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LOGARITHMICALLY COMPLETE MONOTONICITY OF
RECIPROCAL ARCTAN FUNCTION

VLADIMIR JOVANOVIĆ1 AND MILANKA TREML1

Abstract. We prove the conjecture stated in F. Qi and R. Agarwal, On complete
monotonicity for several classes of functions related to ratios of gamma functions,
J. Inequal. Appl. (2019), that the function 1/ arctan is logarithmically completely
monotonic on (0, ∞), but not a Stieltjes transform.

1. Introduction

By a completely monotonic function (shortly CM) we mean here an infinitely
differentiable function f : (0, ∞) → R, such that

(−1)nf (n) ≥ 0, n = 0, 1, 2, . . .

If f ′ is completely monotonic and f ≥ 0, then we call f a Bernstein function. Here
we are mostly interested in logarithmically completely monotonic functions, that is,
infinitely differentiable functions f : (0, ∞) → (0, ∞) with the property

(−1)n(log f)(n) ≥ 0, n = 1, 2, 3, . . .

A basic fact concerning CM - functions is the Bernstein theorem: a function f is CM
if and only if there exists a non-decreasing function α on (0, ∞) satisfying

f(x) =
∫ ∞

0
e−xtdα(t),

for all x > 0 (see [9, p. 161]). In some occasions it has been proven a stronger property
which leads to complete monotonicity of a function f , namely that there exist a ≥ 0
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and a non-negative Borel measure µ on [0, ∞) for which the equality

f(x) = a +
∫ ∞

0

dµ(t)
x + t

holds for x > 0, where the measure µ fulfills the condition∫ ∞

0

dµ(t)
1 + t

< ∞.

Such functions are called Stieltjes transforms. We recall that all Stieltjes transforms
are logarithmically completely monotonic (see [2] and further generalizations [3]), and
the latter are CM (see [5], but also [7] and [8]).

In [6] the authors set the conjecture that the function f(x) = 1
arctan x

is logarithmi-
cally completely monotonic on (0, ∞), but not a Stieltjes transform. The aim of this
paper is to justify these assertions. We will do it in the next section.

2. Formulations and Proofs

Theorem 2.1. The function f(x) = 1
arctan x

is logarithmically completely monotonic
on (0, ∞).

The idea of the proof of Theorem 2.1 is based on the Remark 1 in [1], where
the authors suggest employing the residue theorem in an attempt to obtain integral
representations of functions under consideration.

Proof. It suffices to prove that

g(x) = −(log f(x))′ = 1
(x2 + 1) arctan x

is CM on (0, ∞). In what follows we always assume that log denotes the principle
value of logarithm, i.e., log z = ln |z| + i arg z, with arg z ∈ (−π, π].

Let us consider the integral
∫

ΓR,r

G(z) dz, over the ”keyhole“ contour ΓR,r given in
Figure 1, where

G(z) = z + 1
z(z − z0) log z

and z0 = i−x
i+x

for x > 0.
We assume R > 1 and r < 1. Note that |z0| = 1 and that 1, z0 are the only

singularities of G lying inside ΓR,r. From the residue theorem, we have∫
ΓR,r

G(z) dz = 2πi(Res(G(z); z0) + Res(G(z); 1)).

Since z0 is a first-order pole, it follows

Res(G(z); z0) = 1 + z0

z0 log z0
=

1 + i−x
i+x

i−x
i+x

log i−x
i+x

= 2i

(i − x)2i arctan x
= − (i + x)

(x2 + 1) arctan x
,
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Figure 1. Keyhole contour ΓR,r

where we used the fact that arctan x = 1
2i

log 1+ix
1−ix

, for x > 0. Similarly,

Res(G(z); 1) = lim
z→1

(z − 1) 1 + z

z(z − z0) log z
= 2

1 − z0
= 2

1 − i−x
i+x

= i + x

x
,

whence,

(2.1) g(x) = 1
x

− 1
2πi(x + i)

∫
ΓR,r

G(z) dz.

Now, it remains to calculate the integral
∫

ΓR,r
G(z) dz. In order to accomplish it, we

start from the relation

(2.2)
∫

ΓR,r

G(z) dz =
∫

ΓR

G(z) dz +
∫

Γr

G(z) dz +
∫

Γ+
R,r

G(z) dz +
∫

Γ−
R,r

G(z) dz.

The first two integrals vanish as R → ∞ and r → 0+. It follows from the estimates∣∣∣∣∫
ΓR

G(z) dz
∣∣∣∣ ≤ 2Rπ max

|z|=R

|z + 1|
|z|| log z||z − z0|

≤ 2π
R + 1

(ln R − 2π)(R − 1)
and ∣∣∣∣∫

Γr

G(z) dz

∣∣∣∣ ≤ 2rπ max
|z|=r

|z + 1|
|z|| log z||z − z0|

≤ 2π
1 + r

(− ln r − 2π)(1 − r) .

We also have for t < 0

lim
z→t

ℑz>0

G(z) = t + 1
t(ln(−t) + πi)(t − z0)

= G+(t)



108 V. JOVANOVIĆ AND M. TREML

and
lim
z→t

ℑz<0

G(z) = t + 1
t(ln(−t) − πi)(t − z0)

= G−(t).

Consequently,

(2.3)
∫

Γ+
R,r

G(z) dz +
∫

Γ−
R,r

G(z) dz =
∫ −r

−R
[G+(t) − G−(t)] dt.

Let us denote I = lim
R→∞
r→0+

∫
ΓR,r

G(z) dz. From (2.2) and (2.3) we obtain

I =
∫ 0

−∞
[G+(t) − G−(t)] dt

=
∫ 0

−∞

2πi(t + 1) dt

t(log2(−t) + π2)(t − z0)

= 2πi
∫ ∞

0

(1 − t) dt

t(log2 t + π2)(t + z0)
.

Using z0 = i−x
i+x

, we have

I =
∫ ∞

0

2πi(1 − t) dt

t(log2 t + π2)(t + i−x
i+x

)

=
∫ ∞

0

2πi(i + x)(1 − t) dt

t(log2 t + π2)(x(t − 1) + i(t + 1))

= −2πi(i + x)
∫ ∞

0

((1 − t)2x + i(1 − t2)) dt

t(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.

Note that (2.1) implies

(2.4) g(x) = 1
x

− 1
2πi(x + i) I

and since 1
2πi(x + i)I is real, we conclude that

∫ ∞

0

(1 − t2) dt

t(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
= 0.

Therefore, from (2.4), it follows

(2.5) g(x) = 1
x

+
∫ ∞

0

(1 − t)2x dt

t(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.

Employing
1
x

=
∫ ∞

0

dt

xt(log2 t + π2)
,

we get

g(x) =
∫ ∞

0

(2(1 − t)2x + (1 + t)2) dt

xt(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.
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The substitution t 7→ 1
t

implies∫ 1

0

(2(1 − t)2x + (1 + t)2) dt

xt(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
=
∫ ∞

1

(2(1 − t)2x + (1 + t)2) dt

xt(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.

Hence,

(2.6) g(x) = 2
∫ 1

0

(2(1 − t)2x + (1 + t)2) dt

xt(x2(1 − t)2 + (1 + t)2)(log2 t + π2)
.

For a, b, x > 0 it is
2a2x2 + b2

x(a2x2 + b2) = 1
x

+ 1
2

(
1

x + bi
a

+ 1
x − bi

a

)
and using

1
x

=
∫ ∞

0
e−xs ds,

1
x + bi

a

=
∫ ∞

0
e−xse− bi

a
s ds,

1
x − bi

a

=
∫ ∞

0
e−xse

bi
a

s ds,

one obtains
2a2x2 + b2

x(a2x2 + b2) =
∫ ∞

0
e−xs

(
1 + cos bs

a

)
ds.

Setting a = 1 − t and b = 1 + t yields
2(1 − t)2x + (1 + t)2

x(x2(1 − t)2 + (1 + t)2) =
∫ ∞

0
e−xs

(
1 + cos 1 + t

1 − t
s
)

ds.

From (2.6), we have

g(x) = 2
∫ 1

0

(∫ ∞

0

e−xs(1 + cos 1+t
1−t

s) ds

t(ln2 t + π2)

)
dt,

and, finally, after interchanging integration order, we obtain

(2.7) g(x) =
∫ ∞

0

(∫ 1

0

2(1 + cos 1+t
1−t

s) dt

t(ln2 t + π2)

)
e−xs ds.

Now, it is evident that (2.7) implies complete monotonicity of g. □

Theorem 2.2. The function f(x) = 1
arctan x

is not a Stieltjes transform on (0, ∞).

For the proof of this theorem, we the use following result on Stieltjes transforms
from [4].

Proposition 2.1. If f ̸= 0 is a Stieltjes transform, then 1
f

is a Bernstein function.

Proof of Theorem 2.2. The function h(x) = 1
f(x) = arctan x is not a Bernstein func-

tion, since

h(3)(x) = −2 3x2 − 1
(1 + x2)3

changes its sign on (0, ∞). Therefore, according to Proposition 2.1, f is not a Stieltjes
transform. □
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