.10)
S∨
−S
{%12,b (λ)} ≤ 1

2 [%11,b (S)− %11,b (−S) + %22,b (S)− %22,b (−S)] ,

we obtain ∫ r

0
f 2
r (t) dα(t)

>
(
ε2 − 2ε+ 1

)
{%11,b (S)− %11,b (−S)}

− ε (1 + ε) {%11,b (S)− %11,b (−S) + %22,b (S)− %22,b (−S)}
= (1− 3ε) {%11,b (S)− %11,b (−S)} − ε (1 + ε) {%22,b (S)− %22,b (−S)} .(4.11)

Putting j = 2 in (4.9), we see that∫ r

0
|Tαfr (t)|2 dα(t) ≥ (1− 3ε) {%22,b (S)− %22,b (−S)}

− ε (1 + ε) {%11,b (S)− %11,b (−S)} .(4.12)
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If we add the inequalities (4.11) and (4.12), then we deduce that∫ r

0
f 2
r (t) dα(t) +

∫ r

0
|Tαfr (t)|2 dα(t)

≥ (2ε− 1)2 (%11,b (S)− %11,b (−S) + %22,b (S)− %22,b (−S)).
If we choose ε > 0 such that 1− 4ε− ε2 > 0, then we have the assertion of the lemma
for the functions %11,b (λ) and %22,b (λ) relying on their monotonicity. From (4.10), we
have the assertion of the lemma for the function %12,b (λ).

Let % be any non-decreasing function on −∞ < λ < ∞. Denote by L2
% (R) the

Hilbert space of all functions f : R → R which are measurable with respect to the
Lebesque-Stieltjes measure defined by % and such that∫ ∞

−∞
f 2 (λ) d% (λ) <∞,

with the inner product

(f, g)% :=
∫ ∞
−∞

f (λ) g (λ) d% (λ) .

The main results of this paper are the following three theorems.

Theorem 4.1. Let f is a real-valued function and f ∈ L2
α(R). Then there exist

monotonic functions %11 (λ) and %22 (λ) which are bounded over every finite interval,
and a function %12 (λ) which is of bounded variation over every finite interval with the
property ∫ ∞

−∞
f 2 (t) dα(t) =

∫ ∞
−∞

2∑
i,j=1

Fi (λ)Fj (λ) d%ij (λ) ,

where
Fi (λ) = lim

b→∞

∫ b

−b
f (t) θi (t, λ) dα(t).

We note that the matrix-valued function % = (%ij)2
i,j=1 (%12 = %21) is called a spectral

function for (3.1).
Proof. Assume that the real-valued function fn (t) satisfies the following conditions.

1) fn (t) vanishes outside the interval [−n, n] , where n < b.
2) The functions fn (t) and Tαfn (t) are continuous.
If we apply the Parseval equality to fn (t), we get

(4.13)
∫ n

−n
f 2
n (t) dα(t) =

∞∑
k=1

{∫ b

−b
fn (t) yk (t) dα(t)

}2

.

Then, by integrating by parts, we obtain∫ n

−n
fn(t)yk(t)dα(t) = 1

λk

∫ b

−b
fn(t)

[
−T 2

αyk(t) + v(t)yk(t)
]
dα(t),

= 1
λk

∫ b

−b

[
−T 2

αfn(t) + v(t)fn(t)
]
yk(t)dα(t).
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Thus we have ∑
|λk|≥µ

{∫ b

−b
fn (t) yk (t) dα(t)

}2

≤ 1
µ2

∑
|λk|≥µ

{∫ b

−b

[
−T 2

αfξ (t) + v (t) fn (t)
]
yk (t) dα(t)

}2

≤ 1
µ2

∞∑
k=1

{∫ b

−b

[
−T 2

αfn (t) + v (t) fn (t)
]
yk (t) dα(t)

}2

= 1
µ2

∫ n

−n

[
−T 2

αfn (t) + v (t) fn (t)
]2
dα(t).

Using (4.13), we conclude that∣∣∣∣∣∣
∫ n

−n
fn (t) yk (t) dα(t)−

∑
−µ≤λk≤µ

{∫ b

−b
fn (t) yk (t) dα(t)

}2
∣∣∣∣∣∣

≤ 1
µ2

∫ n

−n

[
−T 2

αfn (t) + v (t) fn (t)
]2
dα(t).

Furthermore, we have
∑

−µ≤λk≤µ

{∫ b

−b
fn (t) yk (t) dα(t)

}2

=
∑

−µ≤λk≤µ

{∫ b

−b
fn (t) {cnθ1 (t, λk) + dnθ2 (t, λk)} dα(t)

}2

=
∫ µ

−µ

2∑
i,j=1

Fin (λ)Fjn (λ) d%ij,b (λ) ,

where
Fin (λ) =

∫ b

−b
fn (t) θi (t, λ) dα(t), i = 1, 2.

Consequently, we get∣∣∣∣∣∣
∫ n

−n
f 2
n (t) dα(t)−

∫ µ

−µ

2∑
i,j=1

Fin (λ)Fjn (λ) d%ij,b (λ)

∣∣∣∣∣∣(4.14)

≤ 1
µ2

∫ n

−n

[
−T 2

αfn (t) + v (t) fn (t)
]2
dα(t).

By Lemma 4.1 and Theorems 2.3 and 2.4, we can find sequences {−bk} and {bk}
(bk →∞) such that the function %ij,bk (λ) converges to a monotone function %ij (λ) .
Passing to the limit with respect to {−bk} and {bk} in (4.14), we have∣∣∣∣∣∣

∫ n

−n
f 2
n (t) dα(t)−

∫ µ

−µ

2∑
i,j=1

Fin (λ)Fjn (λ) d%ij (λ)

∣∣∣∣∣∣
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≤ 1
µ2

∫ n

−n

[
−T 2

αfn (t) + v (t) fn (t)
]2
dα(t).

As µ→∞, we get∫ n

−n
f 2
n (t) dα(t) =

∫ ∞
−∞

2∑
i,j=1

Fin (λ)Fjn (λ) d%ij (λ) .

Let f (·) ∈ L2
α(R). Choose functions {fξ (t)} satisfying the conditions 1)–2) and such

that
lim
ξ→∞

∫ ∞
−∞

(f (t)− fξ (t))2 dα(t) = 0.

Let
Fiξ (λ) =

∫ ∞
−∞

fξ (t) θi (t, λ) dα(t), i = 1, 2.

Then we have ∫ ∞
−∞

f 2
ξ (t) dα(t) =

∫ ∞
−∞

2∑
i,j=1

Fiξ (λ)Fjξ (λ) d%ij (λ) .

Since ∫ ∞
−∞

(fξ1 (t)− fξ2 (t))2 dα(t)→ 0 as ξ1, ξ2 →∞,

we have ∫ ∞
−∞

2∑
i=1

(Fiξ1 (λ)Fjξ1 (λ)− Fiξ2 (λ)Fjξ2 (λ)) d%ij (λ)

=
∫ ∞
−∞

(fξ1 (t)− fξ2 (t))2 dα(t)→ 0,

as ξ1, ξ2 →∞. Therefore, there is a limit function Fi, i = 1, 2, that satisfies∫ ∞
−∞

f 2 (t) dα(t) =
∫ ∞
−∞

2∑
i,j=1

Fi (λ)Fj (λ) d%ij (λ) ,

by the completeness of the space L2
% (R) .

Now we will show that the sequence (Kiξ) defined by

Kiξ (λ) =
∫ ξ

−ξ
f (t) θi (t, λ) dα(t), i = 1, 2,

converges as ξ →∞ to Fi(λ), i = 1, 2, in the metric of space L2
% (R). Let g be another

function in L2
α(R). By a similar argument, Gi (λ), i = 1, 2, be defined by g. It is

obvious that∫ ∞
0

(f (t)− g (t))2 dα(t) =
∫ ∞
−∞

2∑
i,j=1
{(Fi (λ)−Gi (λ)) (Fj (λ)−Gj (λ))} d%ij (λ) .

Let
g (t) =

{
f (t) , t ∈ [−ξ, ξ] ,
0, otherwise.
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Then we have ∫ ∞
−∞

2∑
i,j=1
{(Fi (λ)−Kiξ (λ)) (Fj (λ)−Kiξ (λ))} d%ij (λ)

=
∫ −ξ
−∞

f 2 (t) dα(t) +
∫ ∞
ξ

f 2 (t) dα(t)→ 0, ξ →∞,

which proves that (Kξ) converges to F in L2
% (R) as ξ →∞. �

Theorem 4.2. Suppose that the real-valued functions f (·) and g (·) are in L2
α(R),

and Fi (λ) and Gi (λ), i = 1, 2, are their Fourier transforms. Then we have∫ ∞
−∞

f (t) g (t) dα(t) =
∫ ∞
−∞

2∑
i,j=1

Fi (λ)Gj (λ) d%ij (λ) ,

which is called the generalized Parseval equality.

Proof. It is clear that Fi ∓Gi, i = 1, 2, are transforms of f ∓ g. Therefore, we have∫ ∞
−∞

(f (t) + g (t))2 dα(t) =
∫ ∞
−∞

2∑
i,j=1

(Fi (λ) +Gi (λ)) (Fj (λ) +Gj (λ)) d%ij (λ) ,

∫ ∞
−∞

(f (t)− g (t))2 dα(t) =
∫ ∞
−∞

2∑
i,j=1

(Fi (λ)−Gi (λ)) (Fj (λ)−Gj (λ)) d%ij (λ) .

Subtracting one of these equalities from the other one, we get the desired result. �

Theorem 4.3. Let f be a real-valued function and f ∈ L2
α(R). Then, the integrals∫ ∞

−∞
Fi (λ) θj (t, λ) d%ij (λ) , i, j = 1, 2,

converge in L2
α(R). Consequently, we have

f (t) =
∫ ∞
−∞

2∑
i,j=1

Fi (λ) θj (t, λ) d%ij (λ) ,

which is called the spectral expansion formula.

Proof. Take any function fξ ∈ L2
α(R) and any positive number ξ, and set

fξ (t) =
∫ ξ

−ξ

2∑
i,j=1

Fi (λ) θj (t, λ) d%ij (λ) .

Let g (·) ∈ L2
α(R) be a real-valued function which equals zero outside the finite interval

[−τ, τ ] , where τ > 0. Thus, we obtain∫ τ

−τ
fξ (t) g (t) dα(t)

=
∫ τ

−τ

∫ ξ

−ξ

2∑
i,j=1

Fi (λ) θj (t, λ) d%ij (λ)
 g (t) dα(t)
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=
∫ ξ

−ξ

2∑
i,j=1

Fi (λ)
{∫ −τ
−τ

g (t) θj (t, λ) dα(t)
}
d%ij (λ)

=
∫ ξ

−ξ

2∑
i,j=1

Fi (λ)Gj (λ) d%ij (λ) .(4.15)

From Theorem 4.2, we get

(4.16)
∫ ∞
−∞

f (t) g (t) dα(t) =
∫ ∞
−∞

2∑
i,j=1

Fi (λ)Gj (λ) d%ij (λ) .

By (4.15) and, (4.16) we have∫ ∞
−∞

(f (t)− fξ (t)) g (t) dα(t) =
∫
|λ|>ξ

2∑
i,j=1

Fi (λ)Gj (λ) dαij (λ) .

If we apply this equality to the function

g (t) =
{
f (t)− fξ (t) , t ∈ [−ξ, ξ] ,
0, otherwise,

then we get ∫ ∞
−∞

(f (t)− fξ (t))2 dα(t) ≤
2∑

i,j=1

∫
|λ|>ξ

Fi (λ)Fj (λ) d%ij (λ) .

Letting ξ →∞ yields the expansion result. �
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