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THE CURVELET TRANSFORM ON FUNCTION SPACES

DREMA LHAMU1, SUNIL KUMAR SINGH2,∗, AWNIYA KUMAR3, AND C. P. PANDEY4

Abstract. In this paper, we delve into the comprehensive exploration of the con-
tinuous curvelet transform (CCT), an advanced iteration of the continuous wavelet
transform. Renowned for its applications in diverse mathematical realms such as
signal analysis, image processing, and seismic exploration, the CCT holds significant
promise. Our focus is on an in-depth examination of the CCT’s properties within
function spaces, i.e., in Sobolev spaces Hs(R2), W m,p(R2), the weighted Sobolev
space W m,p

κ (R2), the generalized Sobolev space Hω
w(R2), Besov space Bα,q

p (R2),
weighted Besov space Bα,q

p,κ (R2), Hardy space Hp(R2) and BMO(R2) space. Through
investigation, we uncover valuable insights into the continuity and boundedness of
the CCT within these function spaces.

1. Introduction

In higher dimensions, wavelets struggle to handle discontinuities along curves due
to poor orientation management. To address this limitation, Candés and Donoho
[1, 2] introduced the curvelet transform.

Curvelets are efficient tools for managing discontinuities along curves. The curvelet
transforms has been used in a variety of applications during the last two decades.
Starck et al. have shown applications of the CCT in image de-noising [3], astronomical
image representation [4], and color image enhancement [5], while Choi et al. [6] and
Nencini et al. have examined image fusion using the CCT [7]. Jero et al. accomplished
ECG steganography with the CCT [8]. Dong et al. studied image fusion methods
based on the CCT [9], whereas Singh et al. recently studied watermarking techniques
utilizing the CCT [10]. However, literature on the theoretical aspects of curvelet
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transforms in spaces like function spaces, Bochner spaces, and quaternion spaces has
been lacking.

Roopkumar and collaborators identified this research gap, extending the concept of
curvelet transforms to tempered Boehmians [11], Boehmians [12], tempered distribu-
tions [13], and studying curvelet transforms on periodic distributions [14]. Additionally,
Akila and Roopkumar explored the quaternionic version of curvelet transforms [15].
While the curvelet transform traditionally uses the Fourier transform for intermediate
calculations, associating the linear canonical transform with curvelet transforms has
been suggested to yield better results [16–18].

Recently, Khan [19] examined the properties of the linear canonical curvelet trans-
form in the quaternionic domain. In 2-D, the localization operator and wavelet
multipliers have been studied in the context of linear canonical curvelet transforms
by Catana et al. [20], while Starck et al. [21] explored curvelets on the sphere with
applications in astronomy. Similar studies for the second-generation curvelet trans-
form have been conducted by Chan et al. [22]. Sharma et al. [23] have shown that a
partial differential equation can be solved numerically by curvelet transforms.

Building upon this existing literature, we aim to address the following unanswered
problems.

• Can the concept of curvelet transform be extended to Sobolev spaces and weighted
Sobolev space?

• Can we extend the concept of curvelet transform to generalized Sobolev spaces?
• Furthermore, can we extend the concept of curvelet transform to Besov space,

Hardy space and BMO spaces?
These problems are essential for further study of the topological properties of the

functions or signals and the curvelet transforms. The discontinuous signals can be
approximated using mollifiers in these function spaces, and then their respective
applications can be examined. In this paper, we have addressed these problems and
obtained important inequalities.

This paper addresses questions on curvelet transforms through a structured ex-
ploration organized into four sections. Section 1 introduces curvelet transforms and
reviews relevant literature. Section 2 delves into generalized Sobolev spaces, enriching
the theoretical foundation. Furthermore, the curvelet transforms extended to Sobolev
and weighted Sobolev spaces, exploring continuity. In Section 3, the continuous exten-
sion of the curvelet transform to Besov space and weighted Besov space is discussed.
In Section 4 and 5, the continuity of curvelet transform in Hardy and BMO space
is discussed. Following that, Section 6 wraps up the work by summarizing major
findings and contributions. This systematic approach offers a clear understanding of
curvelet transforms in diverse mathematical contexts.
Definition 1.1 (The Fourier Transform). The Fourier transform of a function f ∈
L1(R2) is defined by

F (f)(ξ) = f̂(ξ) :=
∫
R2

f(t)e−i⟨t,ξ⟩dt.
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Definition 1.2 (The Continuous curvelet transform). Consider two functions W :
(0, +∞) → R and V : R → R supported in (0.5, 2) and (−1, 1), respectively, and
satisfying the following conditions:∫ 2

1/2
W 2(r) dr

r
=1,(1.1) ∫ 1

−1
V 2(t) dt =1.(1.2)

The functions W and V are called radial window and angular window respectively.
The conditions given in equations (1.1) and (1.2) are admissibility conditions for radial
and angular windows. A basic curvelet γa,0,0 γa,0,0 is defined by:

γ̂a,0,0(r, ω) = W (ar) V (ω/
√

a) a3/4, 0 < a < a0.

The family of curvelets is defined by
γa,b,θ(x) = γa,0,0(Rθ(x − b)),

where a is positive scaling parameter, θ ∈ [0, 2π) is rotation parameter and b ∈ R2

is translation parameter. For u ≡ (u1, u2) ∈ R2, the rotation operator Rθ(u) =
(u1 cos θ − u2 sin θ, u1 sin θ + u2 cos θ). The continuous curvelet transform (CCT) of a
function f ∈ L2(R2) is defined as follows [2]

(Γγf)(a, b, θ) = ⟨f, γa,b,θ⟩

=
∫
R2

f(t)γa,b,θ(t)dt, 0 < a < a0 < π2, b ∈ R2, θ ∈ [0, 2π).

Here, the choice of coarsest fixed scale a0 ≤ π2 is essential for derivation of reconstruc-
tion formula (see [12]).

Theorem 1.1. ([1, Theorem 1, p. 167]). For a function f ∈ L2(R2), with f̂(ξ) = 0
for all ξ < 2

a0
, the reconstruction formula is given by

f(x) =
∫

(Γγf)(a, b, θ) γa,b,θ
da

a3 db dθ,

which is valid for high frequency. Parseval formula for functions having high-frequency
is given by

∥f∥2
L2(R2) =

∫
|(Γγf)(a, b, θ)|2 da

a3 db dθ.

Theorem 1.2. If f ∈ L2(R2), then the following results hold.
(a) (Linearity) (Γγ(Af + Bg))(a, b, θ) = A(Γγf)(a, b, θ) + B(Γγg)(a, b, θ), where

A and B are scalars.
(b) (Shifting) (ΓγTcf)(a, b, θ) = (Γγf)(a, b-c, θ), where Tcf(t) = f(t-c), for t,c ∈

R2.

Example 1.1. For the Dirac delta function, we can find the following:
(a) (Γγδ)(a, b, θ) = γa,b,θ(0);



944 D. LHAMU, S. K. SINGH, A. KUMAR, AND C. P. PANDEY

(b) (ΓγTcδ)(a, b, θ) = γa,b,θ(c).

Example 1.2. The CCT of f(t) = 1 is γ̂a,b,θ(0).

2. The Continuous Curvelet Transform on Sobolev Space

Let us recall the basic definitions which are required for Sobolev space on R2.

Definition 2.1 ([24]). A distribution is a continuous linear functional defined on test
function space D(R2) := {ϕ ∈ C∞

K (R2) : ϕ(x) ∈ C}, where C∞
K (R2) denotes the space

of infinitely differentiable functions having compact support K. The collection of such
distributions form linear space and is denoted by D ′(R2). If for each multi-index α
and ϕj ∈ C∞(R2), the Dαϕj → 0 uniformly on every compact subset of R2, then the
sequence {ϕj}j∈N is said to be a convergent sequence on C∞(R2) with limit 0. The
space of such convergent sequences is denoted by E (R2). The collection of compactly
supported distributions is denote by E ′(R2).

Definition 2.2. Let ϕ ∈ C∞(R2) be a rapidly decreasing function with

γα,β(ϕ) = sup
x∈R2

|xαDβϕ(x)| < +∞ for all multi-indices α = (α1, α2) andβ = (β1, β2).

The collection of such functions ϕ is called Schwartz space and is denoted by S(R2).
The continuous linear functionals on S(R2) are tempered distributions and the space
of tempered distributions is denoted by S ′(R2).

Definition 2.3 (The Sobolev space Hs(R2)). The space containing all such tempered
distributions f , i.e., f ∈ S ′(R2) having property:(

1 + |η|2
)s/2

F {f} (η) ∈ L2(R2), for all s ∈ R,

is called Sobolev space and it is denoted by Hs(R2). The inner-product on Hs(R2) is
defined by

⟨f, g⟩Hs =
∫
R2

(1 + |η|2)s F {f} (η) F {g} (η) dξ.

The norm induced by above inner-product is given by

||f ||Hs =
(∫

R2
(1 + |η|2)s |F {f} (η)|2 dη

) 1
2

< +∞.

Let us recall the definition of generalized Sobolev space defined in [25,26].

Definition 2.4 (Generalized Sobolev space). The collection of continuous real-valued
functions ω on R2 satisfying the following conditions:

(i) 0 = ω(0) ≤ ω(ξ + η) ≤ ω(ξ) + ω(η);

(ii)
∫
R2

ω(ξ) dξ

(1 + |ξ|)3 < +∞;

(iii) a + b log(1 + |ξ|) ≤ ω(ξ), a ∈ R, b ∈ (0, +∞),
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is denoted by M .
The set Mc consists of all ω ∈ M such that ω(ξ) = σ(|ξ|), where σ concave on

[0, +∞).

Definition 2.5 ([27]). For ω ∈ Mc, the Bjorck-space Sω(R2) is the set of all functions
ϕ ∈ L1(R2) such that ϕ, ϕ̂ ∈ C∞ and for each multi-indices α and each non-negative
number λ

pα,λ(ϕ) = sup
x

eλω(x) |Dαϕ(x)| < +∞

and
πα,λ(ϕ) = sup

ξ
eλω(ξ)

∣∣∣Dαϕ̂(ξ)
∣∣∣ < +∞.

The dual of Sω is denoted by S ′
ω, the elements of which are called ultradistributions.

We may found its various properties in [25].

Now, we consider a continuous weight function w on R2 with the following properties.
There exist λ > 0 and C, D, E > 0, such that, for all η, ξ ∈ R2, t ∈ R, |t| < 1 and
ω ∈ Mc

w(ξ) ≤Ceλω(ξ),

w(ξ + η) <D (w(ξ) + w(η)) ,(2.1)
w(t ξ) <E w(ξ).

Definition 2.6 (Generalized Sobolev space Hω
w(R2) [28]). The generalized Sobolev

space Hω
w(R2) is defined as the set of all ultradistributions f ∈ S ′

ω such that

||f ||2Hω
w(R2) =

∫
R2

|f̂(ξ)|2w(ξ)dξ < +∞.

Theorem 2.1. Let γa,0,0 ∈ L1(R2)⋂L2(R2). Then, for fixed a > 0, the curvelet
transform

Γγ : Hω
w → Hω

w

is continuous and

||(Γγf)(a, ·, θ)||2Hω
w(R2) ≤ ||γa,0,0||2L1(R2) ||f ||2Hω

w(R2).

Proof. Since, |F ((Γγf) (a, ·, θ)) (ξ)|2 =
∣∣∣f̂(ξ)

∣∣∣2∣∣∣γ̂a,0,θ(ξ)
∣∣∣2. Therefore,

||(Γγf)(a, ·, θ)||2Hω
w(R2) =

∫
R2

∣∣∣F ((Γγf)(a, ·, θ)) (ξ)
∣∣∣2 w(ξ)dξ

=
∫
R2

∣∣∣f̂(ξ)
∣∣∣2∣∣∣γ̂a,0,θ(ξ))

∣∣∣2 w(ξ) dξ

≤ ||γa,0,0||2L1(R2)

∫
R2

∣∣∣f̂(ξ)
∣∣∣2 w(ξ) dξ

= ||γa,0,0||2L1(R2) ||f ||2Hω
w(R2). □
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Corollary 2.1. If γa,0,0, ϕa,0,0 ∈ L1(R2)⋂L2(R2) and f, g ∈ Hω
w(R2), then for fixed

a > 0, the following estimate holds
||(Γγf)(a, ·, θ) − (Γϕg)(a, ·, θ)||2Hω

w(R2) ≤ ||γa,0,0 − ϕa,0,0||2L1(R2) ||f ||2Hω
w(R2)

+ ||ϕa,0,0||2L1(R2) ||f − g||2Hω
w(R2).

Since, the spaces Hω
w(R2) reduce to Sobolev space Hs(R2) for weight function

w(ξ) = (1 + |ξ|2)s, s ∈ R. Therefore, we have the following result for space Hs(R2).

Theorem 2.2. Let γa,0,0 ∈ L1(R2)⋂L2(R2). If f ∈ S ′(R2), then, for fixed a > 0, the
curvelet transform

Γγ : Hs(R2) → Hs(R2)
is continuous and

||(Γγf)(a, ·, θ)||2Hs(R2) ≤ ||γa,0,0||2L1(R2)||f ||2Hs(R2).

Corollary 2.2. If ϕa,0,0, γa,0,0 ∈ L1(R2)⋂L2(R2), then for the curvelet transforms
(Γγf) and (Γϕg) with admissible and curvelets ϕa,0,0, γa,0,0 and f, g ∈ Hs(R2), s ∈ R,
the following estimate holds

||(Γγf)(a, ·, θ) − (Γϕg)(a, ·, θ)||Hs(R2) ≤ ||γa,0,0 − ϕa,0,0||L1(R2) ||f ||Hs(R2)

+ ||ϕa,0,0||L1(R2) ||f − g||Hs(R2).

Definition 2.7 (The Sobolev space W m,p(R2) [27]). Let 1 ≤ p ≤ ∞ and m ∈ N∪{0}.
The Sobolev space W m,p(R2) is defined by

W m,p(R2) =
{
f ∈ D ′(R2) : Dαf ∈ Lp(R2) for all |α| ≤ m

}
and equipped with the norm

||f ||W m,p(R2) =
( ∑

|α|≤m

||Dαf ||pLp(R2)

) 1
p

, for 1 ≤ p < +∞,

and ||f ||W m,∞ = sup|α|≤m ||Dαf ||L∞(R2), where α = (α1, α2), |α| = α1 + α2, and
α1, α2 are non-negative integers, and partial derivatives Dα =

(
∂

∂x1

)α1 ( ∂
∂x2

)α2 in
distributional sense.

Definition 2.8 (The weighted Lp space [29,30]). Let κ be a weight function, i.e., a
non-negative locally integrable function. For 1 ≤ p < +∞, the weighted Lp

κ(R2) space
is defined as the set of all measurable functions f on R2 such that

∥f∥Lp
κ(R2) =

(∫
R2

|f(x)|p κ(x)d2x
)1/p

< +∞.

Theorem 2.3 (Weighted Young’s Inequality [31]). Suppose κ be a weight function
for which there exists another weight function w such that
(2.2) κ(x + y) ≤ C w(x) κ(y), for all x,y ∈ R2,
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here C is a constant. Let f ∈ Lp
κ(R2), g ∈ L1

w1/p(R2), 1 < p < +∞. Then, we have
the following inequality

(2.3) ∥f ∗ g∥Lp
κ(R2) ≤ C ||f ||Lp

κ(R2) ||g||L1
w1/p

(R2).

Definition 2.9 (The weighted Sobolev space W m,p
κ (R2) [30]). Let m be a non-negative

integer and 1 ≤ p < +∞. The weighted Sobolev space W m,p
κ (R2) is defined as the

set of all f ∈ D ′(R2) with distributional derivatives Dαf ∈ Lp
κ(R2) for |α| ≤ m. The

norm of f in W m,p
κ (R2) is defined as

∥f∥W m,p
κ (R2) =

 ∑
|α|≤m

∥Dαf∥p
Lp

κ(R2)

1/p

.

Theorem 2.4. Suppose that κ, w are weight functions that satisfy (2.2). If γa,0,0 ∈
L1

w1/p(R2) ∩ L2(R2), then, for fixed a > 0, the curvelet transform

Γγ : W m,p
κ (R2) → W m,p

κ (R2)

is continuous and

||(Γγf)(a, ·, θ)||W m,p
κ (R2) =

 ∑
|α|≤m

||Dα
b (Γγf)(a, b, θ)||pLp

κ(R2)

 1
p

≤ C ||γa,0,0||L1
w1/p

(R2) ||f ||W m,p
κ (R2).

Proof. Since f ∈ W m,p
κ (R2), therefore, for all |α| ≤ m, Dαf ∈ Lp

κ(R2). Using
weighted Young’s inequality, we have

||Dα
b (Γγf)(a, b, θ)||pLp

κ(R2) = ||Dα
b (f(·) ∗ γa,0,θ(·))(b)||pLp

κ(R2)

= ||
(
γa,0,θ(·) ∗ Dα

b f(·)
)

(b) ||pLp
κ(R2)

≤ Cp ||γa,0,0||pL1
w1/p

(R2) ||Dα
b f ||pLp

κ(R2)

and hence,

||(Γγf)(a, ·, θ)||W m,p
κ (R2) =

 ∑
|α|≤m

||Dα
b (Γγf)(a, b, θ)||pLp

κ(R2)

 1
p

≤

 ∑
|α|≤m

Cp ||γa,0,0||pL1
w1/p

(R2) ||Dα
b f ||pLp

κ(R2)

 1
p

≤ C ||γa,0,0||L1
w1/p

(R2)

 ∑
|α|≤m

||Dα
b f ||pLp

κ(R2)

 1
p

= C ||γa,0,0||L1
w1/p

(R2) ||f ||W m,p
κ (R2). □
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Corollary 2.3. Suppose that κ, w are weight functions that satisfy (2.2). If
γa,0,0, ϕa,0,0 ∈ L1

w1/p(R2) ⋂L2(R2) and f, g ∈ W m,p
κ (R2), then, for fixed a > 0, the

following estimate holds

||(Γγf)(a, ·, θ) − (Γϕg)(a, ·, θ)||W m,p
κ (R2)

≤C
(

||γa,0,0 − ϕa,0,0||L1
w1/p

(R2) ||f ||W m,p
κ (R2) + ||ϕa,0,0||L1

w1/p
(R2) ||f − g||W m,p

κ (R2)

)
.

The space W m,p
κ (R2) reduces to Sobolev space W m,p(R2) for κ = 1. Hence, we have

the following result for W m,p(R2) space.

Theorem 2.5. Let γa,0,0 ∈ L1(R2) ∩ L2(R2). Then, for fixed a > 0, the curvelet
transform

Γγ : W m,p(R2) → W m,p(R2)

is a continuous map and

||(Γγf)(a, ·, θ)||W m,p(R2) =
 ∑

|α|≤m

||Dα
b (Γγf)(a, b, θ)||pLp(R2)

 1
p

≤ ||γa,0,0||L1(R2) ||f ||W m,p(R2).

3. Curvelet Transform on Besov space

Russian Mathematician, Oleg Vladimirovich Besov has defined a new Banach space
Bα,q

p with quasi-norm to study the regularity and smoothness of functions in 1961.
To commemorate ‘O. V. Besov’, the function space is known as Besov space. This
function space has many applications in study of PDEs, fluid dynamics and quantum
mechanics. Some existing works related to wavelet analysis in Besov space can be
found in [24,29,31–33].

Let us recall the definition of notions related to Besov space. The modulus of smooth-
ness for the function f ∈ Lp(R2) is defined by wp(f, h) = ∥f(· + h) − f(·)∥Lp(R2),
where 0 ̸= h ∈ R2.

Definition 3.1 (Besov space). For 1 ≤ p, q ≤ +∞ and α ∈ (0, 1), the Besov space
Bα,q

p (R2) is defined as

Bα,q
p (R2) =

{
f ∈ Lp(R2) :

∫
Rn

[ωp(f, h)]q dh
|h|2+αq

< +∞
}

,

for 1 ≤ p < +∞ and for q = +∞

Bα,∞
p (R2) =

{
f ∈ Lp(R2) : |h|−αωp(f, h) ∈ L∞(R2)

}
,



THE CURVELET TRANSFORM ON FUNCTION SPACES 949

where |h| is an Euclidean norm of h ∈ R2. The space Bα,q
p (R2) is Banach space with

norms

∥f∥α,q
p =∥f∥Lp(R2) +

(∫
Rn

[ωp(f, h)]q dh
|h|2+αq

) 1
q

, for q < +∞,

∥f∥α,∞
p =∥f∥Lp(R2) + ∥|h|−αωp(f, h)∥∞, for q = +∞.

For f ∈ Lp
κ(R2), the modulus of smoothness is defined as:

wp,κ(f, h) = ∥f(· + h) − f(·)∥Lp
κ(R2) ,

where κ is a weight function and h is non-zero element of R2.

Definition 3.2 (Weighted Besov space). For 1 ≤ p < +∞ and 1 ≤ q ≤ +∞, the
weighted Besov space Bα,q

p,κ (R2), 0 < α < 1, is defined as

Bα,q
p,κ (R2) =

{
f ∈ Lp

κ(R2) :
∫
R2

(wp,κ(f, h))q dh
|h|2+αq

< ∞
}

, for all 1 ≤ q < +∞,

and
Bα,∞

p,κ (R2) =
{
f ∈ Lp

κ(R2) : |h|−αwp,κ ∈ L∞
(
R2
)}

, for q = +∞.

It is easy to see that the space Bα,q
p,κ (R2), 1 ≤ q < +∞, is a Banach space associated

with the norm defined by

||f ||Bα,q
p,κ (R2) = ||f ||Lp

κ(R2) +
(∫

R2
(wp,κ(f, h))q dh

|h|2+αq

) 1
q

,

and if q = +∞,

||f ||Bα,∞
p,κ (R2) = ||f ||Lp

κ(R2) +
∥∥∥|h|−αwp,κ(f, h)

∥∥∥
∞

.

Theorem 3.1. Let γa,0,0 ∈ L1(R2)⋂L2(R2). If f ∈ Bα,q
p,κ (R2), then, for fixed a > 0,

the curvelet transform
Γγ : Bα,q

p,κ (R2) → Bα,q
p,κ (R2)

is continuous and

||(Γγf)(a, ·, θ)||Bα,q
p,κ (R2) ≤ ||γa,0,0||L1(R2)||f ||Bα,q

p,κ (R2).

Proof. By change of variable, we have

(Γγf)(a, b, θ) =
∫
R2

f(t)γa,0,0(Rθ(t − b))dt

=
∫
R2

f(u + b)γa,0,0(Rθu)du.
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Now, smoothness function for curvelet transform is given by:
ωp,κ(Γγf)(a, ·, θ), h)

=∥(Γγf)(a, · + h, θ) − (Γγf)(a, ·, θ)∥Lp
κ(R2)

=
(∫

R2

∣∣∣∣∫
R2

(f(u + b + h) − f(u + b)) γa,0,0(Rθu)du
∣∣∣∣p κ(x)db

) 1
p

≤
∫
R2

(∫
R2

∣∣∣(f(u + b + h) − f(u + b)) γa,0,0(Rθu)
∣∣∣p κ(x)db

) 1
p

du

=
∫
R2

∣∣∣γa,0,0(Rθu)
∣∣∣(∫

R2
|(f(u + b + h) − f(u + b))|p κ(x)db

) 1
p

du

≤∥γa,0,0∥L1(R2) ωp,κ(f, h).
Hence, for q < +∞, we have(∫

R2
[ωp(Γγf)(a, 0, θ), h)]q dh

|h|2+αq

) 1
q

≤ ∥γa,0,0∥L1(R2)∥f∥Bα,q
p,κ (R2). □

Corollary 3.1. If γa,0,0, ϕa,0,0 ∈ L1(R2)⋂L2(R2) and f, g ∈ Bα,q
p (R2), then for fixed

a > 0, the following estimate holds
||(Γγf)(a, ·, θ) − (Γϕg)(a, ·, θ)||2Bα,q

p,κ (R2) ≤ ||γa,0,0 − ϕa,0,0||2L1(R2) ||f ||2Bα,q
p,κ (R2)

+ ||ϕa,0,0||2L1(R2) ||f − g||2Bα,q
p,κ (R2).

For κ(x) = 1, the weighted Besov space reduces to the Besov space, yielding the
following theorem.

Theorem 3.2. Let γa,0,0 ∈ L1(R2)⋂L2(R2). If f ∈ Bα,q
p (R2), then, for fixed a > 0,

the curvelet transform
Γγ : Bα,q

p (R2) → Bα,q
p (R2)

is continuous and
||(Γγf)(a, ·, θ)||2Bα,q

p (R2) ≤ ||γa,0,0||2L1(R2)||f ||2Bα,q
p (R2).

Corollary 3.2. If γa,0,0, ϕa,0,0 ∈ L1(R2)⋂L2(R2) and f, g ∈ Bα,q
p (R2), then for fixed

a > 0, the following estimate holds
||(Γγf)(a, ·, θ) − (Γϕg)(a, ·, θ)||2Bα,q

p (R2) ≤ ||γa,0,0 − ϕa,0,0||2L1(R2) ||f ||2Bα,q
p (R2)

+ ||ϕa,0,0||2L1(R2) ||f − g||2Bα,q
p (R2).

4. Curvelet Transform on Hardy space

In the early 20th century, Hardy and Littlewood’s work on Hardy spaces was
primarily focused on understanding the properties of analytic functions and their
behavior on the boundary of the domain of analyticity. Their collaboration resulted
in the development of the classical Hardy spaces, Hp, which are defined as spaces of
analytic functions for which the p-norm of the function is finite on certain domains,
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such as the unit disk in the complex plane. This space has application in PDEs,
Harmonic analysis, function spaces and operator theory (see [30,34–36]).

Definition 4.1 (Hardy space). Hardy Space Hp(R2) is defined as the space of all
functions f ∈ Lp(R2) such that

(4.1) ∥f∥Hp(R2) =
(∫

R2
sup
t>0

|(f ∗ φt)(x)|pdx
) 1

p

,

where φt = t−nφ
(

x
t

)
, t > 0, x ∈ R2, and φ be a function in the Schwartz space such

that
∫
R2 φ(x)dx ̸= 0.

Theorem 4.1. Let γa,0,0 ∈ L1(R2)⋂L2(R2). If f ∈ Hp(R2), then, for fixed a > 0,
the curvelet transform

Γγ : Hp(R2) → Hp(R2)

is continuous and

||(Γγf)(a, ·, θ)||2Hp(R2) ≤ ||γa,0,0||2L1(R2)||f ||2Hp(R2).

Proof. Invoking change of variable in the definition of curvelet transform, we have

((Γγf)(a, ·, θ) ∗ φt)(b) =
∫
R2

γa,0,0(Rθu)
(∫

R2
f(u+b-x)φt(x)dx

)
du

=
∫
R2

γa,0,0(Rθu)(f ∗ φt)(u + b)du.

Therefore, the application of Minkowski inequality yields

∥(Γγf)(a, ·, θ)∥Hp =
(∫

R2
sup
t>0

|((Γγf)(a, ·, θ) ∗ φt)(b)|pdb
) 1

p

=
(∫

R2
sup
t>0

∣∣∣∣∫
R2

γa,0,0(Rθ(u))(f ∗ φt)(u + b)du
∣∣∣∣p db

) 1
p

≤
∫
R2

(
sup
t>0

∫
R2

∣∣∣γa,0,0(Rθ(u))(f ∗ φt)(u + b)
∣∣∣p db

) 1
p

du

=
∫
R2

|γa,0,0(Rθu)|
(∫

R2
sup
t>0

|(f ∗ φt)(u + b)|pdb
) 1

p

du

≤ ∥γa,0,0∥L1(R2)∥f∥Hp(R2). □

5. Curvelet Transfrom on BMO Space

The “Bounded Mean Oscillation space” (BMO space) was defined by F. John and
L. Nirenberg in 1961 and it is dual space of Hardy space H1.
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Definition 5.1. The space BMO(R2) is defined as the space of all functions f ∈
L1

loc(R2) such that

∥f∥BMO(R2) = sup
B⊂R2

1
|B|

∫
B

|f − fB| dx < +∞,

where the supremum is taken over all disk B in R2, and fB is the mean value of the
function f on B defined by fB = 1

|B|
∫

B f(y)dy for each disk B ⊂ R2.

Theorem 5.1. Let γa,0,0 ∈ L1(R2)⋂L2(R2). If f ∈ BMO(R2). Then, for fixed a > 0,
the curvelet transform

Γγ : BMO(R2) → BMO(R2)
is continuous and

||(Γγf)(a, ·, θ)||2BMO(R2) ≤ ||γa,0,0||2L1(R2)||f ||2BMO(R2).

Proof. For an arbitrary disk B contained in R2, we have∫
B

(Γγf)(a, b, θ)db ≤
∫
R2

γa,0,0(Rθu)
(∫

B
f(u + b)db

)
du

=
∫
R2

γa,0,0(Rθu)
(∫

Q
f(y)dy

)
du,

where Q = u + B. Since, Q ⊂ supp γa,0,0 + B ⊆ R2 is compact set and f ∈ L1
loc(R2).

It follows that∫
B

((Γγf)(a, ·, θ) ∗ φt)(b)db ≤ K
∫
R2

γa,0,0(Rθu)du = K∥γa,0,0∥L1(R2) < ∞,

and hence, (Γγf)(a, ·, θ) ∈ L1
loc(R2). Using Fubini’s theorem, we have

ΓfB
(a, ·, θ) =

∫
R2

( 1
B

∫
B

f(u + b)γa,0,0(Rθu)db
)

du =
∫
R2

fQγa,0,0(Rθu)du.

Applying Minkowski’s inequality, we obtain

∥(Γγf)(a, ·, θ)∥BMO(R2) = sup
B⊂R2

1
B

∫
B

|(Γγf)(a, b, θ) − ΓfB
(a, b, θ)|db

≤ sup
B⊂R2

1
B

∫
B

(∫
R2

|(f(u + b) − fQ)γa,0,0(Rθu)|du
)

db

=
∫
R2

|γa,0,0(Rθu)|
(

sup
Q⊂R2

1
Q

∫
Q

|f(y) − fQ|dy
)

du

≤ ∥γa,0,0∥L1(R2)∥f∥BMO(R2). □

6. Conclusion

The questions posed in the introduction have been addressed and answered affir-
matively in this paper, contributing to the existing literature on curvelet transforms.
The research gap identified in the introduction has been successfully bridged through
the continuous extension of the curvelet transform to functional spaces, i.e., Sobolev
space, weighted Sobolev space, generalized Sobolev space, Besov space, weighted
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Besov space, Hardy space and BMO space. The continuity of curvelet transform in
these spaces provides the basis for applications like solution of partial differential
equations in these spaces.

The theorems presented for the aforementioned spaces provide valuable insights into
the behaviour of the curvelet transform across different functional domains. These
results offer bounds that enhance our understanding of the curvelet transform’s ap-
plicability and effectiveness in diverse mathematical spaces.

The successful extension of the curvelet transform to these spaces opens avenues for
exploring its applications in a broader range of mathematical and scientific disciplines.
Future research may delve deeper into the implications and potential advancements
stemming from this extended framework, paving the way for innovative applications
and theoretical developments in the field.

Acknowledgements. The author extends sincere thanks to the referees for their
valuable comments, which have significantly improved this paper.
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