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A NEW PINCHING FOR CLOSED 3-DIMENSIONAL
HYPERSURFACES

S. C. DE ALMEIDA1, F. G. B. BRITO2, M. SCHERFNER3, AND S. WEISS4

Abstract. We will give a new pinching for closed oriented 3-dimensional hyper-
surfaces immersed in a not necessarily complete space of constant curvature, where
we always assume that the hypersurfaces have constant mean curvature H and
constant scalar curvature κ. The given assumptions indicate that our result touches
the setting of the Chern conjecture for isoparametric hypersurfaces in spheres.

1. Introduction

Let M be a closed oriented 3-dimensional hypersurface with principal curvatures
k1, k2, k3 immersed in a space of constant curvature c. In this note we will assume
that M has constant mean curvature H and constant scalar curvature κ, given by

(1.1)

 3H = k1 + k2 + k3,

3κ = 3c+ k1k2 + k1k3 + k2k3.

The aim of this paper is to establish the following result.

Theorem 1.1. Let M be a closed oriented 3-dimensional hypersurface with distinct
principal curvatures immersed in a not necessarily complete space of constant curvature
c. Suppose in addition that M has constant mean curvature H and constant scalar
curvature κ. If

6α(H) = −2c−
|H|

(
7|H|+

√
49H2 + 48c

)
3

then M satisfies one of the following conditions:
a) α(H) < κ < 0 and M is not isoparametric;
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b) κ = 0 and M is isoparametric.

For an important space of constant curvature - the sphere - our result is related to
Chern conjecture for isoparametric hypersurfaces in spheres which can be stated as
follows.
Let M be a closed, minimally immersed hypersurface of the (n + 1)-dimensional

sphere Sn+1 with constant scalar curvature. Then M is isoparametric.
It was originally proposed in a less strong version by Chern in [4] and Chern, do

Carmo and Kobayashi in [5], in 1968 and 1970 respectively. So far, no proof for
the conjecture has been found, although partial results exist in particular for low
dimensions and with additional conditions for the curvature functions of M . Its
original version relates to the following theorem, first proved by Simons in [14]:

Theorem 1.2. Let M ⊂ Sn+1 be a closed, minimally immersed hypersurface and S
the squared norm of its second fundamental form. Then∫

M
(S − n)S ≥ 0.

In particular, for S ≤ n, one has either S = 0 or S = n identically on M .

Note that since M is minimally immersed S is constant if and only if the scalar
curvature κ is constant. In this case it follows that S = 0 or S ≥ n, which led Chern
to propose the following
Conjecture. Consider closed minimal hypersurfaces M ⊂ Sn+1 with constant scalar
curvature κ. Then for each n the set of all possible values for κ (or equivalently S) is
discrete.

The only known examples for minimal hypersurfaces with constant scalar curvature
in Sn+1 are isoparametric, i.e. all of their principal curvature functions are constant.
From the classification of isoparametric hypersurfaces in spheres, given by Münzner
in [10], one obtains that S equals (g− 1)n, where g is the number of pairwise distinct
principal curvatures and can only take the values 1, 2, 3, 4 or 6, which establishes
the conjecture in this case. Based on this, Verstraelen, Montiel, Ros and Urbano first
formulated the stronger version of the conjecture given initially (see [15]), most of the
later results refer to this version.

The first related partial result was achieved by Peng and Terng [11].

Theorem 1.3. For every n ≥ 3 there exists a maximal C(n) with the following
property: Let M ⊂ Sn+1 be a closed minimal hypersurface with constant S > n. Then
it follows that S ≥ n+ C(n) and one has C(3) = 3, C(n) ≥ 1

12n
.

The originally shown inequality has since been improved considerably by Yang and
Cheng (see [16–18]) to

C(n) ≥ 26
61n−

16
61 >

1
3n
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and to C(n) ≥ 2n
3 under the additional assumption that the sum of cubes of the

principal curvatures f3 is constant. For further details, we refer to Scherfner, Yau an
Weiss [13].

We would like to point out that our result - even if strongly connected to the Chern
conjecture - is not restricted to the special case of the sphere as the considered space
of constant curvature. The proof of Theorem 1.1 follows.

2. Notation and Preliminaries

Let x : M → W be an isometric immersion of a closed oriented 3-dimensional
hypersurface M in a not necessarily complete space of constant curvature c. Choose
a unit normal vector field ν along x, and denote by h the second fundamental form
associated to ν. We will always assume that M has principal curvatures k1, k2 and k3
satisfying at every point of M the condition

k1 > k2 > k3.

At each p ∈ M , they are the eigenvalues of the the linear map L : TpM → TpM
associated to the second fundamental form h. From now on we will assume that M
has constant mean curvature H and constant scalar curvature κ. They are defined by 3H = k1 + k2 + k3,

3κ = 3c+ k1k2 + k1k3 + k2k3.

Note that, up to a constant, κ is the trace of the Ricci tensor with respect to the
Riemannian metric. In our case,

κ = c+ (9H2 − S)/6,
where S = k2

1 + k2
2 + k2

3 is the square of the length of the second fundamental form h.
Since H and κ are constant, it follows that S is also a constant function.
Remark. It is known that the 3-dimensional Cartan hypersurface M ⊂ S4 has
constant principal cuvatures k1 =

√
3, k2 = 0 and k3 = −

√
3. Evidently, κ = 0

and k1 > k2 > k3. This is also true for each hypersurface in Cartan’s isoparametric
family (see [3]). We would like to point out that there are also infinitely many non-
isoparametric examples of minimal hypersurfaces in S4 with three pairwise distinct
principal curvatures k1 > k2 = 0 > k3 at each point. They can be obtained by
taking the boundary of a tube of certain minimal surfaces of S4 (see [1, 12]). The
general case of minimal hypersurfaces with k2 = 0 were also studied by T. Hasanis,
A. Savas-Halilaj and T. Vlachos [7–9].

Let ϕ be the traceless second fundamental form of M , given by

ϕ = Hg − h,

where g is the Riemannian metric of M . We will denote by Φ the tensor field of
type (1,1) corresponding to ϕ via g. Its eigenvalues are given by µi = H − ki, where
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i = 1, 2, 3. Note that for some constant T > 0

|Φ|2 = trace(Φ2) =
∑

i

µ2
i = S − 3H2 = 6T 2.

We set

(2.1)

 a = ϕ/T,

A = Φ/T.

Note that A is the tensor field of type (1,1) corresponding to a via g. It satisfies the
following conditions

(2.2)


traceA = 0,
traceA2 = 6,
traceA3 = f,

where f : M → R is a C∞ function. We set I = {1, 2, 3} and denote by λi : M → R
the smooth functions defined by

λi = (H − ki)/T.

They are the eigenvalues of A and satisfies the following condition

λ1 < λ2 < λ3.

Let σ : I → I be the permutation given by σ(1) = 2, σ(2) = 3, σ(3) = 1. For each
i ∈ I we define ci = λi′ − λi′′ , where i′ = σ(i) and i′′ = σ(i′). We have

(2.3)
∑
i∈I

ci = 0,
∑
i∈I

c2
i = 18

and

(2.4)
∏
i∈I

c2
i = 3(62 − f 2) > 0.

Now we will take a look at the structure equations of M . From now on, the volume
form of M will be denoted by dM .

Definition 2.1. We say that (U, ω) is admissible if
i) U is an open subset of Y ;
ii) ω = (ω1, ω2, ω3) is a smooth orthonormal coframe field on U ;
iii) ω1 ∧ ω2 ∧ ω3 = dM on U ;
iv) a = ∑

i∈I λiωi ⊗ ωi.

Suppose (U, ω) is admissible. As is well known, there are smooth 1-forms ωij on U
uniquely determined by the equations

(2.5) dωi = −
3∑

j=1
ωij ∧ ωj, ωij + ωji = 0, i, j ∈ I.
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As in [2] there is one and only one well defined 2-form ψ on M such that if (U, ω)
is admissible then
(2.6) ψ =

∑
i<j

ωij ∧ ∗(ωi ∧ ωj).

In equation (2.6), we use the Hodge star operator (∗) to define the 2-form ψ. The
same computation as in [2] shows that

(2.7) dψ =
(

3κ+ |df |
2

9γ2

)
dM.

Here γ = c1c2c3. The covariant derivative of the tensor field a = ∑
i,j∈I aij ωi ⊗ ωj is

given by
(2.8) ∇a =

∑
i,j,k

aijk ωi ⊗ ωj ⊗ ωk,

where ∑
k

aijk ωk = daij −
∑
m

aimωmj −
∑
m

amjωmi.

The covariant derivatives aijk are symmetric in any of their indices. Observe that
in our case aij = λiδij. Therefore,

(2.9) dλi =
∑
k∈I

aiik ωk, i ∈ I.

On the other hand we know that each pair (x, λi(x)) ∈M ×R satisfies the polyno-
mial equation P (x, λ) = 0, where

P (x, λ) =
3∏

k=1
(λ− λk) = λ3 − 3λ− f(x)

3 .

Note that for each i ∈ I,
P (x, λ) = (λ− λi)(λ− λi′)(λ− λi′′).

Differentiating the equation P (x, λi(x)) = 0, we obtain

(λi − λi′)(λi − λi′′)dλi −
1
3df = 0.

This gives the following identities
(2.10) cidf = −3γ dλi.

We let fi, i ∈ I be the differentiable functions given by
df =

∑
i∈I

fiωi.

It follows from equations (2.9) and (2.10) that
(2.11) aiik = −cifk/(3γ).
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Notice that
|∇a|2 − 6a2

123 = A1 + A2 + A3,

where

(2.12)


A1 = 3a2

331 + 3a2
221 + a2

111,

A2 = 3a2
332 + 3a2

112 + a2
222,

A3 = 3a2
223 + 3a2

113 + a2
333.

From equation (2.12), it follows that, for 1 ≤ i ≤ 3,
Ai = 3(a2

11i + a2
22i + a2

33i)− 2a2
iii.

Using (2.11) we get
9γ2Ai = 3(c2

1 + c2
2 + c2

3)f 2
i − 2c2

i f
2
i = (54− 2c2

i )f 2
i .

It is not difficult to see that c2
i = 12− 3λ2

i . Therefore,
9γ2Ai = (30 + 6λ2

i )f 2
i ≥ 30f 2

i .

From this, it follows that

(2.13) |df |2

9γ2 ≤
|∇a|2

30 = |∇ϕ|
2

30T 2 = |∇ϕ|
2

5|Φ|2 .

In equation (2.13), we use the fact that a = ϕ/T and T = |Φ|/
√

6. It is well known
that (see, e.g., [6])

1
2∆|Φ|2 = |∇ϕ|2 − |Φ|4 + 3

(
c+H2

)
|Φ|2 − 3H traceΦ3.

By definition, A = Φ/T , then

3 traceΦ3 = 3T 3f =
√

3/2 |Φ|3f/6.

Since |Φ|2 is a constant, it follows that

|∇ϕ|2 = |Φ|4 − 3
(
c+H2

)
|Φ|2 +

√
3/2 |Φ|3Hf/6.

We know that |f | < 6. Therefore,
|∇ϕ|2

|Φ|2
< |Φ|2 − 3

(
c+H2

)
+
√

3/2 |H||Φ|.

In our case κ = c+H2 − |Φ|2/6. Using (2.13) we get

3κ+ |df |
2

9γ2 ≤ 3(c+H2)− |Φ|
2

2 + |∇ϕ|
2

5|Φ|2 .

An easy computation gives

(2.14) 3κ+ |df |
2

9γ2 <
−3|Φ|2 +

√
6 |H||Φ|+ 24 (c+H2)

10 .
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3. Proof of Theorem 1.1

Proof. Applying Stokes’s theorem to equation (2.7) we get

(3.1)
∫

M

(
3κ+ |df |

2

9γ2

)
dM = 0.

As a consequence of (3.1) we see that if κ ≥ 0, then
|df |2 = κ = 0.

In this case κ = 0 and M isoparametric. We will now consider the case κ < 0. From
(2.14) and (3.1) we see that

(3.2) 3|Φ|2 −
√

6 |H| |Φ| − 24(c+H2) < 0.
It follows that |Φ| < r where r is the positive real root of the polynomial

QH(z) = 3z2 −
√

6 |H| z − 24(c+H2).
Note that

r = |H|+
√

49H2 + 48c√
6

.

Since 6κ = 6(c+H2)− |Φ|2, then

6κ > 6(c+H2)− r2 = −2c− |H|3
(
7|H|+

√
49H2 + 48c

)
.

From this we see that α(H) < κ < 0, where

α(H) = 1
6

[
−2c− |H|3

(
7|H|+

√
49H2 + 48c

)]
.

This completes the proof of the theorem. �

Corollary 3.1. Let M be a closed oriented 3-dimensional hypersurface with distinct
principal curvatures minimally immersed in a not necessarily complete space of con-
stant curvature c. Suppose in addition that M has constant scalar curvature κ. Then

a) c > 0;
b) 0 ≥ κ > −c/3.

As a consequence, 6c ≤ S < 8c, where S is the square of the length of the second
fundamental form of M .

Proof. By assumption the mean curvature H of M is identically zero. Since H = 0,
it follows from Theorem 1.1, that

κ = c− S

6 ≤ 0.

If κ = 0, c = S/6. If κ < 0,

− c3 = α(H) < κ < 0.
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In both cases a) and b) obviously holds. As a consequence,

−2c < 6c− S ≤ 0.

It follows that 6c ≤ S < 8c. �
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