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A CHARACTERIZATION OF ESSENTIAL PSEUDOSPECTRA
INVOLVING POLYNOMIALLY RIESZ OPERATORS

BILEL ELGABEUR!

ABSTRACT. In this article, we investigate the essential pseudospectra associated
with a broad class of operators known as polynomially Riesz operators, which ex-
tend the classical notion of Riesz operators introduced by Latrach et al. in [19]. We
establish several new results concerning the essential pseudospectra of closed linear
operators on Banach spaces under perturbations by polynomially Riesz operators.
In particular, we examine how these perturbations affect the left (respectively, right)
Weyl essential pseudospectra and the left (respectively, right) Fredholm essential
pseudospectra. Lastly, we provide a detailed characterization of the essential pseu-
dospectra of the sum of two bounded linear operators, emphasizing the influence of
polynomially Riesz perturbations on their spectral behavior.

1. INTRODUCTION

Eigenvalue problems hold significant importance across numerous scientific and
engineering disciplines. The primary goals when tackling these problems are to
extract and localize eigenvalues. However, traditional spectral analysis falls short
in achieving both objectives, as it can only identify eigenvalues without localizing
them. As a solution, researchers have introduced alternative methods such as the
pseudospectrum, first proposed by Varah [25]. The pseudospectrum has found wide-
ranging applications in numerous areas of mathematical physics, including engineering
(e.g., electrical engineering), aeronautics, ecology, and chemistry. In engineering, for
instance, eigenvalues can dictate the precision of a national power grid or an amplifier’s
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frequency response. In aeronautical engineering, eigenvalue analysis can help identify
whether the airflow across an aircraft wing exhibits laminar or turbulent behavior.
In ecological modeling, eigenvalues play a crucial role in assessing the stability of
equilibrium states within food web dynamics. In chemistry, they can establish energy
states in a stable hydrogen atom. In summary, the pseudospectrum concept has
demonstrated its value in addressing eigenvalue problems, allowing researchers to
accurately extract and localize eigenvalues, thus contributing to significant progress in
diverse areas of science and engineering. Motivated by the concept of pseudospectra, F.
Abdmouleh et al. [1] developed the notion of the pseudo Browder essential spectrum
for densely defined closed linear operators on Banach spaces. Later, in [2,3], F.
Abdmouleh and B. Elgabeur introduced the concepts of pseudo left and right Fredholm
and Browder operators, and examined their associated spectra in the context of
bounded linear operators. A key part of their investigation focused on the stability
of these pseudo-essential spectra under perturbations by Riesz operators in Banach
spaces. They also analyzed the behavior of the pseudo left and right Fredholm and
Browder essential spectra for the sum of two bounded linear operators. In related
contributions, A. Ammar, A. Jeribi and K. Mahfoudhi, [4,5] extended this line of
research by examining the essential pseudospectra of bounded operators and providing
a formulation of the pseudo-Fredholm operator concept along with its corresponding
essential pseudospectrum.

In this work, we extend the analysis of essential pseudospectra in Banach spaces to a
broader class of operators known as polynomially Riesz operators, which are considered
to be generalizations of some well-known classes Fredholm perturbations, polynomially
Fredholm perturbations, polynomially strictly singular operators and polynomially
compact operators. This class of operators has drawn significant attention from
various researchers due to its relevance in deriving meaningful results within spectral
theory. The reader may find the following references useful: Dehici et al. in [10], K.
Latrach et al. in [18], S. C. Zivkovi¢ Zlatanovié et al. in [27]. The primary objective of
this paper is to generalize the stability results of essential pseudospectra under Riesz
operator perturbations, as established in [1-7], by considering perturbations through
polynomially Riesz operators acting on closed, densely defined linear operators. The
second aim of this work, is to describe the essential pseudospectrum of the sum of
two bounded linear operators with the new concept of polynomially Riesz operator.

Let us now outline the structure of this paper. In Section 2, we begin by recall-
ing some essential notations and definitions related to Fredholm operators and their
corresponding essential spectra. We also introduce the notion of polynomially Riesz
operators and present several preliminary results relevant to our study. Section 3 is
devoted to establishing new stability results and to deriving alternative characteriza-
tions of the left (respectively right) Weyl and Fredholm essential pseudospectra within
the framework of bounded linear operators on Banach spaces. Finally, in Section 4,
we present a main result concerning the essential pseudospectra of the sum of two
bounded linear operators, inspired by the theory of polynomially Riesz perturbations.
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2. NOTATIONS AND DEFINITIONS

Let X; and Xy be two Banach spaces. By an operator A; from X; into Xy we mean
a linear operator with domain D(A) C X; and range contained in Xy. We denote
by €(X1,Xs) (resp., £(X1, X)) the set of all closed, densely defined (resp., bounded)
linear operators from X; to Xy. The subset of all compact operators of £(X;,Xs) is
designated by K(X;,Xy). If Ay € C(Xq,X3), we write N(A;) C Xy and R(A;) C Xy
for the null space and the range of A;. We set a(A;) := dim N(A;) and B(A) :=
codim R(A;). Let A; € C(Xy,Xy) with closed range. Then, A; is a ®,-operator
(A € (X, X)) if a(Ay) < +00, and then A, is a &_-operator (A; € &_ (X1, Xs))
if f(A) < +oo. D(X1,Xe) = P (X, Xe) N D_(Xy,X5) is the class of Fredholm
operators while @ (X, Xs) denotes the set O, (Xy,Xs) = P4 (X1, Xg) U P_(Xy, Xs).
For A € ®&(Xy,X,), the index of A; is defined by ind(A;) = a(A1) — B(A1). If
:X:l = :X:Q, then L(DCl, :X:Q), :K(:X:l, :X:Q), G(Xl, :X&), <I>+(.')C1, :X:Q), (I):t(xl, XQ) and CID(T)Cl, :X:Q)
are replaced, respectively, by L£(X;), K(X;), C(X;), &, (X;1), .(X;) and P(X).
Let A; € €(X), the spectrum of A; will be denoted by o(A;). The resolvent
set of Ay, p(Aq), is the complement of o(A;) in the complex plane. A complex
number A is in @4, P _4,, Ppg or By, if A — A; is in & (Xy), P_(X;), PL(X4) or
O(Xy), respectively. Let F' € L(X1,Xs). F is called a Fredholm perturbation if
U+ F € &(X;,Xy) whenever U € ®(Xy,X5). F is called an upper (resp., lower)
Fredholm perturbation if U + F' € &, (X, Xy) (resp., U + F € ®_(Xy, X3)) whenever
U € &,.(Xy,Xs) (resp., U € ®_(Xy,X3)). The set of Weyl operators is defined
as W(X1,Xs) = {A; € O(Xy,Xy) : ind(Ay1) = 0}. Sets of left and right Fredholm
operators, respectively, are defined as:

D,(X) :={A; € L(X;) : R(A;) is a closed and complemented subspace
of Xy and (A1) < 400},
D, (Xy) :={A; € L(Xy) : N(Ay) is a closed and complemented subspace
of X; and B(A;) < +oo}.
An operator Ay € L£(Xy) is left (right) Weyl if A, is left (right) Fredholm operator
and ind(A;) < 0 (ind(Ay) > 0). We use Wi(X;) (W,.(X1)) to denote the set of all

)
left (right) Weyl operators. It is known that the sets ®;(X;) and ®,(X;) are open
satisfying the following inclusions:

B(X) C Wi (X)) C di(X1) and  B(X1) C W,(X1) © &,(X).

The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations
are denoted by F(Xq,Xy), F(Xq,Xs) and F_(Xy,Xy), respectively. In general, we
have

F(X1, Xy),
F(Aq, Xy).
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If X =Y, we write F(Xy), F (%) and F_(X;) for F(X;), F(X;1) and F_(Xq), re-
spectively. Let ®°(Xy, Xy), ®% (X1, X2) and ®° (X1, X2) denote the sets ®(X1,X2) N
L(DCl, :X:Q), <I>+(3C1, :X:2> ﬂL(?Cl, :XQ) and &_ (DCl, XQ) ﬁL(DCl, :X:Q), respectively. If in Defi-
nition 1.1 we replace <I>(9C1, :X:2>, (I)+<:X:1, :XQ) and CID_(DCl, :X:2> by (I)b(:xl, :X:Q), @i(fxl, XQ)
and ®° (X1, X,), we obtain the sets F*(X1, Xz), F5 (X1, X2) and F* (X, Xz). These
classes of operators were introduced and investigated in [6]. In particular, it is shown
that (X, Xs) is a closed subset of £(X1,X) and F°(X;) is a closed two-sided ideal
of £(X4). In general we have

K(X1,Xy) C ffi(xlaxz) C F(Xy, Xy),
K (X1, Xy) C FP (X1, Xy) C FP(Xy, Xy).

Let A € C(X;). It follows from the closeness of A; that D(A;) endowed with the graph
norm || - |4, (||z]la, = ||z]| + || A1z]]) is a Banach space denoted by X4,. Clearly, for
x € D(A;y) we have ||Az|| < ||z]la,, so A1 € £ (X4,,X1). Furthermore, we have the
obvious relations

a(d) = a(Ar), B(A) =B(A1), R(A) = R(A),
(2.1) (A + Ay) = a(A; + As),
B(AL +As) = B(A1 +As) and  R(A; + Ay) = R(A; + As).
In this paper we are concerned with the following essential spectra of A; € C(X;):

(A1) ={peC: A —u¢ P(X)} : the Fredholm spectrum of Aj,

ol(A) :={\€C: A — ¢ ®(X,)} : the left Fredholm spectrum of A,
ol(A) ={ e C: A —u ¢ D.(Xy)} : the right Fredholm spectrum of A;,
ow(Ar) ={peC: Ay —u ¢ W)} : the Weyl spectrum of Ay,
ol (A) = {peC: A —p ¢ Wi(X1)}: the left Weyl spectrum of A,
on(A) i={peC: A — A& W, (Xy)} : the right Weyl spectrum of A;,
(A1)
(A1)

Peap (A1) == {p € Csuch that p — A; € &, (Xy) and i(p — A1) < 0}

and
pes(A1) == {p € C such that p — A; € &_(X;) and i(u — A;) > 0}.
The definition of pseudospectrum of a closed densely linear operator A; for every

e > 0 is given by:

o.(Ay) =0(A) U {u eC: H(u — Al)*lu > i} .
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By convention, we write ||(u — A1) 7!|| = +o0 if (1 —A;)~" is unbounded or nonexis-
tent, i.e., if pu is in the spectrum o(A;). In [9], Davies defined another equivalent of
the pseudospectrum, one that is in terms of perturbations of the spectrum. In fact
for A; € C(X;), we have

o.(A) = |J oA+ D).
I1Dl|<e

Inspired by the notion of pseudospectra, Ammar and Jeribi in their works [4,5], aimed
to extend these results for the essential pseudo-spectra of bounded linear operators
on a Banach space and give the definitions of pseudo-Fredholm operator as follows:
for A1 € L£L(X;) and for all D € L£(X;) such that ||D| < e we have A, is called
a pseudo-upper (resp. lower) semi-Fredholm operator if A; + D is an upper (resp.
lower) semi-Fredholm operator and it is called a pseudo semi-Fredholm operator if
Aq 4+ D is a semi-Fredholm operator. A; is called a pseudo-Fredholm operator if
A1+ D is a Fredholm operator. They are noted by ®¢(X;) the set of pseudo-Fredholm
operators, by ®% (X;) the set of pseudo-semi-Fredholm operator and by ®% (X;) (resp.
®° (X1)) the set of pseudo-upper semi-Fredholm (resp. lower semi-Fredholm) operator.
A complex number p is in ®5 4, 5, , %, or &5 if p— Ay is in L (X;), P (Xy),
Dc (X;) or $°(Xy).

F. Abdmouleh and B. Elgabeur in [3] defining the concept of pseudo left (resp.
right)-Fredholm, for A; € £(X;) and for all D € £(X;) such that ||D|| < & we have
Aj is called a pseudo left (resp. right) Fredholm operator if A; 4+ D is an left (resp.
right) Fredholm operator they are denoted by ®5(X;) (resp. ®2(X;)).

In this paper we are concerned with the following essential pseudospectra of A, €

(A1) {/LE(C:,u—fh ¢¢i(x1)}:(c\q)€+/m

(Ay) := {MGC:M—Alﬁéq)E_(xl)}:C\q)a—A’

(Ay) = {,uE(C:,u—fh¢@i(x1)}:(c\q)sﬂh’
(A1) ={peC:pu—A ¢ &°(X;)} = C\dF,

Oeape (A1) 1= O (A1) U{M € C:ind(p — Ay = D) >0, forall [[D]f < e},

(A1) = 02 (A1) | J{p € C:ind(p — A1 — D) <0, for all || D|| < e},

(A1)

(A1)

(A1)

)

Note that if € tends to 0, we recover the usual definition of the essential spectra of a
closed operator A;. The subsets 0.1 and 0.5 are the Gustafson and Weidmann essential
spectra [12], o.3 is the Kato essential spectrum, [15] o, is the Wolf essential spectrum
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[12], o5 is the Schechter essential spectrum [23], 0.4, is the essential approximate
point spectrum [21], o, is the essential defect spectrum [22], o' (A) (resp. o7 (A)) is
the left (resp. right) Fredholm essential spectra and o' (A;) (resp. o7, (A,;)) is the left
(resp. right) Weyl essential spectra [11].

As a concept, pseudospectra and essential pseudospectra are interesting because
they offer more information than spectra, especially about transients rather than
just asymptotic behavior. Moreover, they perform more efficiently than spectra in
terms of convergence and approximation. These include the existence of approximate
eigenvalues far from the spectrum and the instability of the spectrum even under small
perturbations. Various applications of pseudospectra and essential pseudospectra have
been developed as a result of the analysis of pseudospectra and essential pseudospectra.

We now list some of the known facts about left and right Fredholm operators in
Banach space which will be used in the sequel.

Proposition 2.1. ([14, Propositon 2.3]). Let X1,Y; and Z; be three Banach spaces.
(i) If Ay € ®(Yy,2) and T, € ®Y(X1, Y1) (resp. Ty € ®2(X1,Y1)), then AT €
DY(X, Z1) (resp. A1Ty € @2Xy, Z1)).
(ZZ) ]f.Al € @b(Hl,Zl) and T € @?(T)Cl,%l) (7“68p. T, € (I)f,(f)Cl,‘él)), then T1A, €
DY(Xy, Z1) (resp. TiAy € YNy, Zy)).

Theorem 2.1 ([20,23]). Let X1,Y1 and Z; be three Banach spaces, Ay € L(Y1,2Z1)
and T1 € L(X41,Y1).

(i) If Ay € ®°(Yy,21) and Ty € ®°(X1,Y,), then AT € ®°(Xy,2,) and ind(A,T,) =
ind(Ay) 4+ ind(T).

(’LZ) [f f)Cl = %1 = Zl, .AITl S (IDb(DCl) and Tl.Al S (I)b(xl), then .Al < (I)b(xl) and
T, € <I>b(f)C1)

Lemma 2.1. ([11, Theorem 2.3]). Let Ay € L(Xy). Then,

(1) Ay € ®Y(Xy) if and only if there exist A; € L(Xy) and Ky € K(X;) such that
.Alﬂl =1 - fh,'

(ii) Ay € ®U(Xy) if and only if there exist A, € L(X;) and K, € K(X;) such that
AA, =T —XK;.

Lemma 2.2. ([11, Theorem 2.7]). Let A; € L£(X;). If Ay € ®Y(Xy) (resp. PE(Xy))
and Ky € K(X1), then Ay +K; € ®Y(Xy) (resp. ®2(X1)) and ind(A; +Kp) = ind(A,).
(X1)

Lemma 2.3. ([11, Theorem 2.5]). Let Ay, By € £L(X;). If Ay € ®(Xy) (resp. ®2(Xy))
and By € ®Y(X;) (resp. (X)), then A1By € PY(Xy) (resp. ®4(Xy)) and ind(A; +

We close with the following lemma.

Lemma 2.4. ([8, Lemma 3.4]). Let A; € L(Xy).
(Z) ]fﬂlgl € (I)?(DCl), then B, € (I)?(DCl)
(Zl) ]fﬂlgl S @f(f)Cl), then A, € (I)f:(xl)
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Definition 2.1. Let X; be a Banach space.

(i) An operator A; € L£L(X;) is said to have a left Fredholm inverse if there exists
A, € L(Xy) such that I — A A; € K(Xq).

(1) An operator A; € L£(X;) is said to have a right Fredholm inverse if there exists
A, € L(Xy) such that [ — A1 A, € K(Xy).

We know by the classical theory of Fredholm operators, see for example [15], that A;
belong to ®(X;) if it possesses a left, right or two-sided Fredholm inverse, respectively.
We define these sets InvF"(X;) and JnvF7(X;) by:

Jnvihl(xl) ={A; € L(X;) : A; is a left Fredholm inverse of A},
Jnvihr(fxl) ={A, € L(X) : A, is a right Fredholm inverse of A}.
Definition 2.2 ([23]). Let X; be a Banach space and F; € £(X;). F is called a Riesz

operator if u — F; € ®(X4) for all scalars u # 0, and denote by R(X;) the class of all
Riesz operators.

Definition 2.3. An minimal polynomial P is the unitary polynomial of smaller degree
which cancels an endomorphism, that is to say a linear application of a vector space
in itself.

We say that A; € L£(X;) is polynomially Riesz if there exists a nonzero complex
polynomial p(-) such that the operator p(A;) € R(X;). The set of polynomially Riesz
operators will be denoted by Px(X;).

If A; belongs Px(X;), then there exists a nonzero polynomial p(-) such that p(A,) €
R(Xq).

In the following, Epx(X;) will denote the subset of Px(X;) defined by:

Epx(X1) ::{Al € Px(X;) such that the minimal polynomial p(-)
of A, satisfies p(—1) # 0}.

Let us recall the following results which are fundamental for the proofs of the main
results.

Proposition 2.2. ([19, Lemma 2.3]). If F1 € Epx(Xy), then [ + F; € &(Xy) and
ind(I + F1) = 0.

3. STABILITY OF ESSENTIAL PSEUDOSPECTRA BY MEANS OF POLYNOMIALLY
R1ESZ PERTURBATIONS OPERATORS

The following theorem provides a practical criterion for the stability of some essential
pseudospectra for perturbed linear operators.

Theorem 3.1. Let ¢ > 0 and consider Ay, B; € C(X;y). Assume that there are
.Ao,go € L(:X:l) and Rl, R2 € 8(]33{(%1) such that

(3.1) AtAo =1 — Ry,
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(3.2) B, By = — Ry.
(i) If 0 € Dy, N Dy, Ag — By € F(Xy) and ind(A,) = ind(B,), then
(3.3) Oeape(A1) = Teape(B1).
(i1) If 0 € Oy, NPg,, Ag — By € F_(Xy) and ind(A1) = ind(B,), then
(34) Ueé,s(Al) = Uea,e(Bl)-

(i13) If Ag — By € F(Xy), then
Ue,a(Al) = ge,a(Bl)-
If, further, 0 € ®4, N Py, such that ind(A,) = ind(B,), then
(3.5) Owe(A1) = ope(Br).
Proof. Let 1 be a complex number. Equations (3.1) and (3.2) imply
(3.6) (= A1 = D)Ag— (p— By — D)Bo = Ry — Ry + (1 — D)(Ag — Bo).

(i) Let gt & Oeape(B1). Then, p € ®% 5 such that i(u — By — D) < 0, for all
D € L(X;) such that ||D]| < e. Since By + D is closed and D(B; + D) = D(B,)
endowed with the graph norm is a Banach space denoted by Xg,.p. We can regard

By + D an operator from Xg,,p into Xy. This will be denoted by Bl/%—\D. Using
(2.1) we can show that

p—Bi+Ded (Xg,Xy) and ind(p— By + D) < 0.

Moreover, since Ry € Epx(X1), applying Proposition 2.2, we obtain I — Ry € ®(X;).

Applying [23, Theorem 2.7, p. 171] and (3.2), we get By € ®°(X;, X5,).That is
(n— Bﬁ)%o € ®% (X;). Remembering that Ay — By € F;(X;) and taking into
account (3.6), asserts that (u — Al/—i?)ﬂo € ¢4 (X;) and

(3.7) i((1n — A7 + D)Ag) = i(( — By + D)By).

A similar reasoning as before combining (2.1) and (3.1), Proposition 2.2 and [23,
Corollary 1.6, p. 166], [23, Theorem 2.6, p. 170] show that Ay € ®°(X1, Xy, ), where
Xa, = (D(A1), || - [|a,)- By [23, Theorem 1.4, p. 108] one sees that

(3.8) AogS=1—F on Xy,
where S € L(Xy4,,X;) and F' € K(Xy4,), by (3.2) we have
(3.9) (1t — By + D)AoS = (— A1 + D) — (u — A, + D)F.

Combining the fact that S € ®°(X4,,X;), with [23, Theorem 6.6, p. 129], we show
that (u— Ay + D)ApS € 4 (X 4,,X;). Following [23, Theorem 6.3, p. 128], we derive
(w— A1+ D) € D% (X14,,X1). Thus, (2.1) asserts that

(3.10) (11— Ay — D) € D (Xy).
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On the other hand, the assumptions Ry, Ry € Epx(X1), (3.1), (3.2) and Proposition
2.1, [23, Theorem 2.3, p. 111] reveals that
ind(Aq) +ind(Ag) =ind(I — Ry) =0 and ind(B1) + ind(By) = ind(I — Ry) =0,
since ind(A,) = ind(B;). That is ind(Ay) = ind(By). Using (3.7) and [20, Theorem
2.3, p. 111], we can write

ind(p — Ay — D) +ind(Ap) = ind(p — By — D) + ind(By).
Therefore,
(3.11) ind(p— A, — D) <0, forall DeL(Xy),||D| <e.
Using (3.10) and (3.11), we conclude that

M € Ueap,s (‘Al)

Therefore, we prove the inclusion oeup (A1) C Teape(B1). The opposite inclusion
follows from symmetry and we obtain (3.3).

(#7) The proof of (3.4) may be checked in a similar way to that in (7). It suffices to
replace Geape(+), P4(+),4(-) < 0 [23, Theorem 6.6, p. 129], [23, Theorem 6.3, p. 128|,
by 0ese(), @_(+), i(-) > 0 [20, Theorem 5 (i), p. 150], [23, Theorem 6.7, p. 129],
respectively. The details are therefore omitted.

(i79) If p ¢ 0co(By), then p— By — D € &(X). Since By is closed, its domain D(B,)
becomes a Banach space X, for the graph norm || - ||g,. The use of (2.1) leads to
w— B+ D € Pb(Xg,,X1). Moreover, (3.2), Proposition 2.1 and [23, Theorem 5.13],
reveal that By € ®°(X;, Xg,) and consequently (u — BT—}—\D)BO € ®%(X,). Following
with the assumption, (3.6) and [23, Theorem 5.13], lead to estimate (,u—.A1/+\D)AO €
®b(X;) with
(3.12) ind (1 — Ay + D)Ao) = ind ((u— By + D)By) .

Since A; € C(X;), proceeding as above, (3.1) implies that Ay € ®°(X;, Xy, ). By [23,
Theorem 5.4], we can write

(3.13) A0S =1—-F, on Xy,
where S € L(Xy4,,X;) and F' € F(Xy,). Taking into account (3.13) we infer that
(A +D)A¢S = (u— A+ D) — (u— A + D)F.
Therefore, since S € ®°(X4,,X;), the use of [23, Theorem 6.6], amounts to
(1 — A5+ D)AS € (X4, X)),

Applying [23, Theorem 6.3], we prove that (u — AT—i—\D) € ®°(Xy,,X;) and conse-
quently,

(,u — .Al — D) c CID(DCl)
Thus, 1t ¢ 0cc(A;). This implies that o, (A1) C 0c(B1). Conversely, if u ¢ o. (A1),
we can easily derive the opposite inclusion.
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Now, we prove (3.5). If p ¢ 04,:(B1), then p € &% and i(u — B, — D) = 0,
for all D € £(X;) with ||D|| < e. On the other hand, since Ry, Ry € Epp(X;) and
ind(Ay) = ind(B1) = 0, using the Atkinson theorem, we obtain ind(Ag) = ind(B;) =
0. This together with (3.12) gives z'nd(,u—fll/jL\D) = ind(pu— 31/4—\1?) Consequently,
ind(p — Ay — D) = 0, for all D € L(X;) with ||D| < e. Hence, p ¢ 04.(A1),
which proves the inclusion o, (A1) C 04 :(B1). The opposite inclusion follows by
symmetry. 0

In the following theorems we give some perturbation results of the pseudo left,
pseudo right Fredholm and pseudo-left, pseudo-right Weyl spectra for bounded linear
operators in Banach space.

Theorem 3.2. Let A; and By be two operators in L(Xy) and p € C. For all
D € L(Xy) such that ||D|| < e, the following statements hold.
(1) Assume that for every p satisfying
m— .Al € CIDZ(DCl),
there exists A; € Invl_ 4 5 (X1) such that BiA; € Epx(Xy). Then,
0 (A1+ B1) Cop (Ar).

(17) Assume that for every p satisfying u — Ay € ©,.(Xy), there exists A, €
Jnvi_ﬂl_D7r(3C1) such that A. By € Epx(Xy). Then,

0¢e(Ar+B1) Cof (Ar).
Proof. (i) Let u ¢ o' (Ay), p—A; — D € ®5(X;). As A, is a left Fredholm inverse of

e,e

w—Ay — D, for all D € £(X;) such that | D] < ¢, then, by Lemma 2.1, there exists
a compact operator K; € K(X;) such that

Alp—A1 —D)+XKy =1.
Then, we can write
(3.14) u—HA =B —D=(I—-BA)(p—A — D) —BK;.
Using the fact that B1A; € Epx(Xy) and according to Proposition 2.2, we have
I —BiA; € &(X;). Consequently, by Lemma 2.3, we get
(I —B1A) (p— Ay — D) € )(Xy), forall De L(Xy),|D] <e.

Thus, combining the fact that B,XK; € K(X;) with the use of (3.14) and Lemma 2.2,
we have up — Ay — By — D € &(Xy), for all D € £L(X;) such that || D|| < e. Therefore,
¢ o (Ar 4 By) as required.

(11) Let p ¢ of8"(Ay). Then, p— Ay — D € ®.(Xy), for all D € L£(X;) such that
|D|| < e. Since A, is a right Fredholm inverse of y — A; — D. From Lemma 2.1 we
infer there exists a compact operator K; € K(X;) such that

(n—A;— DA, =1—%K;, forall De L(Xy),|D|| <e.
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Then, we can write u — Ay — By — D in the following form
(3.15)
7 — A - 31 — D= (,LL — A - D) (I —Ar31> — :Kl‘Bl, for all D € ﬁ(xl), HDH < E.

Since A, By € Epx(X;) then, according to Proposition 2.2, we have I — A, B; € &(X;).
Consequently, by Lemma 2.3, we get

(u—Ay — D) (I —A.By) € D.(Xy), forall De L(Xy),||D| <e.

On the other hand, from (3.15) and Lemma 2.2 and the fact B;K; € K(X;) we show
that p — Ay — By — D € &,(Xy), for all D € £L(X;) and ||D|| < . We deduce that
g ol (A + By). O

Theorem 3.3. Let A; and By be two operators in L(Xy) and p € C. For all
D € L(X,) with || D|| < € the following statements hold.
(1) Assume that for every p satisfying up — Ay € ®;(X1), there exists

-Al S jnvi_ﬂl_D7l(x1)
such that B1A; € Epx(Xq). Then,
(A1 +B1) C o, (Ar).

(17) Assume that for every u satisfying p — Ay € ®,.(Xy), there exists A, €
Invl_ 4 _p,(X1) such that A, By € Epx(X1). Then,

p—A1
0y (A1 +By) Coy, (A1)

Proof. (i) Assume that p ¢ o), ((A1). Then, we have p — A; — D € ®(X;) and
ind(p — Ay — D) < 0. A similar reasoning as above gives u — A; — By — D € &;(X;)
and it suffices to prove that ind(u — A; — By — D) < 0. Since B1;K; € K(X;), then
using (3.14) together with Lemmas 2.2 and 2.3, we obtain that

ind(p — Ay — By — D) =ind (I — B A;) +ind(p — Ay — D).

Now, since B1A; € Epr(X1), we get by Proposition 2.2, that i (I — By A;) = 0. We
deduce that
ind(p— Ay — By — D) =ind(u— A, — D) <0.

Finally, we conclude that y — A; — By — D € W;(X;), which entails that p ¢
Uiv,s(‘Al + Bl)

(44) With the same reasoning of (i). Let u ¢ o3, _(A1). Then, we have u—A; — D €
®,.(X;) and i(u — Ay — D) > 0. Proceeding as the proof above, we establish that
,LL—.Al—Bl—D c <I>T(3C1) and Z’I’Ld(,LL—.Al—Bl—D) Z 0. Therefore, M—Al—Bl—D c
W, (X;) and we deduce that p ¢ o, (A1 + By). O

Remark 3.1. The results of Theorems 3.1, 3.2 and 3.3 are an extension and an im-
provement of the results in [1-5] to a large class of polynomially Riesz perturbation
operators.
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4. CHARACTERIZATION ESSENTIAL SPECTRUM OF TwoO LINEARS BOUNDED
OPERATORS

The aim of this section is to establish new criteria for investigating the spectral
properties of the sum of two bounded linear operators. We begin by stating the
following lemma, which will be used in the sequel.

Lemma 4.1. ([8, Lemma 4.1]) Let X be a Banch space and A € L(X).
(i) If Col(A) is connected, then o' (A) = o (A).
(17) If Col(A) is connected, then ol(A) = ol (A).

Theorem 4.1. Let A, B € L(X) and p € C*. For all D € L(X) with ||D|| < ¢, the
following statements hold.

(i) Assume that the subsets Col(A) and Col(B) are connected, —u *ABQ,; €
Epx(X) and —p~'BAQ, € Esx(X), for every Q€ Invf_ 4 p_p(X). Then, we have
(00(A) U, (B)) \ {0} € o, (A + B) \ {0}

(i1) Assume that the subsets Co”(A) and Co”(B) are connected, —p'Q, AB € Epx(X)
and —p~' Q. BA € Epx(X), for every Q. € Invl_ 4 p . (X). Then, we have
(o7(A) Uy, (B)) \ {0} C o7, .(A+ B)\ {0}.

(iii) Assume that the subsets Col(A), Cal(B), Co’(A) and Co%(B) are connected,
—M_lABQl € (c_‘,gvy(X), —/L_lBAQl < 83>§R<X), —/L_lQTAB c EPR<X) and

—[L_lQTBA € SPR(X),
for QreInv 4 p pi(X) and Q, € Inv)_, p p (X). Then, we have
(0w(A) Uowe(B)) \ {0} € ouwe(A+ B)\ {0},
Proof. First, we note two equalities that will be used repeatedly
(4.1) (51— A)(ju— B — D) =A(B+ D) + p(s— A— B — D),
(4.2) (u—B—-—D)(p—A)=B+D)A+up—A—B—-D).
(1) Let pu ¢ o, .(A+B)U{0} so we have y—A—B—D € ®;(X) and i(u—A—B—D) <
0. Then, following Lemma 2.1, there exist ; € L£L(X) and K € K(X) such that
Qip—A—B—D)=1— K. So, when we use (4.1) we obtain
(n—A)(p—B—-D)=AB+D)+pup—A-B-D)
=AB(Qip—A—-B—-D)+K)+pup—A—-B—-D)
=(ABQ,+ ul)(u—A—B— D)+ ABK
=y (p'ABQ,+1) (n— A~ B - D)+ ABK.

Since pu(u*ABQ;+1) € ®(X) and (u — A — B — D) € ®/(X) it follows from
Proposition 2.1 that u (1 'ABQ; + I) (u—A—B—D) € ®;(X). Since ABK € X(X),
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this implies by the use of Lemma 2.2 that
i (p ABQu+1) (n— A~ B — D) + ABQK € ®,(X).
So, (u—A)(u— B — D) € $;(X) and as a direct consequence of Lemma 2.4 we obtain
(4.3) p—B—Ded(X), forall De L(X),|D] <e.
In the other hand, when we use the (4.2) we have
(W—=B—=D)(p—A)=BA+pup—A—-B-D),
=BA(Qip—A—-B—-D)+K)+pup—A—-B—-D)
=(BAQ, + ul) (u— A—B— D)+ BAK
=p(W'BAQ,+ 1) (u— A— B — D) + BAK.
Since p(p 'BAQ,+ 1) € ®(X) and (u — A — B — D) € ®/(X) it follows, from
Proposition 2.1, that
p(p'BAQ + 1) (u— A~ B = D)€ ®(X).
Obviously, since BAK € X(X) and applying Lemma 2.2, we find that
p (' BAQi+ 1) (j— A~ B — D) + BAK € ®;(X).
So, (0 — B — D)(u— A) € &,(X). Therefore, using Lemma 2.4, we obtain
(4.4) p—Ae d(X).
Now, to check the index we must have a discussion according to the sign, thus using
the above we have
ind(p — A) +ind(u — B — D) =ind(u— A—B—D) <0.

Case 1: ind(u — A) <0.
Using Lemma 4.1, the index ind(u — B — D) must be negative. Therefore, adding
this condition to (4.3) and (4.4) we obtain

i (o(A) o, (B) U {0},
Case 2: ind(up— B — D) <0.
Following Lemma 4.1, the index ind(u — A) must be negative. Then, adding this
condition to (4.3) and (4.4) we assert

w (o(A)Udl, (B)) U{0}

Case 3: ind(p— A) > 0.

Following Lemma 4.1, the index ind(u— B — D) should be positive which contradicts
the fact that ind(u — A— B — D) <0.

Case 4: ind(u — B — D) > 0.

Following Lemma 4.1, the index i(x — A) must be positive which contradicts the
fact that ind(p — A— B — D) <0.
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(4i) Let u ¢ oy, (A+ B)U{0}. Then, u— A~ B~ D € &.(X) and i(u — A —
B — D) < 0. So, by Lemma 2.1, there exist @, € £(X) and K € X(X) such that
(u—A—B—-D)Q,=1-K. So, following (4.1) we have

(w—=A)(p—B—-D)=AB+pup—A—-B-D)
=(p—A-B-D)Q,+ K)AB +u(p—A—-B—-D)
=(u—A—B—-D)(Q,AB+ ul)+ ABK
=pp—A=B-D)(n'QAB+1I)+ ABK.

Since p (u 'Q,AB+ 1) € ®(X) and (u — A— B — D) € ®,(X), it follows by Propo-
sition 2.1 that
p(p'QAB+1T)(n—A—B—D) € d(X).
Since ABK € X(X), then
n(n'QAB+1) (u— A= B— D)+ ABK € ,(X).
So, (u—A)(p— B — D) € ¢,(X), following Lemma 2.4 we infer that
p—Aecd(X).
In the other hand, the use of (4.2) assert
(=B —=D)(p—A)=BA+up—A-B-D)
=BA((p—A-B-D)Q, +K)BA+ u(p—A—~B~-D)
—(u—A— B~ D)(Q.BA+ ul)+ KBA
=plp—A—B—-D)(u'QBA+I)+ KBA.
By hypothesis (1 'Q,BA+ 1) € ®(X) and (u — A— B — D) € ®,.(X) we have by
Proposition 2.1
plp—A—B—D)(p'QBA+1) € &,(X).
Since KBA € X(X), we obtain
pp—A—B—D)(p'QBA+I)+KBA€ &,(X).
So, (u— B — D)(u— A) € &,(X). Then, the use of Lemma 2.4 infer that
(4.5) j—B—Ded,(X), forall De £(X)with |D] <.

Now, to check the index we must have a discussion according to the sign. Thus, using
the above we have
ind(p — A) +ind(p — B— D) =ind(u—A—B—D)>0.
Case 1: ind(p — A) > 0.
Using Lemma 4.1, the index ind(u — B — D) must be positive. Therefore, adding
this condition to (3.8) and (4.5) we get

w (oh,(A) Ual, (B)) U{0}.
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Case 2: ind(p— B — D) > 0.
Following Lemma 4.1, the index ind(u — A) must be positive. Then adding this
condition to (4.3) and (4.4) we obtain

w ¢ (o1,(A) Uot,.(B)) U {0},

Case 3: ind(p— A) < 0.

Following Lemma 4.1, the index i(ux — B — D) should be negative which contradicts
the fact that ind(u — A— B — D) > 0.

Case 4: ind(u — B — D) < 0.

Following Lemma 4.1, the index ind(u — A) should be negative which contradicts
the fact that ind(u — A— B — D) > 0.

(i17) Let u ¢ 0y (A+B)U{0}. Therefore, u—A—B—D € ®(X) and ind(p—A—B—
D) = 0 then there exist Q;, Q, € £L(X) and K € K(X) such that Q;(u—A—B—D) =
I —Kand (u—A—B—-D)Q,=1— K. Now, according to items (i) and (ii) we get

(0w(A) Uowe(B)) \ {0} C owe(A+ B)\ {0}.
O
Theorem 4.2. Let A, B € L(X) such that AB = BA and p € C*. For all D € L(X)

with ||D|| < e, the following statements hold.
(i) If there exists Qy € Inv),_, p p(X) such that —p~"ABQ; € Epx(X), then

ol (A+B)\{0} = (aL(A) Ul .(B)) \ {0}
(i) If there exists Q. € Inv_ 4 p p(X) such that —p~'Q,AB € Epx(X), then

ol (A+ B)\{0} = (07(A) Ual(B)) \ {0}.
(iii) If there exists Q € Inv)_ 4 5 p(X)NInv] 4 5 p(X) such that —u'QAB
€ Epp(X) and —pu *ABQ € Epx(X), then
ee(A+ B)\ {0} = (0(A) Uaeo(B)) \ {0}.
Proof. (i) Let ¢ ol .(A+ B)U{0}. Then, p—A— B —D € §,(X).
We assume there exists Q; € Jnv);_ 4 p p;(X). Thus, using (4.1), we have
(n=A)(u—=B—=D)=AB+D)+pp—-A-B-D)
=AB(Q(p—A—-B—-D)+K)+ulu—A—B—-D)
=(ABQ,+ ul) (u— A—B— D)+ ABK
=y (p'ABQ,+1) (n— A— B - D)+ ABK.
Obviously, —u *ABQ; € €pr(X) then by Proposition 2.2 we infer that y~!ABQ;+1 €

®(X). Therefore, by Lemma 2.3, we obtain (u"*ABQ; + ul) (n—A—B—D) € &;(X).
Since ABK € X(X) and by applying Lemma 2.2 we obtain

w(n ' ABQi+1) (n— A~ B~ D)+ ABK € &,(X).
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We conclude that

(u—A)(p—B—D) e d(X), forall De L(X) with ||[D| <e.
Hence, by Lemma 2.4 we deduce that
(4.6) (u—B—D) e d(X), forall De L(X) with ||D] <e.

On the other hand, using the fact that AB = BA and according to (4.2) we observe
that

(=B —=D)(p—A)=BA+up—A-B-D)
=AB+ p(p—A—B—D)
=AB(Qp—A—-B—-D)+K)+pup—A—-B—-D,)
=(ABQ,+ ul)(p—A—B— D)+ ABK
=y (p'ABQ,+1) (n— A~ B — D)+ ABK.

Using the same reasoning we conclude that (u — B — D)(u — A) € ®;(X). Therefore,
by Lemma 2.4 we deduce that

(4.7) (n—A) € ®i(X).

Finally, Equations (4.6) and (4.7) imply that u ¢ (cré(A) U 0’215<B)) U {0}. So, we
obtain

(cl(A) Ul (B))\ {0} C ol (A+ B)\ {0}.

The other inclusion, which allows us to achieve equality, is given in [8, Theorem 4.3].
(43) Let p ¢ o] (A+ B)U{0}. Then, p — A— B —D € ®,(X), for all D € £(X)
and ||D|| < e. We assume there exists @, € Jnv_ 4 5 p,.(X). Thus,

(n=A)(w—B—-D)=AB+pup—A—-B-D)
=((u—A-B-D)Q,+ K)AB +u(p—A—-B-D)
=(n—A—-B-Dyu(u'QAB+1I)+ KAB.

Evidently, —u™'Q,AB € &px(X) and by applying Proposition 2.2 we deduce that
prQ.AB + I € ®(X). Since, KAB is compact, then by Lemma 2.2 we obtain

(n—A—B=D)u(n"'QAB+1)+ KAB € &,(X).
Consequently, we have (u— A)(u— B — D) € ®,.(X) and by Lemma 2.4 we infer that

(4.8) (11— A) € B(X).
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Further, we have AB = BA, so,
(W—B—=D)(p—A)=BA+up—A-B-D)
=AB+ pu(p—A—-B—D)
=(u—A-B-D)Q,+K)AB+ u(p— A—B—D)
=(n—A—B—D)u(y'QAB+1I)+ KAB.

Using the same reasoning we conclude that (x — B — D)(u — A) € ®,.(X). Then, by
Lemma 2.4 we deduce that

(4.9) (u—B—D)e®.(X), forall De L(X) with [|D| <e.
Finally, Equations (4.8) and (4.9) imply that

i (00(4) Uor(B)) u{0}
So, we obtain
(70(A4) Uo7 (B)) \ {0} € o (A + B)\ {0}
The other inclusion, which allows us to achieve equality, is given in [8, Theorem 4.3].

(i7) Let pn ¢ 0..(A+ B) U {0}. Then, p — A — B — D € ®(X) means that
f—A—B—DedX)Nd,(X)

Now, by the hypothesis there exists Q € Jnv)_ 4 p_p,(X)NInvl_ 4 p p(X), and
by applying the results in statements (i) and (i) we infer that (u—A—B—D) € ®,.(X)
and (u — A — B — D) € &/(X), therefore (u — A — B — D) € ®(X). Also, using the
hypothesis that —pu'QAB € Epx(X), —u'ABQ € Epx(X) and AB = BA, we
obtain the following two conditions (4 — A)(u — B — D) € ®(X) and (p — B —
D)(u — A) € ®(X). Therefore, following Theorem 2.1 we obtain (u — A) € ®(X)
and (u — B — D) € ®(X) means that p ¢ (0.(A) Uo..(B))U{0}. Then, we get the
following inclusion

(0e(A) Uoee(B))\ {0} € oec(A+ B)\ {0},

The other inclusion, which allows us to achieve equality, is given in [8, Theorem
4.3]. OJ

By the same reasoning as in the above theorem, we obtain the result stated in the
following theorem.

Theorem 4.3. Let A, B € L(X) such that AB = BA and p € C*. Forall D € L(X)
with ||D|| < e, the following statements hold.
(1) If there exists Qy € Invf_ 4 5 p (X, such that —p~"ABQ; € Epx(X), then

ol (A+ B)\{0} = (0, .(A) Ual,(B)) \ {0}.
(1) If there exists Q, € Inv) 4 5 p(X) such that —pu~' Q. AB € Epx(X), then
o1 (A+ B)\ {0} = (o,(A) Ut (B)) \ {0},
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(111) If there emists Q@ € Invp 4 5 p(X) 0 Inv) 4 5 p(X) such that

—u'QAB € Epp(X) and —pu'ABQ € 893{()(), then
(

1]

)

Ouwe(A+ B)\ {0} = (0uw(A) Uowe(B)) \ {0}.
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