
Kragujevac Journal of Mathematics
Volume 49(4) (2025), Pages 527–540.

k−FRACTIONAL OSTROWSKI TYPE INEQUALITIES VIA
(s, r)−CONVEX

ALI HASSAN1 AND ASIF R. KHAN2

Abstract. We introduce the generalized class named it the class of (s, r)−convex
in mixed kind, this class includes s−convex in 1st and 2nd kind, P−convex, quasi
convex and the class of ordinary convex. Also, we state the generalization of
the classical Ostrowski inequality via k−fractional integrals, which is obtained for
functions whose first derivative in absolute values is (s, r)−convex in mixed kind.
Moreover, we establish some Ostrowski type inequalities via k−fractional integrals
and their particular cases for the class of functions whose absolute values at certain
powers of derivatives are (s, r)−convex in mixed kind by using different techniques
including Hölder’s inequality and power mean inequality. Also, various established
results would be captured as special cases. Moreover, some applications in terms of
special means are given.

1. Introduction

In almost every field of science, inequalities play an important role. Although it is
very vast discipline but our focus is mainly on Ostrowski type inequalities. In 1938,
Ostrowski established the following interesting integral inequality for differentiable
mappings with bounded derivatives. This inequality is well known in the literature
as Ostrowski inequality which is stated as follows.

Key words and phrases. Ostrowski inequality, convex function, power mean inequality, Hölder’s
inequality.
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Theorem 1.1 ([14]). Let f : [a, b] → R be differentiable function on (a, b), |f ′(t)| ≤ M,
for all t ∈ (a, b). Then

(1.1)
∣∣∣∣∣f(x) − 1

b − a

∫ b

a
f(t)dt

∣∣∣∣∣ ≤ M(b − a)
1

4 +
(

x − a+b
2

b − a

)2 ,

for all x ∈ (a, b).

Also, one can see the numerous variants and applications in [5]-[11]. Nowadays,
with the increasing demand of researchers for the study of natural phenomena, the
use of fractional differential operators and fractional differential equations has become
an effective means to achieve this goal. Compared with integer order operators,
fractional operators, which can simulate natural phenomena better, are a class of
operators developed in recent years. This kind of operators have expanded and have
been widely used in modeling real-world phenomena such as biomathematics, electrical
circuits, medicine, disease transmission and control.

On other hand convexity is very simple and ordinary concept. Due to its massive
applications in industry and business, convexity has a great influence on our daily life.
In the solution of many real world problems the concept of convexity is very decisive.
The problems faced in constrained control and estimation are convex. Geometrically,
a real valued function is said to be convex if the line segment segment joining any two
of its points lies on or above the graph of the function in Euclidean space. First we
present the important classes of convex functions from literature.

Definition 1.1 ([3]). The function g : I → R, I ⊂ (0, ∞), is convex, if

g (tx + (1 − t)y) ≤ tg(x) + (1 − t)g(y),

for all x, y ∈ I, t ∈ [0, 1].

Definition 1.2 ([15]). Let function s ∈ (0, 1], the g : I → [0, ∞), I ⊂ (0, ∞), is
s−convex in 1st kind, if

g (tx + (1 − t)y) ≤ tsg(x) + (1 − ts)g(y),

for all x, y ∈ I, t ∈ [0, 1].

Definition 1.3 ([3]). The g : I → [0, ∞), I ⊂ (0, ∞), is quasi convex, if

g (tx + (1 − t)y) ≤ max{g(x), g(y)},

for all x, y ∈ I, t ∈ [0, 1].

Definition 1.4 ([15]). Let s ∈ (0, 1], the function g : I → [0, ∞), I ⊂ (0, ∞), is
s−convex in 2nd kind, if

g (tx + (1 − t)y) ≤ tsg(x) + (1 − t)sg(y),

for all x, y ∈ I, t ∈ [0, 1].
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Definition 1.5 ([3]). The function g : I → [0, ∞), I ⊂ (0, ∞), is a P−convex, if
g(x) ≥ 0 and for all x, y ∈ I and t ∈ [0, 1],

g (tx + (1 − t)y) ≤ g(x) + g(y).
An important area in the field of applied and pure mathematics is the integral

inequality. As it is known, inequalities aim to develop different mathematical meth-
ods. Nowadays, we need to seek accurate inequalities for proving the existence and
uniqueness of the mathematical methods. The concept of convexity plays a strong
role in the field of inequalities due to the behavior of its definition and its properties.
Furthermore, there is a strong correlation between convexity and symmetry concepts.
Definition 1.6 ([12]). The Riemann-Liouville integrals Iε

a+f and Iε
b−f of f ∈ L1([a, b])

having order ε > 0 with 0 ≤ a < b are defined by

Iε
a+f(x) = 1

Γ (ε)

∫ x

a

f(t)
(x − t)1−ε dt, x > a,

and
Iε

b−f(x) = 1
Γ (ε)

∫ b

x

f(t)
(t − x)1−ε dt, x < b,

respectively. Here Γ (ε) =
∫∞

0 e−uuε−1du is the Gamma function and I0
a+f(x) =

I0
b−f(x) = f(x). We also make use of Euler’s beta function, which is for x, y > 0

defined as
B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt = Γ(x)Γ(y)

Γ(x + y) .

Definition 1.7 ([12]). The k−fractional integrals kJε
a+f and kJε

b−f of f ∈ L1([a, b])
having order ε > 0 with 0 ≤ a < b, k > 0 are defined by

kJε
a+f(x) = 1

kΓk(ε)

∫ x

a

f(t)
(x − t)1− ε

k
dt, x > a,

and
kJε

b−f(x) = 1
kΓk(ε)

∫ b

x

f(t)
(t − x)1− ε

k
dt, x < b,

respectively. Here Γk(ε) =
∫∞

0 e− uk

k uε−1du is the generalized gamma function and
1J0

a+f(x) = 1J
0
b−f(x) = f(x).

Throught this paper, we denote

Yf (ε, k, a, x, b) =
(x − a)

ε
k + (b − x)

ε
k

(b − a)

 f(x) − kΓk(ε + 1)
b − a

(
kJε

x−f(a) + kJε
x+f(b)

)
,

Zf (ε, x, a, b) =
(

(x − a)ε + (b − x)ε

b − a

)
f(x) − Γ (ε + 1)

b − a
(Iε

x−f(a) + Iε
x+f(b)) ,

εκb
a(x) =

(
(x − a)ε+1 + (b − x)ε+1

b − a

)
.
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In order to prove our main results we need the following lemma.

Lemma 1.1 ([12]). Let f : I → R, I ⊂ (0, ∞), be an absolutely continuous function
and a, b ∈ I, a < b. If f ′ ∈ L1[a, b], ε, k > 0, then

Yf (ε, k, a, x, b) =(x − a) ε
k

+1

b − a

∫ 1

0
t

ε
k f ′ (tx + (1 − t)a) dt

− (b − x) ε
k

+1

b − a

∫ 1

0
t

ε
k f ′ (tx + (1 − t)b) dt.

Theorem 1.2 ([12]). Let f : I → R be differentiable mapping on I0, with a, b ∈ I, a <
b, f ′ ∈ L1[a, b] and for ε, k > 1, Montgomery identity for k−fractional integrals holds:

f(x) = kΓk(ε)
b − a

(b − x)1− ε
k

kJε
af(b) − kJ

ε−1
a (P1(x, b)f(b)) + kJ

ε

a(P1(x, b)f ′(b)),

where P1(x, t) is the fractional Peano Kernel defined by:

P1(x, t) =


t−a
b−a

· kΓk(ε)
(b−x)

ε
k

−1 , if t ∈ [a, x],
t−b
b−a

· kΓk(ε)
(b−x)

ε
k

−1 , if t ∈ (x, b].

Let [a, b] ⊆ (0, +∞), we may define special means as follows
(a) the arithmetic mean

A = A(a, b) := a + b

2 ;

(b) the geometric mean
G = G(a, b) :=

√
ab;

(c) the harmonic mean
H = H(a, b) := 2

1
a

+ 1
b

;

(d) the logarithmic mean

L = L(a, b) :=

a, if a = b,
b−a

ln b−ln a
, if a ̸= b;

(e) the identric mean

I = I(a, b) :=


a, if a = b,

1
e

(
bb

aa

) 1
b−a

, if a ̸= b;

(f) the p−logarithmic mean

Lp = Lp(a, b) :=

a, if a = b,(
bp+1−ap+1

(p+1)(b−a)

) 1
p , if a ̸= b,

where p ∈ R \ {0, −1}.
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2. k−Fractional Ostrowski Type Inequalities via (s, r)−Convex

In this section, we introduce the concept of (s, r)−convex in mixed kind. This class
contains many classes of convex from literature of convex analysis. The main aim of
this study is to reveal new generalized-Ostrowski-type inequalities via (s, r)−convex
using k−fractional operator which generalizes Riemann-Liouville integral operator.

Definition 2.1. Let (s, r) ∈ (0, 1]2, the function g : I → [0, ∞), I ⊂ (0, ∞), is
(s, r)−convex in mixed kind, if

(2.1) g (tx + (1 − t)y) ≤ trsg(x) + (1 − tr)sg(y),

for all x, y ∈ I, t ∈ [0, 1].

Remark 2.1. In Definition 2.1, we can see the following.

(a) If s = 1 and r ∈ [0, 1] in (2.1), we get r−convex in 1st kind.
(b) If r → 0 and s = 1, in (2.1), we get quasi convex.
(c) If r = 1 and s ∈ [0, 1] in (2.1), we get s−convex in 2nd kind.
(d) If s → 0 and r = 1 in (2.1), we get P−convex.
(e) If s = r = 1 in (2.1), gives us ordinary convex.

Now, we will generalize the Ostrowski type inequalities via (s, r)−convex by using
k−fractional integral operator.

Theorem 2.1. Let f : [a, b] → R be differentiable on (a, b), f ′ : [a, b] → R be integrable
on [a, b] and g : I ⊂ R → R, be an (s, r)−convex function in mixed sense, then we
have the inequalities

g

(
f(x) − kΓk(ε)

b − a
(b − x)1− ε

k
kJε

af(b) + kJε−1
a (P1(x, b)f(b))

)
(2.2)

≤(b − x)1− ε
k

(b − a)rs

(
(x − a)rs−1

∫ x

a
g

(
(t − a)f ′(t)
(b − t)1− ε

k

)
dt

+ ((b − a)r − (x − a)r)s

b − x

∫ b

x
g

(
(t − b)f ′(t)
(b − t)1− ε

k

)
dt

)
,

for all x ∈ (a, b) .
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Proof. Utilizing the Theorem 1.2, we get

f(x) − kΓk(ε)
b − a

(b − x)1− ε
k

kJε
af(b) + kJε−1

a (P1(x, b)f(b))

=kJε
a(P1(x, b)f ′(b))

= 1
kΓk(ε)

∫ b

a
P1(x, t) f ′(t)

(b − t)1− ε
k

dt

=
(

x − a

b − a

)((b − x)1− ε
k

x − a

∫ x

a

(t − a) f ′(t)
(b − t)1− ε

k
dt

)

+
(

1 −
(

x − a

b − a

))((b − x)1− ε
k

b − x

∫ b

x

(t − b) f ′(t)
(b − t)1− ε

k
dt

)
,

for all x ∈ (a, b) . Next by using the (s, r)−convex function in mixed sense of g : I ⊂
[0, ∞) → R, we get

g

(
f(x) − kΓk(ε)

b − a
(b − x)1− ε

k
kJε

af(b) + kJε−1
a (P1(x, b)f(b))

)

≤
(

x − a

b − a

)rs

g

(
(b − x)1− ε

k

x − a

∫ x

a

(t − a) f ′(t)
(b − t)1− ε

k
dt

)

+
(

1 −
(

x − a

b − a

)r)s

g

(
(b − x)1− ε

k

b − x

∫ b

x

(t − b) f ′(t)
(b − t)1− ε

k
dt

)
,

for all x ∈ (a, b) . Applying Jensen’s integral inequality [6], we get (2.2). □

Corollary 2.1. In Theorem 2.1, one can see the following.
(a) If s = 1 and r ∈ (0, 1] in (2.2), then Ostrowski inequality for r−convex functions

in 1st kind:

g

(
f(x) − kΓk(ε)

b − a
(b − x)1− ε

k
kJε

af(b) + kJε−1
a (P1(x, b)f(b))

)

≤(b − x)1− ε
k

(b − a)r

(
(x − a)r−1

∫ x

a
g

(
(t − a)f ′(t)
(b − t)1− ε

k

)
dt

+(b − a)r − (x − a)r

(b − x)

∫ b

x
g

(
(t − b)f ′(t)
(b − t)1− ε

k

)
dt

)
.

(b) If s = 1 and r → 0 in (2.2), we get quasi-convex function

g

(
f(x) − kΓk(ε)

b − a
(b − x)1− ε

k
kJε

af(b) + kJε−1
a (P1(x, b)f(b))

)

≤(b − x)1− ε
k

(x − a)

∫ x

a
g

(
(t − a)f ′(t)
(b − t)1− ε

k

)
dt.
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(c) If r = 1 and s ∈ [0, 1) in (2.2), then fractional Ostrowski type inequality for
s−convex functions in 2nd kind:

g

(
f(x) − kΓk(ε)

b − a
(b − x)1− ε

k
kJε

af(b) + kJε−1
a (P1(x, b)f(b))

)

≤(b − x)1− ε
k

(b − a)s

(
(x − a)s−1

∫ x

a
g

(
(t − a)f ′(t)
(b − t)1− ε

k

)
dt + (b − x)s−1

∫ b

x
g

(
(t − b)f ′(t)
(b − t)1− ε

k

)
dt

)
.

(d) If r = 1 and s → 0 in (2.2), then fractional Ostrowski type inequality for
P−convex functions:

g

(
f(x) − kΓk(ε)

b − a
(b − x)1− ε

k
kJε

af(b) + kJε−1
a (P1(x, b)f(b))

)

≤(b − x)1− ε
k

(
1

x − a

∫ x

a
g

(
(t − a)f ′(t)
(b − t)1− ε

k

)
dt + 1

b − x

∫ b

x
g

(
(t − b)f ′(t)
(b − t)1− ε

k

)
dt

)
.

(e) If s = r = 1 in (2.2), then fractional Ostrowski type inequality for convex
functions:

g

(
f(x) − kΓk(ε)

b − a
(b − x)1− ε

k
kJε

af(b) + kJε−1
a (P1(x, b)f(b))

)

≤(b − x)1− ε
k

b − a

(∫ x

a
g

(
(t − a)f ′(t)
(b − t)1− ε

k

)
dt +

∫ b

x
g

(
(t − b)f ′(t)
(b − t)1− ε

k

)
dt

)
.

Theorem 2.2. Let f : [a, b] → R, [a, b] ⊂ (0, ∞), be an absolutely continuous, and
f ′ ∈ L1[a, b]. If |f ′| is (s, r)−convex, |f ′(x)| ≤ M, for all x ∈ [a, b], and ε, k > 0, then
(2.3)

|Yf (ε, k, a, x, b)| ≤ M
(∫ 1

0
t

ε
k trsdt +

∫ 1

0
t

ε
k (1 − tr)sdt

)((x − a) ε
k

+1

b − a
+ (b − x) ε

k
+1

b − a

)
.

Proof. By using the Lemma 1.1,

|Yf (ε, k, a, x, b)| ≤ (x − a) ε
k

+1

b − a

∫ 1

0
t

ε
k |f ′ (tx + (1 − t)a)| dt

+ (b − x) ε
k

+1

b − a

∫ 1

0
t

ε
k |f ′ (tx + (1 − t)b)| dt.

Since |f ′| is (s, r)−convex and by using |f ′(x)| ≤ M, we get

|Yf (ε, k, a, x, b)| ≤ (x − a) ε
k

+1

b − a

∫ 1

0
t

ε
k

(
trs|f ′(x)| + (1 − tr)s|f ′(a)|

)
dt

+ (b − x) ε
k

+1

b − a

∫ 1

0
t

ε
k

(
trs|f ′(x)| + (1 − tr)s|f ′(b)|

)
dt.
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Therefore,

|Yf (ε, k, a, x, b)| ≤ (x − a) ε
k

+1

b − a

(
|f ′(x)|

∫ 1

0
t

ε
k trsdt + |f ′(a)|

∫ 1

0
t

ε
k (1 − tr)sdt

)

+ (b − x) ε
k

+1

b − a

(
|f ′(x)|

∫ 1

0
t

ε
k trsdt + |f ′(b)|

∫ 1

0
t

ε
k (1 − tr)sdt

)
. □

Remark 2.2. In Theorem 2.2, one can also capture the inequalities for s−convex in 1st

and 2nd kind, P−convex and convex via k−fractional integrals by using Remark 2.1.

Corollary 2.2. In Theorem 2.2, one can see for k = 1 the following.
(a) The Ostrowski inequality for (s, r)−convex in mixed kind via fractional inte-

grals:

|Zf (ε, x, a, b)| ≤ M

 1
ε + rs + 1 +

B
(

ε+1
r

, s + 1
)

r

 εκb
a(x).

(b) If s = 1 and r ∈ (0, 1] in inequality (2.3), then the Ostrowski inequality for
r−convex in 1st kind via fractional integrals:

|Zf (ε, x, a, b)| ≤ M

 1
ε + r + 1 +

B
(

ε+1
r

, 2
)

r

 εκb
a(x).

(c) If r = 1 and s ∈ (0, 1] in inequality (2.3), then the Ostrowski inequality for
s−convex in 2nd kind via fractional integrals:

|Zf (ε, x, a, b)| ≤ M
( 1

ε + s + 1 + B (ε + 1, s + 1)
)

εκb
a(x).

(d) If ε = r = 1 and s ∈ (0, 1] in inequality (2.3), then the inequality (2.1) of
Theorem 2 in [1].

(e) If r = 1 and s ∈ (0, 1] in inequality (2.3), then the inequality (2.6) of Theorem
7 in [15].

(f) If s → 0 and r = 1, in inequality (2.3), then the Ostrowski inequality for
P−convex via fractional integrals:

|Zf (ε, x, a, b)| ≤ M
( 1

ε + 1 + B (ε + 1, 1)
)

εκb
a(x).

(g) If r = s = 1, in inequality (2.3), then the Ostrowski inequality for convex via
fractional integrals:

|Zf (ε, x, a, b)| ≤ M
( 1

ε + 2 + B (ε + 1, 2)
)

εκb
a(x).

(h) If ε = r = s = 1, in inequality (2.3), then the Ostrowski inequality (1.1) for
convex.
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Theorem 2.3. Let f : [a, b] → R, [a, b] ⊂ (0, ∞), be an absolutely continuous, and
f ′ ∈ L[a, b]. If |f ′|q is (s, r)−convex for q > 1 and |f ′(x)| ≤ M, for all x ∈ [a, b], and
ε, k > 0, then

|Yf (ε, k, a, x, b)| ≤ M

L
1
q

−1

(
(x − a) ε

k
+1

b − a
+ (b − x) ε

k
+1

(b − a)

)
(2.4)

×
(∫ 1

0
t

ε
k trsdt +

∫ 1

0
t

ε
k (1 − tr)sdt

) 1
q

,

where

L =
∫ 1

0
t

ε
k dt.

Proof. By using the Lemma 1.1, and Power mean inequality,

|Yf (ε, k, a, x, b)| ≤ (x − a) ε
k

+1

b − a

(∫ 1

0
t

ε
k dt

)1− 1
q
(∫ 1

0
t

ε
k |f ′ (tx + (1 − t)a)|q dt

) 1
q

+ (b − x) ε
k

+1

b − a

(∫ 1

0
t

ε
k dt

)1− 1
q
(∫ 1

0
t

ε
k |f ′ (tx + (1 − t)b)|q dt

) 1
q

.

Since |f ′|q is (s, r)−convex and |f ′(x)| ≤ M

|Yf (ε, k, a, x, b)| ≤ M(x − a) ε
k

+1

L
1
q

−1(b − a)

(∫ 1

0
t

ε
k trsdt +

∫ 1

0
t

ε
k (1 − tr)sdt

) 1
q

+ M(b − x) ε
k

+1

L
1
q

−1(b − a)

(∫ 1

0
t

ε
k trsdt +

∫ 1

0
t

ε
k (1 − tr)sdt

) 1
q

. □

Remark 2.3. In Theorem 2.3, one can also capture the inequalities for s−convex in 1st

and 2nd kind, P−convex and convex via k−fractional integrals by using Remark 2.1.

Corollary 2.3. In Theorem 2.3, one can see for k = 1 the following.
(a) The Ostrowski inequality for (s, r)−convex in mixed kind via fractional inte-

grals:

|Zf (ε, x, a, b)| ≤ M

(ε + 1)1− 1
q

 1
ε + rs + 1 +

B
(

ε+1
r

, s + 1
)

r


1
q

εκb
a(x).

(b) If s = 1 and r ∈ (0, 1] in inequality (2.4), then the Ostrowski inequality for
r−convex in 1st kind via fractional integrals:

|Zf (ε, x, a, b)| ≤ M

(ε + 1)1− 1
q

 1
ε + s + 1 +

B
(

ε+1
s

, 2
)

s


1
q

εκb
a(x).
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(c) If r = 1 and s ∈ (0, 1] in inequality (2.4), then the Ostrowski inequality for
s−convex in 2nd kind via fractional integrals:

|Zf (ε, x, a, b)| ≤ M

(ε + 1)1− 1
q

( 1
ε + s + 1 + B (ε + 1, s + 1)

) 1
q

εκb
a(x).

(d) If ε = r = 1, and s ∈ (0, 1] in inequality (2.4), then the inequality (2.3) of
Theorem 4 in [1].

(e) If r = 1 and s ∈ (0, 1] in inequality (2.4), then the inequality (2.8) of Theorem
9 in [15].

(f) If r = 1 and s → 0 in inequality (2.4), then the Ostrowski inequality for
P−convex via fractional integrals:

|Zf (ε, x, a, b)| ≤ M

(ε + 1)1− 1
q

( 1
ε + 1 + B (ε + 1, 1)

) 1
q

εκb
a(x).

(g) If r = s = 1, in inequality (2.4), then the Ostrowski inequality for convex via
fractional integrals:

|Zf (ε, x, a, b)| ≤ M

(ε + 1)1− 1
q

( 1
ε + 2 + B (ε + 1, 2)

) 1
q

εκb
a(x).

Theorem 2.4. Let f : [a, b] → R, [a, b] ⊂ (0, ∞), be an absolutely continuous,
f ′ ∈ L[a, b]. If |f ′|q is (s, r)−convex, |f ′(x)| ≤ M, for all x ∈ [a, b], ε, k > 0, and
p, z > 1 with 1

z
+ 1

q
= 1, then

|Yf (ε, k, a, x, b)| ≤ MK
1
z

b − a

( 1
rs + 1 + 1

r
B
(1

r
, s + 1

)) 1
q

×
(
(x − a) ε

k
+1 + (b − x) ε

k
+1
)

,

(2.5)

where

K =
∫ 1

0
t

εz
k dt.

Proof. By using Lemma 1.1, and Hölder’s inequality,

|Yf (ε, k, a, x, b)| ≤ (x − a) ε
k

+1

b − a

(∫ 1

0
t

εz
k dt

) 1
z
(∫ 1

0
|f ′ (tx + (1 − t)a)|q dt

) 1
q

+ (b − x) ε
k

+1

b − a

(∫ 1

0
t

εz
k dt

) 1
z
(∫ 1

0
|f ′ (tx + (1 − t)b)|q dt

) 1
q

.

Since |f ′|q is (s, r)−convex and |f ′(x)| ≤ M

|Yf (ε, k, a, x, b)| ≤ K
1
z (x − a) ε

k
+1

b − a

(
M q

rs + 1 + M q

r
B
(1

r
, s + 1

)) 1
q

+ K
1
z (b − x) ε

k
+1

b − a

(
M q

rs + 1 + M q

r
B
(1

r
, s + 1

)) 1
q

. □
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Remark 2.4. In Theorem 2.4, one can also capture the inequalities for s−convex in 1st

and 2nd kind, P−convex and convex via k−fractional integrals by using Remark 2.1.

Corollary 2.4. In Theorem 2.4, one can see for k = 1 the following.
(a) The Ostrowski inequality for (s, r)−convex in mixed kind via fractional inte-

grals:

|Zf (ε, x, a, b)| ≤ M

(εz + 1)
1
z

 1
rs + 1 +

B
(

1
r
, s + 1

)
r


1
q

εκb
a(x).

(b) If s = 1 and r ∈ (0, 1] in inequality (2.5), then the Ostrowski inequality for
r−convex in 1st kind via fractional integrals:

|Zf (ε, x, a, b)| ≤ M

(εz + 1)
1
z

 1
s + 1 +

B
(

1
s
, 2
)

s


1
q

εκb
a(x).

(c) If r = 1 and s ∈ (0, 1] in inequality (2.5), then the Ostrowski inequality for
s−convex in 2nd kind via fractional integrals:

|Zf (ε, x, a, b)| ≤ M

(εz + 1)
1
z

( 1
s + 1 + B (1, s + 1)

) 1
q

εκb
a(x).

(d) If ε = r = 1 and s ∈ (0, 1] in inequality (2.5), then the inequality (2.2) of
Theorem 3 in [1].

(e) If r = 1 and s ∈ (0, 1] in inequality (2.5), then the inequality (2.7) of Theorem
8 in [15].

(f) If r = 1, and s → 0 in inequality (2.5), then the Ostrowski inequality for
P−convex via fractional integrals:

|Zf (ε, x, a, b)| ≤ (2)
1
q M

(εz + 1)
1
z

εκb
a(x).

(g) If r = s = 1, in inequality (2.5), then the Ostrowski inequality for convex via
fractional integrals:

|Zf (ε, x, a, b)| ≤ M

(εz + 1)
1
z

εκb
a(x).

3. Applications to Special Means

If we replace f by −f and x = a+b
2 in Theorem 2.1, we get the following.
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Theorem 3.1. Let f : [a, b] → R be differentiable on (a, b), f ′ : [a, b] → R be integrable
on [a, b] and g : I → R, I ⊂ R, be a (s, r)−convex function in mixed sense, then

g

kΓk(ε)
(

b−a
2

)1− ε
k

b − a
kJε

af(b) − f

(
a + b

2

)
− kJε−1

a

(
P1

(
a + b

2 , b

)
f(b)

)
(3.1)

≤ 2ε−1

(b − a)ε

(
1

2sr−1

∫ a

a+b
2

g

(
(t − a)f ′(t)
(b − t)1− ε

k

)
dt +(2r − 1)s

2rs−1

∫ a+b
2

b
g

(
(t − b)f ′(t)
(b − t)1− ε

k

)
dt

)
.

Remark 3.1. In Theorem 3.1, if we put ε = k = 1 in (3.1), we get

g

(
1

b − a

∫ b

a
f(t)dt − f

(
a + b

2

))

≤ 1
b − a

(
1

2sr−1

∫ a+b
2

a
g((a − t)f ′(t))dt +(2r − 1)s

2rs−1

∫ b

a+b
2

g((b − t)f ′(t))dt

)
.

Remark 3.2. Assume that g : I → R, I ⊂ [0, ∞), is an (s, r)−convex function in
mixed kind.

(a) If ε = k = 1, f(t) = 1
t

in inequality (3.1), where t ∈ [a, b] ⊂ (0, ∞), then we
have

(b − a)g
(

A(a, b) − L(a, b)
A(a, b)L(a, b)

)

≤ 1
2sr−1

∫ a+b
2

a
g
(

t − a

t2

)
dt + (2r − 1)s

2rs−1

∫ b

a+b
2

g

(
t − b

t2

)
dt.

(b) If ε = k = 1, f(t) = − ln t in inequality (3.1), where t ∈ [a, b] ⊂ (0, ∞), then
we have

(b − a)g
(

ln
(

A(a, b)
I(a, b)

))

≤ 1
2sr−1

∫ a+b
2

a
g
(

t − a

t

)
dt + (2r − 1)s

2rs−1

∫ b

a+b
2

g

(
t − b

t

)
dt.

(c) If ε = k = 1, f(t) = tp, p ∈ R \ {0, −1} in inequality (3.1), where t ∈ [a, b] ⊂
(0, ∞), then we have

(b − a)g
(
Lp

p(a, b) − Ap(a, b)
)

≤ 1
2sr−1

∫ a+b
2

a
g

(
p (a − t)

t1−p

)
dt + (2r − 1)s

2rs−1

∫ b

a+b
2

g

(
p (b − t)

t1−p

)
dt.

Remark 3.3. In Theorem 2.3, one can see for ε = k = 1 the following.
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(a) Let x = a+b
2 , 0 < a < b, q ≥ 1 and f : R → R+, f(t) = tn in (2.4). Then

|An (a, b) − Ln
n (a, b)| ≤ M (b − a)

(2)2− 1
q

 1
rs + 2 +

B
(

2
r
, s + 1

)
r


1
q

.

(b) Let x = a+b
2 , 0 < a < b, q ≥ 1 and f : (0, 1] → R, f(t) = − ln t in (2.4). Then∣∣∣∣∣ln
(

A (a, b)
I (a, b)

)∣∣∣∣∣ ≤ M (b − a)
(2)2− 1

q

 1
rs + 2 +

B
(

2
r
, s + 1

)
r


1
q

.

Remark 3.4. In Theorem 2.4, one can see for ε = k = 1 the following.
(a) Let x = a+b

2 , 0 < a < b, p−1 + q−1 = 1 and f : R → R+, f(t) = tn in (2.5).
Then

|An (a, b) − Ln
n (a, b)| ≤ M (b − a)

2 (z + 1)
1
z

 1
rs + 1 +

B
(

1
r
, s + 1

)
r


1
q

.

(b) Let x = a+b
2 , 0 < a < b, p−1 + q−1 = 1 and f : (0, 1] → R, f(t) = − ln t in

(2.5). Then∣∣∣∣∣ln
(

A (a, b)
I (a, b)

)∣∣∣∣∣ ≤ M (b − a)
2 (z + 1)

1
z

 1
rs + 1 +

B
(

1
r
, s + 1

)
r


1
q

.

4. Conclusion

Ostrowski inequality is one of the most celebrated inequalities. We can find its
various generalizations and variants in literature. In this paper, we presented the
generalized notion of (s, r)−convex in mixed kind, this class of functions contains
many important classes including class of s−convex in 1st and 2nd kind, P−convex,
quasi convex and the class of convex. In this study, theorems are put forward to
obtain new upper bounds by k−fractional operator for Ostrowski type inequalities.
We have stated our first main result in Section 2, the generalization of Ostrowski
inequality [14] via k−fractional integral and others results obtained by using different
techniques including Hölder’s inequality and power mean inequality. Also, various
established results captured as special cases. Moreover, some applications in terms of
special means was presented at the end.
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