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THE APPLICATION OF A HYBRID
QUANTUM-SPECTRAL-SUCCESSIVE LINEARIZATION METHOD

FOR THE NONLINEAR EQUATIONS ARISING IN HEAT
TRANSFER AND HEAT RADIATION

SAEID ABBASBANDY

Abstract. In this article, the vision of quantum computing is coupled with a
pseudo-spectral method for two classes of heat equations. First, the cooling of a
lumped system with variable specific heat and an unsteady nonlinear convective-
radiative equation containing two small parameters are considered. The nonlinear
equations are linearized using the successive linearization method. In an iterative
scheme, the final state is computed using the quantum state at each iteration by
a novel quantum algorithm. Two numerical illustrations are considered, and a
comparison shows the efficiency of the method.

1. Introduction

Solving the nonlinear equations is very important, and many problems of heat
transfer or heat radiation are nonlinear. As we know, numerical methods are very
useful in solving these nonlinear problems. In the last decades, many numerical or semi-
analytical methods have been developed for such problems. For example, Adomian
decomposition method [4], non-perturbation methods [25], δ-expansion method [19],
homotopy analysis method (HAM) [1,2,23], numerical simulation [21,27,32], spectral
method [13], and many others.

Spectral methods and quasi-linearization techniques are powerful tools for tackling
engineering problems, especially in solving differential equations, due to their efficiency
and high numerical accuracy - advantages well documented in [18,31] and numerous
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related studies. In contrast to traditional numerical approaches, spectral methods
use a global framework, that provides superior precision, making them particularly
effective for the treatment of nonlinear differential equations [26,28].

Recent advances in quantum computing have led to algorithms that are able to
extract information about solutions of differential equations far more efficiently than
classical approaches. In this paper, a quantum pseudo-spectral method (QPSM) for
the cooling of a lumped system with variable specific heat [1, 6, 14] and then an
unsteady nonlinear convective-radiative equation containing two small parameters
[2,6,15] can be considered. Recently, this method has also been used to solve the gen-
eral Lane-Emden type equations [3]. For linear IVPs (initial value problems), QPSM
is considered in [10], which is based on the quantum linear systems algorithm (QLSA),
[16]. For a linear sparse of the system of d equations, QLSA can generate a quantum
state proportional to the solution system in time poly(logd). The quantum algorithm
with the pseudo-spectral method for time-dependent IVP and BVP described in [10]
has the complexity poly(logd, log(1/ϵ)). Newly, the non-linear quadratic ODEs are
considered with the quantum method and Carleman linearization [20, 24] with com-
plexity E2q poly(logE; logd; log1/ϵ)/ϵ, where E is the evolution time and q measures
the decay of the solution, and ϵ is the solution error.

While our work builds on existing research, alternative quantum approaches for
solving ordinary differential equations (ODEs) have emerged. For example, [22] has
proposed a quantum adaptation of the Euler method for simple nonlinear ODEs, that
achieves logarithmic complexity in the system dimension - although it suffers from
the exponential scaling of the evolution time, an inherent limitation for nonlinear
ODEs. In addition to ODEs, quantum techniques have also been applied to partial
differential equations (PDEs), including the following.

(a) ([5]) A continuous-variable quantum algorithm for initial value problems (IVPs)
involving non-homogeneous linear PDEs.

(b) ([11]) A hybrid quantum-classical approach combining the Quantum Linear
Systems Algorithm (QLSA) with finite element methods for Maxwell’s equa-
tions.

(c) ([12]) A Hamiltonian simulation-based solver for wave equations using finite
difference discretization.

First, we will consider the cooling of a lumped system with variable specific heat
[6,14] with surface area A, volume V , specific heat C, density ρ, and initial temperature
Ti. At the initial time t = 0, the system is exposed to a convective environment
at temperature Ta with convective heat transfer coefficient ω. Suppose C satisfies
temperature

C = Ca[1 + β(T − Ta)],
where Ca is the heat at Ta and β is a constant. The cooling equation with the initial
condition is

ρV C
dT

dt
+ ωA(T − Ta) = 0, T (0) = Ti,
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and with
u = T − Ta

Ti − Ta

, τ = t(ωA)
ρV Ca

, ε = β(T − Ta).

Then, the following non-linear IVP is obtained for τ ∈ [0, S]

(1.1) (1 + εu)du

dτ
+ u = 0, u(0) = 1.

For doing QPSM, first, we have to linearize (1.1) by SLM (successive linearization
method) because QPSM is efficient for linear models. Suppose

(1.2) u(τ) = Ui(τ) +
i−1∑
k=0

uk(τ), i = 1, 2, 3, . . . ,

where Ui(·) are the unknown functions, and uk(·) are the successive approximations
solutions that obtained recursively by QPSM for solving the linear part of the equation
obtained by substituting (1.2) in (1.1). Let the initial approximation, u0(·), satisfies
the initial condition in (1.1), for example here we put u0(·) = 1 for simplicity. Also,
we assumed that, limi→+∞ Ui = 0.

By simple calculations and substituting (1.2) in (1.1), we have

(1.3) U ′
i + ε

(
Ui +

i−1∑
k=0

uk

)(
U ′

i +
i−1∑
k=0

u′
k

)
+ Ui = −

i−1∑
k=0

(u′
k + uk) .

Starting from the initial approximation u0(·) = 1, the IVP obtained from the linearized
form of (1.3) is solved to compute the later ui(·). Hence, we should solve M time the
following IVPs

(1.4) (1 + εai−1)u′
i + (1 + εa′

i−1)ui = µi−1, i ∈ [M ] = {1, 2, 3, . . . , M},

where

ai−1(·) =
i−1∑
k=0

uk(·),

µi−1(·) = −
(
(1 + εai−1(·))a′

i−1(·) + ai−1(·)
)
,

with the initial condition ui(0) = 0. Now we want to use the pseudo-spectral method
by using the Chebyshev polynomials [17, 29]. By taking the truncated Chebyshev
approximation of (1.4) we have

(1.5) ui(·) =
n∑

l=0
ci,lTl(·),

for any n ∈ Z+ and also for ζ ∈ [−1, 1], Tl(ζ) = cos(l arccos ζ). Concerning the
domain of (1.5), later we rescale the domain of (1.1) to [−1, 1].

To solve the linear system derived from (1.4), the Chebyshev-Gauss-Lobatto quad-
rature nodes ζk = cos(kπ

n
) for k ∈ [n + 1]0 = {0, 1, . . . , n} are used. For calculating
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ci,l, let c′
i,l be defined as

dui(ζ)
dζ

=
n∑

l=0
c′

i,lTl(ζ),

with
c′

i,l =
n∑

j=0
[Dn]l,jci,j,

and the upper triangular matrix Dn is [30]

[Dn]l,j = 2j

σl

, j > l, l + j odd,

with
σl =

{
1, l ∈ [n],
2, l = 0.

Using (1.4), (1.5), we have for k ∈ [n + 1]0 and i ∈ [M ]
n∑

l=0
c′

i,lTl(ζk) =
(

µi−1 −
n∑

l=0
(1 + εa′

i−1ci,l)Tl(ζk)
)

/(1 + εai−1),(1.6)

with imposing the initial conditions. The linear system (1.6) is solved with QLSA
(quantum linear systems algorithm) [9]. Before rescaling, [0, S] is divided into m
subintervals to improve the accuracy.

[0, Ψ1], [Ψ1, Ψ2], . . . , [Ψm−1, S],

with Ψ0 = 0, Ψm = S. Each subinterval [Ψq, Ψq+1] converted onto [−1, 1] for q ∈ [m]0,
hence ∆q = S/m = Ψq+1 − Ψq. Now, τ ∈ [Ψq, Ψq+1] converts to ζ ∈ [−1, 1] by

ζ = Kq(τ) = 1 − 2(τ − Ψq)
∆q

and
τ = IKq(ζ) = Ψq + ∆q(1 − ζ)

2 .

Hence, after rescaling, (1.4) converts to

z′
i,q(ζ) =

(
µi−1 −

( 1
D

+ εb′
i−1,q

)
zi,q(ζ)

)
/(1 + εbi−1,q),(1.7)

where

bi−1,q(·) =
i−1∑
j=0

zj,q(·),

ηi−1,q(·) = −
(

(1 + εbi−1,q(·))b′
i−1,q(·) + 1

D
bi−1,q(·)

)
,

and D = dζ
dτ

and zi,q(ζ) = yi(τ) = yi(IKq(ζ)) for τ ∈ [Ψq, Ψq+1], q ∈ [m]0, i ∈ [M ] and
z0,0 = 1.
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2. Quantum Pseudo-spectral Method

As discussed in the previous section, we should solve a linear system like

(2.1) Li|Xi⟩ = |Bi⟩,

in each iteration by the QLSA presented in [10] from the linear equation (1.7). For
a matrix Li with a large condition number, κi, QLSA can selectively invert only the
portion of |Bi⟩ that lies within the well-conditioned subspace of Li, i.e., the subspace
spanned by eigenvectors corresponding to its largest eigenvalues. In this method, the
quantum state |Xi⟩ decomposes as |Xi⟩ = |Xi,bad⟩ + |Xi,good⟩, where the first part is
related to eigenvalues of Li which are less than 1

κi
and conversely for the second part.

The second part serves as a flag, enabling the user to either estimate the ill-conditioned
subspace’s size or manage it using their preferred approach. If Li is non-invertible and
1
κi

is chosen smaller than the smallest nonzero eigenvalue of Li, this method computes
the pseudo-inverse of Li. Preconditioning is another common classical technique for
treating ill-conditioned matrices [8].

The vector
|Xi⟩ ∈ Cm+p+1 ⊗ Cn+1

describes the solution by

(2.2) |Xi⟩ =
m−1∑
q=0

n∑
l=0

ci,l(Ψq+1)|ql⟩ +
m+p∑
q=m

n∑
l=0

xi|ql⟩,

where ci,l(Ψq+1) is the Chebyshev series coefficient of zi,q(Kq(Ψq+1)), xi is the last
state zi,m−1(Kq(Ψm)), p is a padding trick [3, 7, 16]. We require 1 + ∑M

i=1 xi as the
output at S, because of u0(·) = 1.

The elements of Li and Bi are computed according to the QPSM algorithm in
Figure 1. It can be proved that for the linear equation (1.7), we have

|Bi,q⟩ =0|0⟩ +
n∑

l=1

ηi−1,q(ζl)
1 + εbi−1,q(ζl)

|l⟩,

Ai,q(·) = −
1
D

+ εb′
i−1,q(·)

1 + εbi−1,q(·)
,

whereas before ζl = cos( lπ
n

).

3. Unsteady Nonlinear Convective-radiative Equation

We will consider a lumped system of combined convective-radiative heat transfers,
the specific heat coefficient is linear with temperature [6, 14]. The cooling equation
and the initial condition are as follows

ρV C
dT

dt
+ ωA(T − Ta) + EσA(T 4 − T 4

s ) = 0, T (0) = Ti,
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QPSM

Computing the system of equations

|Bi〉 =
∑m−1

q=0 |q〉|Bi,q〉

Pn =
∑n

l,k=0 cos
klπ
n |l〉〈k|

Compute Dn, the differential matrix

L1 = |0〉〈0|Pn +
∑n

l=1 |l〉〈l|PnDn

L2 = −∑n
l=1 Ai,q(ζl)|l〉〈l|Pn

L3 = −∑n
k=0(−1)k|0〉〈k|

L4 = −∑n
l=1 |l〉〈(l − 1)| +

∑n
l=0 |l〉〈l|

L5 = −|0〉〈n|

Li =
∑m−1

q=0 |q〉〈q| ⊗ (L1 + L2(Ai,q)) +
∑m

q=1 |q〉〈q −
1| ⊗ L3 +

∑m+p
q=m |q〉〈q| ⊗ L4 +

∑m+p
q=m+1 |q〉〈q − 1| ⊗ L5

Compute |Xi〉 from Li|Xi〉 = |Bi〉

End

Figure 1. Algorithm of the QPSM.
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which by using

u = T

Ti

, ua = Ta

Ti

, τ = t(ωA)
ρV Ca

, ε1 = βTi, ε2 = EσT 3
i

ω
, us = Ts

Ti

,

we have

(1 + ε1(u − ua))du

dτ
+ (u − ua) + ε2(u4 − u4

s) = 0, u(0) = 1.

Now, a basic problem is how to guess ε1 and ε2. By QPSM, we can obtain a reasonable
solution for every ε1 and ε2. But, by perturbation methods only for small values of ε1
and ε2, we can obtain reasonable solution [2]. For simplicity, we assume ua = us = 0
and hence we have the following non-linear IVP for τ ∈ [0, S]

(3.1) (1 + ε1u)du

dτ
+ u + ε2u

4 = 0, u(0) = 1.

In this case, as before, u0(·) = 1 and for i ≥ 1, the other ui(·) are computed by
solving the linearized form of (3.1), i.e., the linear IVP
(3.2) (1 + ε1ai−1)u′

i + (1 + ε1a
′
i−1 + 4ε2a

3
i−1)ui = µi−1, i ∈ [M ],

where

ai−1(·) =
i−1∑
l=0

ul(·),

µi−1(·) = −
(
(1 + ε1ai−1(·))a′

i−1(·) + ai−1(·) + ε2a
4
i−1(·)

)
,

with ui(0) = 0. As before, by constructing m subintervals from [0, S] and after
rescaling, (3.2) converts to

z′
i,q(ζ) =

(
µi−1 −

( 1
D

+ ε1b
′
i−1,q + 4

D
ε2b

3
i−1,q

)
zi,q(ζ)

)
/(1 + ε1bi−1,q),(3.3)

where

bi−1,q(·) =
i−1∑
j=0

zj,q(·),

ηi−1,q(·) = −
(

(1 + ε1bi−1,q(·))b′
i−1,q(·) + 1

D
bi−1,q(·) + ε2

D
b4

i−1,q(·)
)

,

and D = dζ
dτ

and zi,q(ζ) = yi(τ) = yi(IKq(ζ)) for τ ∈ [Ψq, Ψq+1] and q ∈ [m]0. For
simplicity, we take z0,0 = 1 because of initial condition in (3.1). For implementing
QPSM in this case we have

|Bi,q⟩ = 0|0⟩ +
n∑

l=1

ηi−1,q(ζl)
1 + ε1bi−1,q(ζl)

|l⟩

and

Ai,q(·) = −
1
D

+ ε1b
′
i−1,q(·) + 4ε2

D
b4

i−1,q(·)
1 + ε1bi−1,q(·)

.
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Figure 2. The results in Example 4.1 (n = 10, m = 10, M = 5).

4. Numerical Examples

Now, two examples of the cooling of a lumped system with variable specific heat
(1.1), and unsteady nonlinear convective-radiative equation (3.1) are considered, re-
spectively. In all examples, we put p = 1, and Python 3.12.4 is used for programming.

Example 4.1 ([1, 14]). Consider (1.1) with τ ∈ [0, 10], by separating the variables we
find the exact implicit solution

logu + ε(u − 1) + τ = 0.

In Figure 2 (left side) the numerical simulation with the embedded Runge-Kutta
formulae RK5(4) [13] and QPSM is compared. The exact solution for τ = 1 is
compared in Figure 2 (right side) for various ε in QPSM and HAM (with auxiliary
homotopy parameter −0.8). We can see that for large ε the results of QPSM are
reasonable. In this example, clearly, u′(0) = −1

1+ε
and u′′(0) = 1

(1+ε)3 . In Figure 3 (right
and left sides) the values of u′(0) and u′′(0) are compared for the QPSM and we can
see a good coincidence.

Example 4.2 ([2, 15]). Consider (3.1) with τ ∈ [0, 10]. Here we can see that

u′(0) = −1 + ε2

1 + ε1
.

In Figure 4 (left side) the numerical simulation with the embedded Runge-Kutta
formulae RK5(4) [13] and QPSM is compared. The exact solution for τ = 1 is
compared in Figure 2 (right side) for various ε = ε1 = ε2 in QPSM and HAM (with
auxiliary homotopy parameter −0.7). We can see that for large ε the results of QPSM
are quite reasonable. In figures 5 the values of u′(0) is compared for ε2 = 2ε1 = ε in
the QPSM and we can see a good coincidence.
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Figure 3. The results in Example 4.1 (n = 10, m = 10, M = 5).
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Figure 4. The results in Example 4.2 (n = 10, m = 10, M = 5).
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Figure 5. The results in Example 4.2 (n = 10, m = 10, M = 5).
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5. Conclusions

In this manuscript, a novel method for solving the cooling of a lumped system with
variable specific heat and unsteady nonlinear convective-radiative equation containing
two small parameters is proposed. The latter problem has high nonlinearity. Using the
successive linearization method, the nonlinear equations are linearized. Comparisons
with homotopy analysis method and numerical simulation RK4(5) show the efficiency
of the method.
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