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A CHARACTERIZATION OF ESSENTIAL PSEUDOSPECTRA
INVOLVING POLYNOMIALLY RIESZ OPERATORS

BILEL ELGABEUR1

Abstract. In this article, we investigate the essential pseudospectra associated
with a broad class of operators known as polynomially Riesz operators, which ex-
tend the classical notion of Riesz operators introduced by Latrach et al. in [19]. We
establish several new results concerning the essential pseudospectra of closed linear
operators on Banach spaces under perturbations by polynomially Riesz operators.
In particular, we examine how these perturbations affect the left (respectively, right)
Weyl essential pseudospectra and the left (respectively, right) Fredholm essential
pseudospectra. Lastly, we provide a detailed characterization of the essential pseu-
dospectra of the sum of two bounded linear operators, emphasizing the influence of
polynomially Riesz perturbations on their spectral behavior.

1. Introduction

Eigenvalue problems hold significant importance across numerous scientific and
engineering disciplines. The primary goals when tackling these problems are to
extract and localize eigenvalues. However, traditional spectral analysis falls short
in achieving both objectives, as it can only identify eigenvalues without localizing
them. As a solution, researchers have introduced alternative methods such as the
pseudospectrum, first proposed by Varah [25]. The pseudospectrum has found wide-
ranging applications in numerous areas of mathematical physics, including engineering
(e.g., electrical engineering), aeronautics, ecology, and chemistry. In engineering, for
instance, eigenvalues can dictate the precision of a national power grid or an amplifier’s
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frequency response. In aeronautical engineering, eigenvalue analysis can help identify
whether the airflow across an aircraft wing exhibits laminar or turbulent behavior.
In ecological modeling, eigenvalues play a crucial role in assessing the stability of
equilibrium states within food web dynamics. In chemistry, they can establish energy
states in a stable hydrogen atom. In summary, the pseudospectrum concept has
demonstrated its value in addressing eigenvalue problems, allowing researchers to
accurately extract and localize eigenvalues, thus contributing to significant progress in
diverse areas of science and engineering. Motivated by the concept of pseudospectra, F.
Abdmouleh et al. [1] developed the notion of the pseudo Browder essential spectrum
for densely defined closed linear operators on Banach spaces. Later, in [2, 3], F.
Abdmouleh and B. Elgabeur introduced the concepts of pseudo left and right Fredholm
and Browder operators, and examined their associated spectra in the context of
bounded linear operators. A key part of their investigation focused on the stability
of these pseudo-essential spectra under perturbations by Riesz operators in Banach
spaces. They also analyzed the behavior of the pseudo left and right Fredholm and
Browder essential spectra for the sum of two bounded linear operators. In related
contributions, A. Ammar, A. Jeribi and K. Mahfoudhi, [4, 5] extended this line of
research by examining the essential pseudospectra of bounded operators and providing
a formulation of the pseudo-Fredholm operator concept along with its corresponding
essential pseudospectrum.

In this work, we extend the analysis of essential pseudospectra in Banach spaces to a
broader class of operators known as polynomially Riesz operators, which are considered
to be generalizations of some well-known classes Fredholm perturbations, polynomially
Fredholm perturbations, polynomially strictly singular operators and polynomially
compact operators. This class of operators has drawn significant attention from
various researchers due to its relevance in deriving meaningful results within spectral
theory. The reader may find the following references useful: Dehici et al. in [10], K.
Latrach et al. in [18], S. C. Živković Zlatanović et al. in [27]. The primary objective of
this paper is to generalize the stability results of essential pseudospectra under Riesz
operator perturbations, as established in [1–7], by considering perturbations through
polynomially Riesz operators acting on closed, densely defined linear operators. The
second aim of this work, is to describe the essential pseudospectrum of the sum of
two bounded linear operators with the new concept of polynomially Riesz operator.

Let us now outline the structure of this paper. In Section 2, we begin by recall-
ing some essential notations and definitions related to Fredholm operators and their
corresponding essential spectra. We also introduce the notion of polynomially Riesz
operators and present several preliminary results relevant to our study. Section 3 is
devoted to establishing new stability results and to deriving alternative characteriza-
tions of the left (respectively right) Weyl and Fredholm essential pseudospectra within
the framework of bounded linear operators on Banach spaces. Finally, in Section 4,
we present a main result concerning the essential pseudospectra of the sum of two
bounded linear operators, inspired by the theory of polynomially Riesz perturbations.
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2. Notations and Definitions

Let X1 and X2 be two Banach spaces. By an operator A1 from X1 into X2 we mean
a linear operator with domain D(A) ⊆ X1 and range contained in X2. We denote
by C(X1,X2) (resp., L(X1,X2)) the set of all closed, densely defined (resp., bounded)
linear operators from X1 to X2. The subset of all compact operators of L(X1,X2) is
designated by K(X1,X2). If A1 ∈ C(X1,X2), we write N(A1) ⊂ X1 and R(A1) ⊂ X2
for the null space and the range of A1. We set α(A1) := dim N(A1) and β(A) :=
codim R(A1). Let A1 ∈ C(X1,X2) with closed range. Then, A1 is a Φ+-operator
(A1 ∈ Φ+(X1,X2)) if α(A1) < +∞, and then A1 is a Φ−-operator (A1 ∈ Φ−(X1,X2))
if β(A) < +∞. Φ(X1,X2) = Φ+(X1,X2) ∩ Φ−(X1,X2) is the class of Fredholm
operators while Φ±(X1,X2) denotes the set Φ±(X1,X2) = Φ+(X1,X2) ∪ Φ−(X1,X2).
For A ∈ Φ(X1,X2), the index of A1 is defined by ind(A1) = α(A1) − β(A1). If
X1 = X2, then L(X1,X2),K(X1,X2),C(X1,X2), Φ+(X1,X2), Φ±(X1,X2) and Φ(X1,X2)
are replaced, respectively, by L(X1), K(X1), C(X1), Φ+(X1), Φ±(X1) and Φ(X1).
Let A1 ∈ C(X1), the spectrum of A1 will be denoted by σ(A1). The resolvent
set of A1, ρ(A1), is the complement of σ(A1) in the complex plane. A complex
number λ is in Φ+A1 , Φ−A1 , Φ±A or ΦA1 if λ − A1 is in Φ+(X1), Φ−(X1), Φ±(X1) or
Φ(X1), respectively. Let F ∈ L(X1,X2). F is called a Fredholm perturbation if
U + F ∈ Φ(X1,X2) whenever U ∈ Φ(X1,X2). F is called an upper (resp., lower)
Fredholm perturbation if U + F ∈ Φ+(X1,X2) (resp., U + F ∈ Φ−(X1,X2)) whenever
U ∈ Φ+(X1,X2) (resp., U ∈ Φ−(X1,X2)). The set of Weyl operators is defined
as W(X1,X2) = {A1 ∈ Φ(X1,X2) : ind(A1) = 0}. Sets of left and right Fredholm
operators, respectively, are defined as:

Φl(X1) :={A1 ∈ L(X1) : R(A1) is a closed and complemented subspace
of X1 and α(A1) < +∞},

Φr(X1) :={A1 ∈ L(X1) : N(A1) is a closed and complemented subspace
of X1 and β(A1) < +∞}.

An operator A1 ∈ L(X1) is left (right) Weyl if A1 is left (right) Fredholm operator
and ind(A1) ≤ 0 (ind(A1) ≥ 0). We use Wl(X1) (Wr(X1)) to denote the set of all
left (right) Weyl operators. It is known that the sets Φl(X1) and Φr(X1) are open
satisfying the following inclusions:

Φ(X) ⊂ Wl(X1) ⊂ Φl(X1) and Φ(X1) ⊂ Wr(X1) ⊂ Φr(X1).

The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations
are denoted by F(X1,X2), F+(X1,X2) and F−(X1,X2), respectively. In general, we
have

K(X1,X2) ⊆ F+(X1,X2) ⊆ F(X1,X2),
K(X1,X2) ⊆ F−(X1,X2) ⊆ F(X1,X2).
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If X = Y , we write F(X1), F+(X1) and F−(X1) for F(X1), F+(X1) and F−(X1), re-
spectively. Let Φb(X1,X2), Φb

+(X1,X2) and Φb
−(X1,X2) denote the sets Φ(X1,X2) ∩

L(X1,X2), Φ+(X1,X2)∩L(X1,X2) and Φ−(X1,X2)∩L(X1,X2), respectively. If in Defi-
nition 1.1 we replace Φ(X1,X2), Φ+(X1,X2) and Φ−(X1,X2) by Φb(X1,X2), Φb

+(X1,X2)
and Φb

−(X1,X2), we obtain the sets Fb(X1,X2), Fb
+(X1,X2) and Fb

−(X1,X2). These
classes of operators were introduced and investigated in [6]. In particular, it is shown
that Fb(X1,X2) is a closed subset of L(X1,X2) and Fb(X1) is a closed two-sided ideal
of L(X1). In general we have

K(X1,X2) ⊆ Fb
+(X1,X2) ⊆ Fb(X1,X2),

K(X1,X2) ⊆ Fb
−(X1,X2) ⊆ Fb(X1,X2).

Let A ∈ C(X1). It follows from the closeness of A1 that D(A1) endowed with the graph
norm ∥ · ∥A1 (∥x∥A1 = ∥x∥ + ∥A1x∥) is a Banach space denoted by XA1 . Clearly, for
x ∈ D(A1) we have ∥Ax∥ ⩽ ∥x∥A1 , so A1 ∈ L (XA1 ,X1) . Furthermore, we have the
obvious relations

α(Â1) = α(A1), β(Â1) = β(A1), R(Â1) = R(A1),
α(Â1 + Â2) = α(A1 + A2),(2.1)
β(Â1 + Â2) = β(A1 + A2) and R(Â1 + Â2) = R(A1 + A2).

In this paper we are concerned with the following essential spectra of A1 ∈ C(X1):

σe(A1) := {µ ∈ C : A1 − µ /∈ Φ(X1)} : the Fredholm spectrum of A1,

σl
e(A1) := {λ ∈ C : A1 − µ /∈ Φl(X1)} : the left Fredholm spectrum of A1,

σr
e(A1) := {λ ∈ C : A1 − µ /∈ Φr(X1)} : the right Fredholm spectrum of A1,

σw(A1) := {µ ∈ C : A1 − µ /∈ W(X1)} : the Weyl spectrum of A1,

σl
w(A1) := {µ ∈ C : A1 − µ /∈ Wl(X1)} : the left Weyl spectrum of A1,

σr
w(A1) := {µ ∈ C : A1 − λ /∈ Wr(X1)} : the right Weyl spectrum of A1,

σeap (A1) := C\ρeap (A1) : the essential approximate point spectrum of A1,

σeδ(A1) := C\ρeδ(A1) : the essential defect spectrum of A1,

where

ρeap (A1) := {µ ∈ C such that µ − A1 ∈ Φ+(X1) and i(µ − A1) ≤ 0}

and
ρeδ(A1) := {µ ∈ C such that µ − A1 ∈ Φ−(X1) and i(µ − A1) ≥ 0} .

The definition of pseudospectrum of a closed densely linear operator A1 for every
ε > 0 is given by:

σε(A1) := σ(A1) ∪
{

µ ∈ C :
∥∥∥(µ − A1)−1

∥∥∥ >
1
ε

}
.
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By convention, we write ∥(µ − A1)−1∥ = +∞ if (µ − A1)−1 is unbounded or nonexis-
tent, i.e., if µ is in the spectrum σ(A1). In [9], Davies defined another equivalent of
the pseudospectrum, one that is in terms of perturbations of the spectrum. In fact
for A1 ∈ C(X1), we have

σε(A1) :=
⋃

∥D∥<ε

σ(A1 + D).

Inspired by the notion of pseudospectra, Ammar and Jeribi in their works [4,5], aimed
to extend these results for the essential pseudo-spectra of bounded linear operators
on a Banach space and give the definitions of pseudo-Fredholm operator as follows:
for A1 ∈ L(X1) and for all D ∈ L(X1) such that ∥D∥ < ε we have A1 is called
a pseudo-upper (resp. lower) semi-Fredholm operator if A1 + D is an upper (resp.
lower) semi-Fredholm operator and it is called a pseudo semi-Fredholm operator if
A1 + D is a semi-Fredholm operator. A1 is called a pseudo-Fredholm operator if
A1 +D is a Fredholm operator. They are noted by Φε(X1) the set of pseudo-Fredholm
operators, by Φε

±(X1) the set of pseudo-semi-Fredholm operator and by Φε
+(X1) (resp.

Φε
−(X1)) the set of pseudo-upper semi-Fredholm (resp. lower semi-Fredholm) operator.

A complex number µ is in Φε
±A, Φε

+A1 , Φε
−A1 or Φε

A1 if µ − A1 is in Φε
±(X1), Φε

+(X1),
Φε

−(X1) or Φε(X1).
F. Abdmouleh and B. Elgabeur in [3] defining the concept of pseudo left (resp.

right)-Fredholm, for A1 ∈ L(X1) and for all D ∈ L(X1) such that ∥D∥ < ε we have
A1 is called a pseudo left (resp. right) Fredholm operator if A1 + D is an left (resp.
right) Fredholm operator they are denoted by Φε

l (X1) (resp. Φε
r(X1)) .

In this paper we are concerned with the following essential pseudospectra of A1 ∈
C(X1):

σe1,ε(A1) :=
{
µ ∈ C : µ − A1 /∈ Φε

+(X1)
}

= C\Φε
+A1 ,

σe2,ε(A1) :=
{
µ ∈ C : µ − A1 /∈ Φε

−(X1)
}

= C\Φε
−A,

σe3,ε(A1) :=
{
µ ∈ C : µ − A1 /∈ Φε

±(X1)
}

= C\Φε
±A1 ,

σe,ε(A1) := {µ ∈ C : µ − A1 /∈ Φε(X1)} = C\Φε
A1 ,

σeap,ε(A1) := σe2,ε(A1)
⋃

{µ ∈ C : ind(µ − A1 − D) > 0, for all ∥D∥ < ε} ,

σδ,ε(A1) := σe2,ε(A1)
⋃

{µ ∈ C : ind(µ − A1 − D) < 0, for all ∥D∥ < ε} ,

σl
e,ε(A1) := {µ ∈ C : A1 − µ /∈ Φε

l (X1)},

σr
e,ε(A1) := {µ ∈ C : A1 − µ /∈ Φε

r(X1)},

σl
W,ε(A1) := σl

e,ε(A1)
⋃

{µ ∈ C : ind(µ − A1 − D) > 0, for all ∥D∥ < ε},

σr
W,ε(A1) := σl

e,ε(A1)
⋃

{µ ∈ C : ind(µ − A1 − D) < 0, for all ∥D∥ < ε}.

Note that if ε tends to 0, we recover the usual definition of the essential spectra of a
closed operator A1. The subsets σe1 and σe2 are the Gustafson and Weidmann essential
spectra [12], σe3 is the Kato essential spectrum, [15] σe is the Wolf essential spectrum



286 B. ELGABEUR

[12], σe5 is the Schechter essential spectrum [23], σeap is the essential approximate
point spectrum [21], σeδ is the essential defect spectrum [22], σl

e(A) (resp. σr
e(A)) is

the left (resp. right) Fredholm essential spectra and σl
w(A1) (resp. σr

w(A1)) is the left
(resp. right) Weyl essential spectra [11].

As a concept, pseudospectra and essential pseudospectra are interesting because
they offer more information than spectra, especially about transients rather than
just asymptotic behavior. Moreover, they perform more efficiently than spectra in
terms of convergence and approximation. These include the existence of approximate
eigenvalues far from the spectrum and the instability of the spectrum even under small
perturbations. Various applications of pseudospectra and essential pseudospectra have
been developed as a result of the analysis of pseudospectra and essential pseudospectra.

We now list some of the known facts about left and right Fredholm operators in
Banach space which will be used in the sequel.

Proposition 2.1. ([14, Propositon 2.3]). Let X1,Y1 and Z1 be three Banach spaces.
(i) If A1 ∈ Φb(Y1,Z1) and T1 ∈ Φb

l (X1,Y1) (resp. T1 ∈ Φb
r(X1,Y1)), then A1T1 ∈

Φb
l (X1,Z1) (resp. A1T1 ∈ Φb

r(X1,Z1)).
(ii) If A1 ∈ Φb(Y1,Z1) and T ∈ Φb

l (X1,Y1) (resp. T1 ∈ Φb
r(X1,Y1)), then T1A1 ∈

Φb
l (X1,Z1) (resp. T1A1 ∈ Φb

r(X1,Z1)).

Theorem 2.1 ([20, 23]). Let X1,Y1 and Z1 be three Banach spaces, A1 ∈ L(Y1,Z1)
and T1 ∈ L(X1,Y1).

(i) If A1 ∈ Φb(Y1,Z1) and T1 ∈ Φb(X1,Y1), then AT ∈ Φb(X1,Z1) and ind(A1T1) =
ind(A1) + ind(T1).

(ii) If X1 = Y1 = Z1, A1T1 ∈ Φb(X1) and T1A1 ∈ Φb(X1), then A1 ∈ Φb(X1) and
T1 ∈ Φb(X1).

Lemma 2.1. ([11, Theorem 2.3]). Let A1 ∈ L(X1). Then,
(i) A1 ∈ Φb

l (X1) if and only if there exist Al ∈ L(X1) and K1 ∈ K(X1) such that
AlA1 = I − A1;

(ii) A1 ∈ Φb
r(X1) if and only if there exist Ar ∈ L(X1) and K1 ∈ K(X1) such that

A1Ar = I − K1.

Lemma 2.2. ([11, Theorem 2.7]). Let A1 ∈ L(X1). If A1 ∈ Φb
l (X1) (resp. Φb

r(X1))
and K1 ∈ K(X1), then A1 +K1 ∈ Φb

l (X1) (resp. Φb
r(X1)) and ind(A1 +K1) = ind(A1).

Lemma 2.3. ([11, Theorem 2.5]). Let A1,B1 ∈ L(X1). If A1 ∈ Φb
l (X1) (resp. Φb

r(X1))
and B1 ∈ Φb

l (X1) (resp. Φb
r(X1)), then A1B1 ∈ Φb

l (X1) (resp. Φb
r(X1)) and ind(A1 +

B1) = ind(A1) + ind(B1).

We close with the following lemma.

Lemma 2.4. ([8, Lemma 3.4]). Let A1 ∈ L(X1).
(i) If A1B1 ∈ Φb

l (X1), then B1 ∈ Φb
l (X1).

(ii) If A1B1 ∈ Φb
r(X1), then A1 ∈ Φb

r(X1).
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Definition 2.1. Let X1 be a Banach space.
(i) An operator A1 ∈ L(X1) is said to have a left Fredholm inverse if there exists

Al ∈ L(X1) such that I − AlA1 ∈ K(X1).
(ii) An operator A1 ∈ L(X1) is said to have a right Fredholm inverse if there exists

Ar ∈ L(X1) such that I − A1Ar ∈ K(X1).

We know by the classical theory of Fredholm operators, see for example [15], that A1
belong to Φ(X1) if it possesses a left, right or two-sided Fredholm inverse, respectively.

We define these sets InvF l
A(X1) and InvF r

A(X1) by:
InvF

A1,l(X1) :={Al ∈ L(X1) : Al is a left Fredholm inverse of A1},

InvF
A1,r(X1) :={Ar ∈ L(X1) : Ar is a right Fredholm inverse of A1}.

Definition 2.2 ([23]). Let X1 be a Banach space and F1 ∈ L(X1). F is called a Riesz
operator if µ − F1 ∈ Φ(X1) for all scalars µ ≠ 0, and denote by R(X1) the class of all
Riesz operators.

Definition 2.3. An minimal polynomial P is the unitary polynomial of smaller degree
which cancels an endomorphism, that is to say a linear application of a vector space
in itself.

We say that A1 ∈ L(X1) is polynomially Riesz if there exists a nonzero complex
polynomial p(·) such that the operator p(A1) ∈ R(X1). The set of polynomially Riesz
operators will be denoted by PR(X1).

If A1 belongs PR(X1), then there exists a nonzero polynomial p(·) such that p(A1) ∈
R(X1).

In the following, EPR(X1) will denote the subset of PR(X1) defined by:

EPR(X1) :=
{
A1 ∈ PR(X1) such that the minimal polynomial p(·)

of A1 satisfies p(−1) ̸= 0
}
.

Let us recall the following results which are fundamental for the proofs of the main
results.

Proposition 2.2. ([19, Lemma 2.3]). If F1 ∈ EPR(X1), then I + F1 ∈ Φ(X1) and
ind(I + F1) = 0.

3. Stability of Essential Pseudospectra by Means of Polynomially
Riesz Perturbations Operators

The following theorem provides a practical criterion for the stability of some essential
pseudospectra for perturbed linear operators.

Theorem 3.1. Let ε > 0 and consider A1,B1 ∈ C(X1). Assume that there are
A0,B0 ∈ L(X1) and R1, R2 ∈ EPR(X1) such that
(3.1) A1A0 = I − R1,
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(3.2) B1B0 = I − R2.

(i) If 0 ∈ ΦA1 ∩ ΦB1, A0 − B0 ∈ F+(X1) and ind(A1) = ind(B1), then

(3.3) σeap,ε(A1) = σeap,ε(B1).
(ii) If 0 ∈ ΦA1 ∩ ΦB1, A0 − B0 ∈ F−(X1) and ind(A1) = ind(B1), then

(3.4) σeδ,ε(A1) = σeδ,ε(B1).
(iii) If A0 − B0 ∈ F(X1), then

σe,ε(A1) = σe,ε(B1).
If, further, 0 ∈ ΦA1 ∩ ΦB1 such that ind(A1) = ind(B1), then

(3.5) σw,ε(A1) = σw,ε(B1).

Proof. Let µ be a complex number. Equations (3.1) and (3.2) imply
(3.6) (µ − A1 − D)A0 − (µ − B1 − D)B0 = R1 − R2 + (µ − D)(A0 − B0).

(i) Let µ /∈ σeap,ε(B1). Then, µ ∈ Φε
+B1 such that i(µ − B1 − D) ≤ 0, for all

D ∈ L(X1) such that ∥D∥ < ε. Since B1 + D is closed and D(B1 + D) = D(B1)
endowed with the graph norm is a Banach space denoted by XB1+D. We can regard
B1 + D an operator from XB1+D into X1. This will be denoted by B̂1 + D. Using
(2.1) we can show that

µ − B̂1 + D ∈ Φb
+(XB1 ,X1) and ind(µ − B̂1 + D) ≤ 0.

Moreover, since R2 ∈ EPR(X1), applying Proposition 2.2, we obtain I − R2 ∈ Φ(X1).
Applying [23, Theorem 2.7, p. 171] and (3.2), we get B0 ∈ Φb(X1, XB1).That is

(µ − B̂1 + D)B0 ∈ Φb
+(X1). Remembering that A0 − B0 ∈ F+(X1) and taking into

account (3.6), asserts that (µ − Â1 + D)A0 ∈ Φb
+(X1) and

(3.7) i((µ − Â1 + D)A0) = i((µ − B̂1 + D)B0).
A similar reasoning as before combining (2.1) and (3.1), Proposition 2.2 and [23,

Corollary 1.6, p. 166], [23, Theorem 2.6, p. 170] show that A0 ∈ Φb(X1,XA1), where
XA1 := (D(A1), ∥ · ∥A1). By [23, Theorem 1.4, p. 108] one sees that
(3.8) A0S = I − F on XA1 ,

where S ∈ L(XA1 ,X1) and F ∈ K(XA1), by (3.2) we have

(3.9) (µ − B̂1 + D)A0S = (µ − Â1 + D) − (µ − Â1 + D)F.

Combining the fact that S ∈ Φb(XA1 ,X1), with [23, Theorem 6.6, p. 129], we show
that (µ − Â1 + D)A0S ∈ Φb

+(XA1 ,X1). Following [23, Theorem 6.3, p. 128], we derive
(µ − Â1 + D) ∈ Φb

+(X1A1 ,X1). Thus, (2.1) asserts that
(3.10) (µ − A1 − D) ∈ Φ+(X1).
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On the other hand, the assumptions R1, R2 ∈ EPR(X1), (3.1), (3.2) and Proposition
2.1, [23, Theorem 2.3, p. 111] reveals that
ind(A1) + ind(A0) = ind(I − R1) = 0 and ind(B1) + ind(B0) = ind(I − R2) = 0,

since ind(A1) = ind(B1). That is ind(A0) = ind(B0). Using (3.7) and [20, Theorem
2.3, p. 111], we can write

ind(µ − A1 − D) + ind(A0) = ind(µ − B1 − D) + ind(B0).
Therefore,
(3.11) ind(µ − A1 − D) ≤ 0, for all D ∈ L(X1), ∥D∥ < ε.

Using (3.10) and (3.11), we conclude that
µ ̸∈ σeap,ε(A1).

Therefore, we prove the inclusion σeap,ε(A1) ⊂ σeap,ε(B1). The opposite inclusion
follows from symmetry and we obtain (3.3).

(ii) The proof of (3.4) may be checked in a similar way to that in (i). It suffices to
replace σeap,ε(·), Φ+(·), i(·) ≤ 0 [23, Theorem 6.6, p. 129], [23, Theorem 6.3, p. 128],
by σeδ,ε(·), Φ−(·), i(·) ≥ 0 [20, Theorem 5 (i), p. 150], [23, Theorem 6.7, p. 129],
respectively. The details are therefore omitted.

(iii) If µ /∈ σe,ε(B1), then µ−B1 −D ∈ Φ(X). Since B1 is closed, its domain D(B1)
becomes a Banach space XB1 for the graph norm ∥ · ∥B1 . The use of (2.1) leads to
µ − B̂1 + D ∈ Φb(XB1 ,X1). Moreover, (3.2), Proposition 2.1 and [23, Theorem 5.13],
reveal that B0 ∈ Φb(X1,XB1) and consequently (µ − B̂1 + D)B0 ∈ Φb(X1). Following
with the assumption, (3.6) and [23, Theorem 5.13], lead to estimate (µ−Â1 + D)A0 ∈
Φb(X1) with

(3.12) ind
(
(µ − Â1 + D)A0

)
= ind

(
(µ − B̂1 + D)B0

)
.

Since A1 ∈ C(X1), proceeding as above, (3.1) implies that A0 ∈ Φb(X1,XA1). By [23,
Theorem 5.4], we can write
(3.13) A10S = I − F, on XA1 ,

where S ∈ L(XA1 ,X1) and F ∈ F(XA1). Taking into account (3.13) we infer that

(µ − Â1 + D)A0S = (µ − Â + D) − (µ − Â1 + D)F.

Therefore, since S ∈ Φb(XA1 ,X1), the use of [23, Theorem 6.6], amounts to

(µ − Â1 + D)A0S ∈ Φb(XA,X1).

Applying [23, Theorem 6.3], we prove that (µ − Â1 + D) ∈ Φb(XA1 ,X1) and conse-
quently,

(µ − A1 − D) ∈ Φ(X1).
Thus, µ /∈ σe,ε(A1). This implies that σe,ε(A1) ⊂ σe,ε(B1). Conversely, if µ /∈ σe,ε(A1),
we can easily derive the opposite inclusion.
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Now, we prove (3.5). If µ /∈ σw,ε(B1), then µ ∈ Φε
B and i(µ − B1 − D) = 0,

for all D ∈ L(X1) with ∥D∥ < ε. On the other hand, since R1, R2 ∈ EPR(X1) and
ind(A1) = ind(B1) = 0, using the Atkinson theorem, we obtain ind(A0) = ind(B1) =
0. This together with (3.12) gives ind(µ− Â1 + D) = ind(µ− B̂1 + D). Consequently,
ind(µ − A1 − D) = 0, for all D ∈ L(X1) with ∥D∥ < ε. Hence, µ /∈ σw,ε(A1),
which proves the inclusion σw,ε(A1) ⊂ σw,ε(B1). The opposite inclusion follows by
symmetry. □

In the following theorems we give some perturbation results of the pseudo left,
pseudo right Fredholm and pseudo-left, pseudo-right Weyl spectra for bounded linear
operators in Banach space.

Theorem 3.2. Let A1 and B1 be two operators in L(X1) and µ ∈ C. For all
D ∈ L(X1) such that ∥D∥ < ε, the following statements hold.

(i) Assume that for every µ satisfying

µ − A1 ∈ Φl(X1),
there exists Al ∈ InvF

µ−A1−D,l(X1) such that B1Al ∈ EPR(X1). Then,

σl
e,ε(A1 + B1) ⊆ σl

e,ε(A1).
(ii) Assume that for every µ satisfying µ − A1 ∈ Φr(X1), there exists Ar ∈

InvF
µ−A1−D,r(X1) such that ArB1 ∈ EPR(X1). Then,

σr
e,ε(A1 + B1) ⊆ σr

e,ε(A1).

Proof. (i) Let µ /∈ σleft
e,ε (A1), µ −A1 − D ∈ Φε

l (X1). As Al is a left Fredholm inverse of
µ − A1 − D, for all D ∈ L(X1) such that ∥D∥ < ε, then, by Lemma 2.1, there exists
a compact operator K1 ∈ K(X1) such that

Al(µ − A1 − D) + K1 = I.

Then, we can write
(3.14) µ − A1 − B1 − D = (I − B1Al) (µ − A1 − D) − B1K1.

Using the fact that B1Al ∈ EPR(X1) and according to Proposition 2.2, we have
I − B1Al ∈ Φ(X1). Consequently, by Lemma 2.3, we get

(I − B1Al) (µ − A1 − D) ∈ Φl(X1), for all D ∈ L(X1), ∥D∥ < ε.

Thus, combining the fact that B1K1 ∈ K(X1) with the use of (3.14) and Lemma 2.2,
we have µ − A1 − B1 − D ∈ Φl(X1), for all D ∈ L(X1) such that ∥D∥ < ε. Therefore,
µ /∈ σleft

e,ε (A1 + B1) as required.
(ii) Let µ /∈ σright

e,ε (A1). Then, µ − A1 − D ∈ Φr(X1), for all D ∈ L(X1) such that
∥D∥ < ε. Since Ar is a right Fredholm inverse of µ − A1 − D. From Lemma 2.1 we
infer there exists a compact operator K1 ∈ K(X1) such that

(µ − A1 − D)Ar = I − K1, for all D ∈ L(X1), ∥D∥ < ε.
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Then, we can write µ − A1 − B1 − D in the following form
(3.15)
µ − A1 − B1 − D = (µ − A1 − D) (I − ArB1) − K1B1, for all D ∈ L(X1), ∥D∥ < ε.

Since ArB1 ∈ EPR(X1) then, according to Proposition 2.2, we have I −ArB1 ∈ Φ(X1).
Consequently, by Lemma 2.3, we get

(µ − A1 − D) (I − ArB1) ∈ Φr(X1), for all D ∈ L(X1), ∥D∥ < ε.

On the other hand, from (3.15) and Lemma 2.2 and the fact B1K1 ∈ K(X1) we show
that µ − A1 − B1 − D ∈ Φr(X1), for all D ∈ L(X1) and ∥D∥ < ε. We deduce that
µ /∈ σright

e,ε (A1 + B1). □

Theorem 3.3. Let A1 and B1 be two operators in L(X1) and µ ∈ C. For all
D ∈ L(X1) with ∥D∥ < ε the following statements hold.

(i) Assume that for every µ satisfying µ − A1 ∈ Φl(X1), there exists

Al ∈ InvF
µ−A1−D,l(X1)

such that B1Al ∈ EPR(X1). Then,

σl
w,ε(A1 + B1) ⊆ σl

w,ε(A1).

(ii) Assume that for every µ satisfying µ − A1 ∈ Φr(X1), there exists Ar ∈
InvF

µ−A1−D,r(X1) such that ArB1 ∈ EPR(X1). Then,

σr
w,ε(A1 + B1) ⊆ σr

w,ε(A1).

Proof. (i) Assume that µ /∈ σl
w,ε(A1). Then, we have µ − A1 − D ∈ Φl(X1) and

ind(µ − A1 − D) ≤ 0. A similar reasoning as above gives µ − A1 − B1 − D ∈ Φl(X1)
and it suffices to prove that ind(µ − A1 − B1 − D) ≤ 0. Since B1K1 ∈ K(X1), then
using (3.14) together with Lemmas 2.2 and 2.3, we obtain that

ind(µ − A1 − B1 − D) = ind (I − B1Al) + ind(µ − A1 − D).

Now, since B1Al ∈ EPR(X1), we get by Proposition 2.2, that i (I − B1Al) = 0. We
deduce that

ind(µ − A1 − B1 − D) = ind (µ − A1 − D) ≤ 0.

Finally, we conclude that µ − A1 − B1 − D ∈ Wl(X1), which entails that µ /∈
σl

w,ε(A1 + B1).
(ii) With the same reasoning of (i). Let µ /∈ σr

w,ε(A1). Then, we have µ −A1 − D ∈
Φr(X1) and i(µ − A1 − D) ≥ 0. Proceeding as the proof above, we establish that
µ−A1 −B1 −D ∈ Φr(X1) and ind(µ−A1 −B1 −D) ≥ 0. Therefore, µ−A1 −B1 −D ∈
Wr(X1) and we deduce that µ /∈ σr

w,ε(A1 + B1). □

Remark 3.1. The results of Theorems 3.1, 3.2 and 3.3 are an extension and an im-
provement of the results in [1–5] to a large class of polynomially Riesz perturbation
operators.
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4. Characterization Essential Spectrum of Two Linears Bounded
Operators

The aim of this section is to establish new criteria for investigating the spectral
properties of the sum of two bounded linear operators. We begin by stating the
following lemma, which will be used in the sequel.

Lemma 4.1. ([8, Lemma 4.1]) Let X be a Banch space and A ∈ L(X).
(i) If Cσl

e(A) is connected, then σl
e(A) = σl

w(A).
(ii) If Cσr

e(A) is connected, then σr
e(A) = σr

w(A).

Theorem 4.1. Let A, B ∈ L(X) and µ ∈ C∗. For all D ∈ L(X) with ∥D∥ < ε, the
following statements hold.

(i) Assume that the subsets Cσl
e(A) and Cσl

e(B) are connected, −µ−1ABQl ∈
EPR(X) and −µ−1BAQl ∈ EPR(X), for every Ql ∈ InvF

µ−A−B−D,l(X). Then, we have(
σl

w(A) ∪ σl
w,ε(B)

)
\ {0} ⊆ σl

w,ε(A + B) \ {0}.

(ii) Assume that the subsets Cσr
e(A) and Cσr

e(B) are connected, −µ−1QrAB ∈ EPR(X)
and −µ−1QrBA ∈ EPR(X), for every Qr ∈ InvF

µ−A−B−D,r(X). Then, we have(
σr

w(A) ∪ σr
w,ε(B)

)
\ {0} ⊆ σr

w,ε(A + B) \ {0}.

(iii) Assume that the subsets Cσl
e(A), Cσl

e(B), Cσr
e(A) and Cσr

e(B) are connected,
−µ−1ABQl ∈ EPR(X), −µ−1BAQl ∈ EPR(X), −µ−1QrAB ∈ EP R(X) and

−µ−1QrBA ∈ EP R(X),
for Ql ∈ InvF

µ−A−B−D,l(X) and Qr ∈ InvF
µ−A−B−D,r(X). Then, we have

(σw(A) ∪ σw,ε(B)) \ {0} ⊆ σw,ε(A + B) \ {0}.

Proof. First, we note two equalities that will be used repeatedly
(µ − A)(µ − B − D) =A(B + D) + µ(µ − A − B − D),(4.1)
(µ − B − D)(µ − A) =(B + D)A + µ(µ − A − B − D).(4.2)

(i) Let µ /∈ σl
w,ε(A+B)∪{0} so we have µ−A−B−D ∈ Φl(X) and i(µ−A−B−D) ≤

0. Then, following Lemma 2.1, there exist Ql ∈ L(X) and K ∈ K(X) such that
Ql(µ − A − B − D) = I − K. So, when we use (4.1) we obtain

(µ − A)(µ − B − D) =A(B + D) + µ(µ − A − B − D)
=AB (Ql(µ − A − B − D) + K) + µ(µ − A − B − D)
= (ABQl + µI) (µ − A − B − D) + ABK

=µ
(
µ−1ABQl + I

)
(µ − A − B − D) + ABK.

Since µ (µ−1ABQl + I) ∈ Φ(X) and (µ − A − B − D) ∈ Φl(X) it follows from
Proposition 2.1 that µ (µ−1ABQl + I) (µ−A−B −D) ∈ Φl(X). Since ABK ∈ K(X),



A CHARACTERIZATION OF ESSENTIAL PSEUDOSPECTRA 293

this implies by the use of Lemma 2.2 that

µ
(
µ−1ABQl + I

)
(µ − A − B − D) + ABQlK ∈ Φl(X).

So, (µ − A)(µ − B − D) ∈ Φl(X) and as a direct consequence of Lemma 2.4 we obtain
(4.3) µ − B − D ∈ Φl(X), for all D ∈ L(X), ∥D∥ < ε.

In the other hand, when we use the (4.2) we have
(µ − B − D)(µ − A) =BA + µ(µ − A − B − D),

=BA (Ql(µ − A − B − D) + K) + µ(µ − A − B − D)
= (BAQl + µI) (µ − A − B − D) + BAK

=µ
(
µ−1BAQl + I

)
(µ − A − B − D) + BAK.

Since µ (µ−1BAQl + I) ∈ Φ(X) and (µ − A − B − D) ∈ Φl(X) it follows, from
Proposition 2.1, that

µ
(
µ−1BAQl + I

)
(µ − A − B − D) ∈ Φl(X).

Obviously, since BAK ∈ K(X) and applying Lemma 2.2, we find that

µ
(
µ−1BAQl + I

)
(µ − A − B − D) + BAK ∈ Φl(X).

So, (µ − B − D)(µ − A) ∈ Φl(X). Therefore, using Lemma 2.4, we obtain
(4.4) µ − A ∈ Φl(X).
Now, to check the index we must have a discussion according to the sign, thus using
the above we have

ind(µ − A) + ind(µ − B − D) = ind(µ − A − B − D) ≤ 0.

Case 1: ind(µ − A) ≤ 0.
Using Lemma 4.1, the index ind(µ − B − D) must be negative. Therefore, adding

this condition to (4.3) and (4.4) we obtain

µ /∈
(
σl

w(A) ∪ σl
w,ε(B)

)
∪ {0}.

Case 2: ind(µ − B − D) ≤ 0.
Following Lemma 4.1, the index ind(µ − A) must be negative. Then, adding this

condition to (4.3) and (4.4) we assert

µ /∈
(
σl

w(A) ∪ σl
w,ε(B)

)
∪ {0}.

Case 3: ind(µ − A) > 0.
Following Lemma 4.1, the index ind(µ−B−D) should be positive which contradicts

the fact that ind(µ − A − B − D) ≤ 0.
Case 4: ind(µ − B − D) > 0.
Following Lemma 4.1, the index i(µ − A) must be positive which contradicts the

fact that ind(µ − A − B − D) ≤ 0.
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(ii) Let µ /∈ σr
w,ε(A + B) ∪ {0}. Then, µ − A − B − D ∈ Φr(X) and i(µ − A −

B − D) ≤ 0. So, by Lemma 2.1, there exist Qr ∈ L(X) and K ∈ K(X) such that
(µ − A − B − D)Qr = I − K. So, following (4.1) we have

(µ − A)(µ − B − D) =AB + µ(µ − A − B − D)
= ((µ − A − B − D)Qr + K) AB + µ(µ − A − B − D)
=(µ − A − B − D) (QrAB + µI) + ABK

=µ(µ − A − B − D)
(
µ−1QrAB + I

)
+ ABK.

Since µ (µ−1QrAB + I) ∈ Φ(X) and (µ − A − B − D) ∈ Φr(X), it follows by Propo-
sition 2.1 that

µ
(
µ−1QrAB + I

)
(µ − A − B − D) ∈ Φr(X).

Since ABK ∈ K(X), then

µ
(
µ−1QrAB + I

)
(µ − A − B − D) + ABK ∈ Φr(X).

So, (µ − A)(µ − B − D) ∈ Φr(X), following Lemma 2.4 we infer that
µ − A ∈ Φr(X).

In the other hand, the use of (4.2) assert
(µ − B − D)(µ − A) =BA + µ(µ − A − B − D)

=BA ((µ − A − B − D)Qr + K) BA + µ(µ − A − B − D)
=(µ − A − B − D) (QrBA + µI) + KBA

=µ(µ − A − B − D)
(
µ−1QrBA + I

)
+ KBA.

By hypothesis (µ−1QrBA + I) ∈ Φ(X) and (µ − A − B − D) ∈ Φr(X) we have by
Proposition 2.1

µ(µ − A − B − D)
(
µ−1QrBA + I

)
∈ Φr(X).

Since KBA ∈ K(X), we obtain

µ(µ − A − B − D)
(
µ−1QrBA + I

)
+ KBA ∈ Φr(X).

So, (µ − B − D)(µ − A) ∈ Φr(X). Then, the use of Lemma 2.4 infer that
(4.5) µ − B − D ∈ Φr(X), for all D ∈ L(X) with ∥D∥ < ε.

Now, to check the index we must have a discussion according to the sign. Thus, using
the above we have

ind(µ − A) + ind(µ − B − D) = ind(µ − A − B − D) ≥ 0.

Case 1: ind(µ − A) ≥ 0.
Using Lemma 4.1, the index ind(µ − B − D) must be positive. Therefore, adding

this condition to (3.8) and (4.5) we get

µ /∈
(
σr

w(A) ∪ σr
w,ε(B)

)
∪ {0}.
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Case 2: ind(µ − B − D) ≥ 0.
Following Lemma 4.1, the index ind(µ − A) must be positive. Then adding this

condition to (4.3) and (4.4) we obtain

µ /∈
(
σr

w(A) ∪ σr
w,ε(B)

)
∪ {0}.

Case 3: ind(µ − A) < 0.
Following Lemma 4.1, the index i(µ − B − D) should be negative which contradicts

the fact that ind(µ − A − B − D) ≥ 0.
Case 4: ind(µ − B − D) < 0.
Following Lemma 4.1, the index ind(µ − A) should be negative which contradicts

the fact that ind(µ − A − B − D) ≥ 0.
(iii) Let µ /∈ σw,ε(A+B)∪{0}. Therefore, µ−A−B−D ∈ Φ(X) and ind(µ−A−B−

D) = 0 then there exist Ql, Qr ∈ L(X) and K ∈ K(X) such that Ql(µ−A−B −D) =
I − K and (µ − A − B − D)Qr = I − K. Now, according to items (i) and (ii) we get

(σw(A) ∪ σw,ε(B)) \ {0} ⊆ σw,ε(A + B) \ {0}.

□

Theorem 4.2. Let A, B ∈ L(X) such that AB = BA and µ ∈ C∗. For all D ∈ L(X)
with ∥D∥ < ε, the following statements hold.

(i) If there exists Ql ∈ InvF
µ−A−B−D,l(X) such that −µ−1ABQl ∈ EPR(X), then

σl
e,ε(A + B) \ {0} =

(
σl

e(A) ∪ σl
e,ε(B)

)
\ {0}.

(ii) If there exists Qr ∈ InvF
µ−A−B−D,r(X) such that −µ−1QrAB ∈ EPR(X), then

σr
e,ε(A + B) \ {0} =

(
σr

e(A) ∪ σr
e,ε(B)

)
\ {0}.

(iii) If there exists Q ∈ InvF
µ−A−B−D,l(X) ∩ InvF

µ−A−B−D,r(X) such that −µ−1QAB

∈ EPR(X) and −µ−1ABQ ∈ EPR(X), then
σe,ε(A + B) \ {0} = (σe(A) ∪ σe,ε(B)) \ {0}.

Proof. (i) Let µ /∈ σl
e,ε(A + B) ∪ {0}. Then, µ − A − B − D ∈ Φl(X).

We assume there exists Ql ∈ InvF
µ−A−B−D,l(X). Thus, using (4.1), we have

(µ − A)(µ − B − D) =A(B + D) + µ(µ − A − B − D)
=AB (Ql(µ − A − B − D) + K) + µ(µ − A − B − D)
= (ABQl + µI) (µ − A − B − D) + ABK

=µ
(
µ−1ABQl + I

)
(µ − A − B − D) + ABK.

Obviously, −µ−1ABQl ∈ EP R(X) then by Proposition 2.2 we infer that µ−1ABQl+I ∈
Φ(X). Therefore, by Lemma 2.3, we obtain (µ−1ABQl + µI) (µ−A−B−D) ∈ Φl(X).
Since ABK ∈ K(X) and by applying Lemma 2.2 we obtain

µ
(
µ−1ABQl + I

)
(µ − A − B − D) + ABK ∈ Φl(X).
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We conclude that

(µ − A)(µ − B − D) ∈ Φl(X), for all D ∈ L(X) with ∥D∥ < ε.

Hence, by Lemma 2.4 we deduce that

(4.6) (µ − B − D) ∈ Φl(X), for all D ∈ L(X) with ∥D∥ < ε.

On the other hand, using the fact that AB = BA and according to (4.2) we observe
that

(µ − B − D)(µ − A) =BA + µ(µ − A − B − D)
=AB + µ(µ − A − B − D)
=AB (Ql(µ − A − B − D) + K) + µ(µ − A − B − D)
= (ABQl + µI) (µ − A − B − D) + ABK

=µ
(
µ−1ABQl + I

)
(µ − A − B − D) + ABK.

Using the same reasoning we conclude that (µ − B − D)(µ − A) ∈ Φl(X). Therefore,
by Lemma 2.4 we deduce that

(4.7) (µ − A) ∈ Φl(X).

Finally, Equations (4.6) and (4.7) imply that µ /∈
(
σl

e(A) ∪ σl
e,ε(B)

)
∪ {0}. So, we

obtain (
σl

e(A) ∪ σl
e,ε(B)

)
\ {0} ⊂ σl

e,ε(A + B) \ {0}.

The other inclusion, which allows us to achieve equality, is given in [8, Theorem 4.3].
(ii) Let µ /∈ σr

e,ε(A + B) ∪ {0}. Then, µ − A − B − D ∈ Φr(X), for all D ∈ L(X)
and ∥D∥ < ε. We assume there exists Qr ∈ InvF

µ−A−B−D,r(X). Thus,

(µ − A)(µ − B − D) =AB + µ(µ − A − B − D)
= ((µ − A − B − D)Qr + K) AB + µ(µ − A − B − D)

=(µ − A − B − D)µ
(
µ−1QrAB + I

)
+ KAB.

Evidently, −µ−1QrAB ∈ EPR(X) and by applying Proposition 2.2 we deduce that
µ−1QrAB + I ∈ Φ(X). Since, KAB is compact, then by Lemma 2.2 we obtain

(µ − A − B − D)µ
(
µ−1QrAB + I

)
+ KAB ∈ Φl(X).

Consequently, we have (µ − A)(µ − B − D) ∈ Φr(X) and by Lemma 2.4 we infer that

(4.8) (µ − A) ∈ Φr(X).
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Further, we have AB = BA, so,
(µ − B − D)(µ − A) =BA + µ(µ − A − B − D)

=AB + µ(µ − A − B − D)
= ((µ − A − B − D)Qr + K) AB + µ(µ − A − B − D)

=(µ − A − B − D)µ
(
µ−1QrAB + I

)
+ KAB.

Using the same reasoning we conclude that (µ − B − D)(µ − A) ∈ Φr(X). Then, by
Lemma 2.4 we deduce that
(4.9) (µ − B − D) ∈ Φr(X), for all D ∈ L(X) with ∥D∥ < ε.

Finally, Equations (4.8) and (4.9) imply that

µ /∈
(
σr

e(A) ∪ σr
e,ε(B)

)
∪ {0}.

So, we obtain (
σr

e(A) ∪ σr
e,ε(B)

)
\ {0} ⊂ σr

e,ε(A + B) \ {0}.

The other inclusion, which allows us to achieve equality, is given in [8, Theorem 4.3].
(iii) Let µ /∈ σe,ε(A + B) ∪ {0}. Then, µ − A − B − D ∈ Φ(X) means that

µ − A − B − D ∈ Φl(X) ∩ Φr(X).
Now, by the hypothesis there exists Q ∈ InvF

µ−A−B−D,l(X) ∩ InvF
µ−A−B−D,r(X), and

by applying the results in statements (i) and (ii) we infer that (µ−A−B−D) ∈ Φr(X)
and (µ − A − B − D) ∈ Φl(X), therefore (µ − A − B − D) ∈ Φ(X). Also, using the
hypothesis that −µ−1QAB ∈ EPR(X), −µ−1ABQ ∈ EPR(X) and AB = BA, we
obtain the following two conditions (µ − A)(µ − B − D) ∈ Φ(X) and (µ − B −
D)(µ − A) ∈ Φ(X). Therefore, following Theorem 2.1 we obtain (µ − A) ∈ Φ(X)
and (µ − B − D) ∈ Φ(X) means that µ /∈ (σe(A) ∪ σe,ε(B)) ∪ {0}. Then, we get the
following inclusion

(σe(A) ∪ σe,ε(B)) \ {0} ⊆ σe,ε(A + B) \ {0}.

The other inclusion, which allows us to achieve equality, is given in [8, Theorem
4.3]. □

By the same reasoning as in the above theorem, we obtain the result stated in the
following theorem.

Theorem 4.3. Let A, B ∈ L(X) such that AB = BA and µ ∈ C∗. For all D ∈ L(X)
with ∥D∥ < ε, the following statements hold.

(i) If there exists Ql ∈ InvF
µ−A−B−D,l(X, such that −µ−1ABQl ∈ EPR(X), then

σl
w,ε(A + B) \ {0} =

(
σl

w,ε(A) ∪ σl
w,ε(B)

)
\ {0}.

(ii) If there exists Qr ∈ InvF
µ−A−B−D,r(X) such that −µ−1QrAB ∈ EPR(X), then

σr
w,ε(A + B) \ {0} =

(
σr

w(A) ∪ σr
w,ε(B)

)
\ {0}.
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(iii) If there exists Q ∈ InvF
µ−A−B−D,l(X) ∩ InvF

µ−A−B−D,r(X) such that
−µ−1QAB ∈ EPR(X) and −µ−1ABQ ∈ EPR(X), then

σw,ε(A + B) \ {0} = (σw(A) ∪ σw,ε(B)) \ {0}.
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