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MORE ABOUT PETROVIĆ’S INEQUALITY ON COORDINATES
VIA m-CONVEX FUNCTIONS AND RELATED RESULTS

ATIQ UR REHMAN1, GHULAM FARID1, AND WASIM IQBAL2

Abstract. In this paper the authors extend Petrović’s inequality for coordinated
m-convex functions in the plane and also find Lagrange type and Cauchy type mean
value theorems for Petrović’s inequality for m-convex functions and coordinated
m-convex functions. The authors consider functional due to Petrović’s inequality
in plane and discuss its properties for certain class of coordinated log-m-convex
functions.

1. Introduction

A function f : [a, b]→ R is said to be convex if
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds, for all x, y ∈ [a, b] and t ∈ [0,1].
In [6], Dragomir gave the definition of convex functions on coordinates as follows.

Definition 1.1. Let ∆ = [a, b] × [c, d] ⊆ R2 and f : ∆ → R be a mapping. Define
partial mappings
(1.1) fy : [a, b]→ R by fy(u) = f(u, y)
and
(1.2) fx : [c, d]→ R by fx(v) = f(x, v).
Then f is said to be convex on coordinates (or coordinated convex) in ∆ if fy and fx
are convex on [a, b] and [c, d] respectively for all y ∈ [c, d] and x ∈ [a, b]. A mapping
f is said to be strictly convex on coordinates (or strictly coordinated convex) in ∆
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if fy and fx are strictly convex on [a, b] and [c, d], respectively, for all y ∈ [c, d] and
x ∈ [a, b].

In [22], G. Toader gave the definition of m-convexity as follows.

Definition 1.2. The function f : [0, b] → R, b > 0, is said to be m-convex, where
m ∈ [0, 1], if we have

f (tx+m(1− t)y) 6 tf(x) +m(1− t)f(y),
for all x, y ∈ [0, b] and t ∈ [0, 1].

Remark 1.1. One can note that the notion of m-convexity reduces to convexity if we
take m = 1. We get starshaped functions from m-convex functions if we take m = 0.

Definition 1.3. A function f : [a, b]→ R+ is called log-convex if
f (tx+ (1− t)y) 6 f t(x) + f (1−t)(y)

holds, for all x, y ∈ [0, b] and t ∈ [0, 1].

Log-convex functions have excellent closure properties. The sum and product of
two log-convex functions is convex. If f is convex function and g is log-convex function
then the functional composition g ◦ f is also log-convex.

In [1], Almori and Darus gave the definition of log-convex on coordinates as follows.

Definition 1.4. Let ∆ = [a, b] × [c, d] and let a function f : ∆ → R+ is called
log-convex on coordinates in ∆ if partial mappings defined in (1.1) and (1.2) are
log-convex on [a, b] and [c, d], respectively, for all y ∈ [c, d] and x ∈ [a, b].

In [8], Farid et al. gave the definition of coordinated m-convex functions as follows.

Definition 1.5. Let ∆ = [0, b]× [0, d] ⊂ [0,∞)2, then a function f : ∆→ R will be
called m-convex on coordinates if the partial mappings

fy : [0, b]→ R defined by fy(u) = f(u, y)
and

fx : [0, d]→ R defined by fx(v) = f(x, v)
are m-convex on [0, b] and [0, d], respectively, for all y ∈ [0, d] and x ∈ [0, b].

In [17] (see also [15, p. 154]), M. Petrović proved the following result, which is
known as Petrović’s inequality in the literature.

Theorem 1.1. Suppose that (x1, . . . , xn) and (p1, . . . , pn) be two non-negative n-tuples
such that ∑n

k=1 pkxk ≥ xi for i = 1, . . . , n and ∑n
k=1 pkxk ∈ [0, a]. If f is a convex

function on [0, a), then the inequality
n∑
k=1

pkf(xk) ≤ f

(
n∑
k=1

pkxk

)
+
(

n∑
k=1

pk − 1
)
f(0)(1.3)

is valid.
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Remark 1.2. Take pk = 1, k = 1, . . . , n the above inequality becomes
n∑
k=1

f(xk) ≤ f

(
n∑
k=1

xk

)
+ (n− 1)f(0).

In [2], M. Bakula et al. gave the Petrović’s inequality for m-convex function which
is stated in the following theorem.

Theorem 1.2. Let (x1, . . . , xn) be non-negative n-tuples and (p1, . . . , pn) be positive
n-tuples such that

Pn :=
n∑
k=1

pk, 0 6= x̃n =
n∑
k=1

pkxk ≥ xj for each j = 1, . . . , n.

If f : [0,∞)→ R be an m-convex function on [0,∞) with m ∈ (0, 1], then
n∑
k=1

pkf(xk) 6 min
{
mf

(
x̃n

m

)
+ (Pn − 1)f (0) , f (x̃n) +m(Pn − 1)f (0)

}
.(1.4)

Remark 1.3. If we take m = 1 in Theorem 1.2, we get famous Petrović’s inequality
stated in Theorem 1.1.

In [19], Rehman et al. gave the Petrović’s inequality for coordinated convex func-
tions, which is stated in the following theorem.

Theorem 1.3. Let (x1, . . . , xn) ∈ [0, a)n, (y1, . . . , yn) ∈ [0, b)n and (p1, . . . , pn),
(q1, . . . , qn) be positive n-tuples such that ∑n

k=1 pkxk ∈ [0, a), ∑n
j=1 qjyj ∈ [0, b),∑n

k=1 pk ≥ 1,

Pn :=
n∑
k=1

pk, 0 6= x̃n =
n∑
k=1

pkxk ≥ xi for each i = 1, . . . , n,

and
Qn :=

n∑
j=1

qj, 0 6= ỹn =
n∑
j=1

qjyj ≥ yi for each i = 1, . . . , n.

If f : ∆→ R be a coordinated convex, then
n∑
k=1

n∑
j=1

pkqjf(xk, yj) ≤f (x̃n, ỹn) + (Qn − 1) f (x̃n, 0)(1.5)

+ (Pn − 1) (f(0, ỹn) + (Qn − 1)f(0, 0)) .

By considering non-negative difference of (1.5), the authors in [19] defined the
following functional

Υ (f) =f (x̃n, ỹn) + (Qn − 1) f (x̃n, 0) + (Pn − 1) [f (0, ỹn) + (Qn − 1) f(0, 0)](1.6)

−
n∑
k=1

n∑
j=1

pkqjf(xk, yj).
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By considering non-negative difference of (1.3), the authors in [4] defined the
following functional

P(f) = f

(
n∑
k=1

pkxk

)
−
(

n∑
k=1

pkf(xk)
)

+
(

n∑
k=1

pk − 1
)
f(0).(1.7)

One of the generalizations of convex functions is m-convex functions and it is
considered in literature by many researchers and mathematicians, for example, see
[7, 10–12,24] and references there in. In [17] (also see [15, p. 154]), M. Petrović gave
the inequality for convex functions known as Petrović’s inequality. Many authors
worked on this inequality by giving results related to it, for example see [13, 15, 17]
and it has been generalized for m-convex functions by M. Bakula et al. in [2]. In [19],
Petrović’s inequality was generalized on coordinate by using the definition of convex
functions on coordinates given by Dragomir in [6].

In this paper the authors extend Petrović’s inequality for coordinated m-convex
functions in the plane and also find Lagrange type and Cauchy type mean value
theorems for Petrović’s inequality for m-convex functions and coordinated m-convex
functions. The authors consider functional due to Petrović’s inequality in plane and
discuss its properties for certain class of coordinated log-m-convex functions.

2. Main Result

The following theorem consist the result for Petrović’s inequality on coordinated
m-convex functions.

Theorem 2.1. Let (x1, . . . , xn), (y1, . . . , yn) be non-negative n-tuples and (p1, . . . , pn),
(q1, . . . , qn) be positive n-tuples such that

n∑
k=1

pk ≥ 1,

Pn :=
n∑
k=1

pk, 0 6= x̃n =
n∑
k=1

pkxk ≥ xi for each i = 1, . . . , n

and

Qn :=
n∑
j=1

qj, 0 6= ỹn =
n∑
j=1

qjyj ≥ yi for each i = 1, . . . , n.

If f : [0,∞)2 → R be an m-convex function on coordinates with m ∈ (0, 1], then
n∑
k=1

n∑
j=1

pkqjf(xk, yj) ≤min {mmin {Gm,1(x̃n/m), G1,m(x̃n/m)} + (Pn − 1)(2.1)

×min {Gm,1(0), G1,m(0)} ,min {Gm,1(x̃n), G1,m(x̃n)}
+m(Pn − 1) min {Gm,1(0), G1,m(0)}} ,

where

(2.2) Gm,m̃(t) = mf
(
t,
ỹn
m

)
+ m̃(Qn − 1)f (t, 0) .
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Proof. Let fx : [0,∞)→ R and fy : [0,∞)→ R be mappings such that fx(v) = f(x, v)
and fy(u) = f(u, y). Since f is coordinated m-convex on [0,∞)2, therefore fy is m-
convex on [0,∞), so by Theorem 1.2, one has

n∑
k=1

pkfy(xk) ≤ min {mfy (x̃n/m) + (Pn − 1)fy (0) , fy (x̃n) +m(Pn − 1)fy (0)} .

This is equivalent to
n∑
k=1

pkf(xk, y) ≤min {mf (x̃n/m, y) + (Pn − 1)f (0, y) ,

f (x̃n, y) +m(Pn − 1)f (0, y)} .
By setting y = yj, we have

n∑
k=1

pkf(xk, yj) ≤min {mf (x̃n/m, yj) + (Pn − 1)f (0, yj) ,

f (x̃n, yj) +m(Pn − 1)f (0, yj)} ,
this gives

(2.3)

n∑
k=1

n∑
j=1

pkqjf(xk, yj) ≤min

m
n∑
j=1

qjf (x̃n/m, yj) + (Pn − 1)
n∑
j=1

qjf (0, yj) ,

n∑
j=1

qjf (x̃n, yj) +m(Pn − 1)
n∑
j=1

qjf (0, yj)

 .
Now again by Theorem 1.2, one has

n∑
j=1

qjf (x̃n/m, yj) ≤min {mf (x̃n/m, ỹn/m) + (Qn − 1)f (x̃n/m, 0) ,

f (x̃n/m, ỹn) +m(Qn − 1)f (x̃n/m, 0)} ,
n∑
j=1

qjf (0, yj) ≤min {mf (0, ỹn/m) + (Qn − 1)f (0, 0) ,

f (0, ỹn) +m(Qn − 1)f (0, 0)}
and

n∑
j=1

qjf (x̃n, yj) ≤min {mf (x̃n, ỹn/m) + (Qn − 1)f (x̃n, 0) ,

f (x̃n, ỹn) +m(Qn − 1)f (x̃n, 0)} .
Putting these values in inequality (2.3), and using the notation in (2.2), one has the
required result. �

Remark 2.1. If we take m = 1 in Theorem 2.1, we get Theorem 1.3.

In the following corollary, we gave new Petrović’s type inequality for m-convex
functions.
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Corollary 2.1. Let (x1, . . . , xn), (y1, . . . , yn) be non-negative n-tuples and (p1, . . . , pn),
(q1, . . . , qn) be positive n-tuples such that

n∑
k=1

pk ≥ 1 and

Pn :=
n∑
k=1

pk, 0 6= x̃n =
n∑
k=1

pkxk ≥ xi for each i = 1, . . . , n.

If f : [0,∞)2 → R be an m-convex function on coordinates with m ∈ (0, 1], then one
has

n∑
k=1

npkf(xk) ≤min {mmin {(m+ n− 1)f(x̃n/m), (mn−m+ 1)f(x̃n/m)}(2.4)

+ (Pn − 1) min {(m+ n− 1)f(0), (mn−m+ 1)f(0)} ,
min {(m+ n− 1)f(x̃n), (mn−m+ 1)f(x̃n)}
+m(Pn − 1) min {(m+ n− 1), (mn−m+ 1)f(0)}} .

Proof. If we put yj = 0 and qj = 1, j = 1, . . . , n with f(x, 0) 7→ f(x) in inequality
(2.1), we get the required result. �

Remark 2.2. If we take m = 1 in inequality (2.4), we get the inequality (1.3).
Let f : [0, b]→ R be a function. Then we define

(2.5) Pa,m,f (x) := f(x)−mf(a)
x−ma

,

for all x ∈ [0, b]\{ma}, for fixed a ∈ [0, b]. Also define

(2.6) rm(x1, x2, x3; f) := Px1,m(x3)− Px1,m(x2)
x3 − x2

,

where x1, x2, x3 ∈ [0, b], (x2 −mx1)(x3 −mx1) > 0, x2 6= x3.
In [11] (see also [7, p. 294]), V. G. Mihesan considered the functions defined in (2.5),

(2.6) and proved the following result.
Remark 2.3. If we take m = 1 in (2.5) and (2.6), we get divided differences of first
and second order respectively.

By considering non-negative difference of (1.4), we defined following functional
(2.7)

Pm(f) = min
{
mf

(
x̃n

m

)
+ (Pn − 1)f (0) , f (x̃n) +m(Pn − 1)f (0)

}
−

n∑
k=1

pkf(xk).

Also by considering non-negative difference of (2.1), we defined following functional
Υm(f) = min {mmin {Gm,1(x̃n/m), G1,m(x̃n/m)}(2.8)

+ (Pn − 1) min {Gm,1(0), G1,m(0)} ,min {Gm,1(x̃n), G1,m(x̃n)}

+ m(Pn − 1) min {Gm,1(0), G1,m(0)}} −
n∑
k=1

n∑
j=1

pkqjf(xk, yj).

If we take m = 1 in the above (2.8), we get Υ1(f) = Υ (f).
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Remark 2.4. Under the suppositions of Theorem 2.1, if f is coordinated m-convex in
∆2, then Υm(f) ≥ 0.

Here we state an important lemma that is very helpful in proving mean value
theorems related to the non-negative functional of Petrović’s inequality for m-convex
functions.

Lemma 2.1. Let f : [0, b]→ R be a function such that

m1 6
(x−ma)f ′(x)− f(x) +mf(a)

x2 − 2max+ma2 6M1,

for all x ∈ [0, b]\{ma}, a ∈ (0, b) and m ∈ (0, 1).
Consider the functions ψ1, ψ2 : [0, b]→ R defined as

ψ1(x) = M1x
2 − f(x)

and
ψ2(x) = f(x)−m1x

2,

then ψ1 and ψ2 are m-convex in [0, b].

Proof. Suppose

Pa,m,ψ1(x) =ψ1(x)−mψ1(a)
x−ma

=M1x
2 − f(x)−mf(a) +mM1a

2

x−ma

=M1(x2 −ma2)
x−ma

− f(x)−mf(a)
x−ma

.

So we have

P ′a,m,ψ1(x) = M1
x2 − 2max+ma2

(x−ma)2 − (x−ma)f ′(x)− f(x) +mf(a)
(x−ma)2 .

Since
x2 − 2max+ma2 = (x−ma)2 +m(1−m)a2 > 0,

by given condition, we have
M1(x2 − 2max+ma2) ≥ (x−ma)f ′(x)− f(x) +mf(a).

This leads to

M1
x2 − 2max+ma2

(x−ma)2 ≥ (x−ma)f ′(x)− f(x) +mf(a)
(x−ma)2 ,

M1
x2 − 2max+ma2

(x−ma)2 − (x−ma)f ′(x)− f(x) +mf(a)
(x−ma)2 ≥ 0.

This implies

P ′a,m,ψ1(x) ≥ 0, for all x ∈ [0,ma) ∪ (ma, b].



342 A. U. REHMAN, G. FARID, AND W. IQBAL

Similarly, one can show that

P ′a,m,ψ2(x) ≥ 0, for all x ∈ [0,ma) ∪ (ma, b].

This gives Pa,m,ψ1 and Pa,m,ψ2 are increasing on x ∈ [0,ma) ∪ (ma, b] for all a ∈ [0, b].
Hence by Lemma 2.1, ψ1(x) and ψ2(x) are m-convex in [0, b]. �

Here we give mean value theorems related to functional defined for Petrović’s
inequality for m-convex functions.

Theorem 2.2. Let (x1, . . . , xn) ∈ [0, b], (q1, . . . , qn) and (p1, . . . , pn) be positive n-
tuples such that ∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let φ(x) = x2.
If f ∈ C1([0, b]), then there exists ξ ∈ (0, b) such that

Pm(f) = (ξ −ma)f ′(ξ)− f(ξ) +mf(a)
ξ2 − 2maξ +ma2 Pm(φ),(2.9)

provided that Pm(φ) is non zero and a ∈ (0, b).

Proof. As f ∈ C1([0, b]), so there exists real numbers m1 and M1 such that

m1 6
(x−ma)f ′(x)− f(x) +mf(a)

x2 − 2max+ma2 6M1,

for each x ∈ [0, b], a ∈ (0, b) and m ∈ (0, 1).
Now let us consider the functions ψ1 and ψ2 defined in Lemma 2.1. As ψ1 is

m-convex in [0, b],
Pm(ψ1) ≥ 0,

that is
Pm(M1x

2 − f(x)) ≥ 0,
which gives

(2.10) M1Pm(φ) ≥ Pm(f).

Similarly ψ2 is m-convex in [0, b], therefore one has

(2.11) m1Pm(φ) 6 Pm(f).

By assumption Pm(φ) is non zero, combining inequalities (2.10) and (2.11), one has

m1 6
Pm(f)
Pm(φ) 6M1.

Hence, there exists ξ ∈ (0, b) such that
Pm(f)
Pm(φ) = (ξ −ma)f ′(ξ)− f(ξ) +mf(a)

ξ2 − 2maξ +ma2 .

Hence, we get the required result. �
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Corollary 2.2. Let (x1, . . . , xn) ∈ [0, b], (q1, . . . , qn) and (p1, . . . , pn) be positive n-
tuples such that ∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also let φ(x) = x2.
If f ∈ C1([0, b]), then there exists ξ ∈ (0, b) such that

P(f) = (ξ − a)f ′(ξ)− f(ξ) + f(a)
(ξ − a)2 P(φ),

provided that P(φ) is non zero and a ∈ (0, b).

Proof. If we put m = 1 in (2.9), we get the required result. �

Corollary 2.3. Let (x1, . . . , xn) ∈ [0, b], (q1, . . . , qn) and (p1, . . . , pn) be positive n-
tuples such that ∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n and a ∈ (0, b). Also let
φ(x) = x2.

If f ∈ C1([0, b]), then there exists ξ ∈ (0, b) such that

P(f) = f ′′(a)P(φ).

Proof. If we put m = 1 in (2.9), we get
P(f)
P(φ) = (ξ − a)f ′(ξ)− f(ξ) + f(a)

(ξ − a)2

= 1
ξ − a

(
f ′(ξ)− f(a)− f(ξ)

a− ξ

)
.

Take limit as ξ → a, we get
P(f)
P(φ) = lim

ξ→a

1
ξ − a

(
f ′(ξ)− f(a)− f(ξ)

a− ξ

)

= lim
ξ→a

1
ξ − a

(f ′(ξ)− f ′(a)) .

Again taking limit as ξ → a, we get
P(f)
P(φ) = f ′′(a).

Hence, we get the required result. �

Theorem 2.3. Let (x1, . . . , xn) ∈ [0, b], (q1, . . . , qn) and (p1, . . . , pn) be positive n-
tuples such that ∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let φ(x) = x2.
If f1, f2 ∈ C1([0, b]), then there exists ξ ∈ (0, b) such that

Pm(f1)
Pm(f2) = (ξ −ma)f ′1(ξ)− f1(ξ) +mf1(a)

(ξ −ma)f ′2(ξ)− f2(ξ) +mf2(a) ,

provided that the denominators are non-zero and a ∈ (0, b).

Proof. Suppose a function k ∈ C1([0, b]) be defined as

k = c1f1 − c2f2,
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where c1 and c2 are defined as

c1 =Pm(f2),
c2 =Pm(f1).

Then using Theorem 2.2 with f = k, one has

(ξ −ma)((c1f1 − c2f2)(ξ))′ − (c1f1 − c2f2)(ξ) +m(c1f1 − c2f2)(a) = 0,

that is

(ξ −ma)(c1f
′
1(ξ)− c2f

′
2(ξ))− c1f1(ξ) + c2f2(ξ) +mc1f1(a)−mc2f2(a) = 0,

which gives

(ξ −ma)c1f
′
1(ξ)− (ξ −ma)c2f

′
2(ξ)− c1f1(ξ) + c2f2(ξ) +mc1f1(a)−mc2f2(a) = 0,

which implies

c1 {(ξ −ma)f ′1(ξ)− f1(ξ) +mf1(a)} − c2 {(ξ −ma)f ′2(ξ) + f2(ξ)−mf2(a)} = 0,
c1 {(ξ −ma)f ′1(ξ)− f1(ξ) +mf1(a)} = c2 {(ξ −ma)f ′2(ξ)− f2(ξ) +mf2(a)}

and
c2

c1
= (ξ −ma)f ′1(ξ)− f1(ξ) +mf1(a)

(ξ −ma)f ′2(ξ)− f2(ξ) +mf2(a) .

After putting the values of c1 and c2, we get the required result. �

Here we state an important lemma that is very helpful in proving mean value
theorems related to the non-negative functional of Petrović’s inequality for coordinated
m-convex functions.

Lemma 2.2. Let ∆ = [0, b]× [0, d], m ∈ (0, 1). Also let f : ∆→ R be a function such
that

m1 6
(x−ma) ∂

∂x
f(x, y)− f(x, y) +mf(a, y)

(x2 − 2max+ma2)y2 6M1

and

m2 6
(y −mc) ∂

∂y
f(x, y)− f(x, y) +mf(x, c)

(y2 − 2mcy +mc2)x2 6M2,

for all x ∈ [0, b]\{ma}, a ∈ (0, b) and y ∈ [0, d]\{mc}, c ∈ (0, d).
Consider the functions αy : [0, b]→ R, and αx : [0, d]→ R, defined as

α(x, y) = max{M1,M2}x2y2 − f(x, y)

and
β(x, y) = f(x, y)−min{m1,m2}x2y2.

Then α and β are coordinated m-convex in ∆.
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Proof. Consider the partial mappings αy : [0, b] → R and αx : [0, d] → R defined by
αy(x) := α(x, y) for all x ∈ (0, b] and αx(y) := α(x, y) for all y ∈ (0, d].

Pa,m,αy(x) = αy(x)−mαy(a)
x−ma

= α(x, y)−mα(a, y)
x−ma

= M1x
2y2 − f(x, y)−mM1a

2y2 +mf(a, y)
x−ma

= M1
(x2 −ma2)y2

x−ma
− f(x, y)−mf(a, y)

x−ma
.

So we have

P ′a,m,αy
(x) = M1

∂

∂x

(
(x2 −ma2)y2

x−ma

)
− ∂

∂x

(
f(x, y)−mf(a, y)

x−ma

)

= M1y
2 (x2 − 2max+ma2)

(x−ma)2 −
(x−ma) ∂

∂x
f(x, y)− f(x, y) +mf(a, y)

(x−ma)2 .

Since

M1 ≥
(x−ma) ∂

∂x
f(x, y)− f(x, y) +mf(a, y)

(x2 − 2max+ma2)y2 ,

by given conditions, we have
(x2 − 2max+ma2)y2 > 0.

This implies

M1y
2 (x2 − 2max+ma2)

(x−ma)2 ≥
(x−ma) ∂

∂x
f(x, y)− f(x, y) +mf(a, y)

(x−ma)2

M1y
2 (x2 − 2max+ma2)

(x−ma)2 −
(x−ma) ∂

∂x
f(x, y)− f(x, y) +mf(a, y)

(x−ma)2 ≥ 0.

This implies
P ′a,m,αy

(x) ≥ 0 for all x ∈ [0,ma) ∪ (ma, b].
Similarly, one can show that

P ′a,m,αx
(y) ≥ 0 for all x ∈ [0,mc) ∪ (mc, d].

This ensures that Pa,m,αy is increasing on [0,ma)∪ (ma, b] for all a ∈ [0, b] and Pa,m,αx

is increasing on [0,mc)∪ (mc, d] for all c ∈ [0, d]. Hence, by Lemma 2.1, α is m-convex
in ∆.

Similarly, one can show that β is m-convex in ∆. �

Here we give mean value theorems related to the functional defined by Petrović’s
inequality for coordinated m-convex functions.
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Theorem 2.4. Let ∆ = [0, b] × [0, d], (x1, . . . , xn) ∈ [0, b], (y1, . . . , yn) ∈ [0, d]
be non-negative n-tuples and (q1, . . . , qn), (p1, . . . , pn) be positive n-tuples such that∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let ϕ(x, y) = x2y2.
If f ∈ C1(∆), then there exists (ξ1, η1) and (ξ2, η2) in the interior of ∆, such that

Υm(f) =
(ξ1 −ma) ∂

∂x
f(ξ1, η1)− f(ξ1, η1) +mf(a, η1)

(ξ2
1 − 2maξ1 +ma2)η2

1
Υm(ϕ)(2.12)

and

Υm(f) =
(ξ2 −ma) ∂

∂y
f(ξ2, η2)− f(ξ2, η2) +mf(a, η2)

(ξ2
2 − 2maξ2 +ma2)η2

2
Υm(ϕ),(2.13)

and provided that Υm(ϕ) is non-zero and a ∈ (0, b).

Proof. As f has continuous first order partial derivative in ∆, so there exists real
numbers m1,m2,M1 and M2 such that

m1 6
(x−ma) ∂

∂x
f(x, y)− f(x, y) +mf(a, y)

(x2 − 2max+ma2)y2 6M1

and

m2 ≤
(y −ma) ∂

∂y
f(x, y)− f(x, y) +mf(x, a)

(y2 − 2may +ma2)x2 ≤M2,

for all x ∈ (0, b], y ∈ (0, d], a ∈ (0, b) and m ∈ (0, 1).
Now let us consider the functions α and β defined in Lemma 2.2.
As α is m-convex in ∆, then

Υm(α) ≥ 0,
that is

Υm(M1x
2y2 − f(x, y)) ≥ 0,

which gives
(2.14) M1Υm(ϕ) ≥ Υm(f).
Similarly β is m-convex in ∆, therefore one has
(2.15) m1Υm(ϕ) 6 Υm(f).
By the assumption Υm(ϕ) is non-zero. Combining inequalities (2.14) and (2.15), one
has

m1 6
Υm(f)
Υm(ϕ) 6M1.

Hence there exists (ξ1, η1) in the interior of ∆, such that

Υm(f) =
(ξ1 −ma) ∂

∂x
f(ξ1, η1)− f(ξ1, η1) +mf(a, η1)

(ξ2
1 − 2maξ1 +ma2)η2

1
Υm(ϕ).

Similarly, one can show that

Υm(f) =
(ξ2 −ma) ∂

∂y
f(ξ2, η2)− f(ξ2, η2) +mf(a, η2)

(ξ2
2 − 2maξ2 +ma2)η2

2
Υm(ϕ),
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which is the required result. �

Corollary 2.4. Let ∆ = [0, b] × [0, d], (x1, . . . , xn) ∈ [0, b], (y1, . . . , yn) ∈ [0, d]
be non-negative n-tuples and (q1, . . . , qn), (p1, . . . , pn) be positive n-tuples such that∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let ϕ(x, y) = x2y2.
If f ∈ C1(∆), then there exists (ξ1, η1) and (ξ2, η2) in the interior of ∆, such that

Υ (f) =
(ξ1 − a) ∂

∂x
f(ξ1, η1)− f(ξ1, η1) + f(a, η1)

(ξ1 − a)2η2
1

Υ (ϕ)

and

Υ (f) =
(ξ2 − a) ∂

∂y
f(ξ2, η2)− f(ξ2, η2) + f(a, η2)

(ξ2 − a)2η2
2

Υ (ϕ),

provided that Υ (ϕ) is non-zero and a ∈ (0, b).

Proof. If we put m=1 in (2.12) and (2.13), we get the required result. �

Theorem 2.5. Let ∆ = [0, b] × [0, d], (x1, . . . , xn) ∈ [0, b], (y1, . . . , yn) ∈ [0, d]
be non-negative n-tuples and (q1, . . . , qn), (p1, . . . , pn) be positive n-tuples such that∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let ϕ(x, y) = x2y2.
If f1, f2 ∈ C1(∆), then there exists (ξ1, η1) and (ξ2, η2) in the interior of ∆, such

that

Υm(f1)
Υm(f2) =

(ξ1 −ma) ∂
∂x
f1(ξ1, η1)− f1(ξ1, η1) +mf1(a, η1)

(ξ2 −ma) ∂
∂x
f2(ξ2, η2)− f2(ξ2, η2) +mf2(a, η2)

and

Υm(f1)
Υm(f2) =

(ξ1 −ma) ∂
∂y
f1(ξ1, η1)− f1(ξ1, η1) +mf1(a, η1)

(ξ2 −ma) ∂
∂y
f2(ξ2, η2)− f2(ξ2, η2) +mf2(a, η2)

,

provided that the denominators are non-zero and a ∈ (0, b).

Proof. Suppose

k = c1f1 − c2f2,

where c1 and c2 are defined by

c1 =Υm(f2),
c2 =Υm(f1).



348 A. U. REHMAN, G. FARID, AND W. IQBAL

Then using Theorem 2.4 with f = k, we get

(ξ −ma) ∂
∂x

(c1f1 − c2f2)(ξ, η)− (c1f1 − c2f2)(ξ, η) +m(c1f1 − c2f2)(a, η) = 0,

(ξ −ma)c1
∂

∂x
f1(ξ, η)− (ξ −ma)c2

∂

∂x
f2(ξ, η)− c1f1(ξ, η) + c2f2(ξ, η)

+mc1f1(a, η)−mc2f2(a, η) = 0,

c1

{
(ξ −ma) ∂

∂x
f1(ξ, η)− f1(ξ, η) +mf1(a, η)

}
− c2

{
(ξ −ma) ∂

∂x
f2(ξ, η)

+ f2(ξ, η)−mf2(a, η)
}

= 0,

c1

{
(ξ −ma) ∂

∂x
f1(ξ, η)− f1(ξ, η) +mf1(a, η)

}
= c2

{
(ξ −ma) ∂

∂x
f2(ξ, η)

− f2(ξ, η) +mf2(a, η)
}
,

and
c2

c1
=

(ξ1 −ma) ∂
∂x
f1(ξ1, η1)− f1(ξ1, η1) +mf1(a, η1)

(ξ2 −ma) ∂
∂x
f2(ξ2, η2)− f2(ξ2, η2) +mf2(a, η2)

.

Similarly, one can show that

c2

c1
=

(ξ1 −ma) ∂
∂y
f1(ξ1, η1)− f1(ξ1, η1) +mf1(a, η1)

(ξ2 −ma) ∂
∂y
f2(ξ2, η2)− f2(ξ2, η2) +mf2(a, η2)

.

After putting the values of c1 and c2, we get the required result. �

3. Log Convexity

Here we have defined some families of parametric functions which we use in sequal.
Let I = [0, a), J = [0, b) ⊆ R be intervals and ft : I × J → R represents some
parametric mapping for t ∈ (c, d) ⊆ R. We define functions

ft,y : I → R by ft,y(u) = ft(u, y)

and
ft,x : J → R by ft,x(v) = ft(x, v),

where x ∈ I and y ∈ J . Suppose H1 denotes the class of functions ft : I × J → R for
t ∈ (c, d) such that the functions

t 7→ rm(u0, u1, u2, ft,y), for all u0, u1, u2 ∈ I

and
t 7→ rm(v0, v1, v2, ft,x), for all v0, v1, v2 ∈ J

are log-convex functions in Jensen sense on (c, d).
The following lemma is given in [16].
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Lemma 3.1. Let I ⊆ R be an interval. A function f : I → (0,∞) is log-convex in
J-sense on I, that is, for each r, t ∈ I

f(r)f(t) ≥ f 2
(
t+ r

2

)
if and only if the relation

m2f(t) + 2mnf
(
t+ r

2

)
+ n2f(r) ≥ 0

holds, for each m,n ∈ R and r, t ∈ I.

Our next result comprises properties of functional defined in Theorem 2.1.

Theorem 3.1. Let ft ∈ H1 and Υm be the functional defined in (2.8). Then the
function t 7→ Υm(ft) is log-convex in Jensen sense for each t ∈ (c, d).

Proof. Let
h(u, v) = m2ft(u, v) + 2mnf t+r

2
(u, v) + n2fr(u, v),

where m,n ∈ R and t, r ∈ (c, d). Also we can consider that
hy(u) = m2ft,y(u) + 2mnf t+r

2 ,y(u) + n2fr,y(u)

and
hx(v) = m2ft,x(v) + 2mnf t+r

2 ,x(v) + n2fr,x(v),
which gives

rm(u0, u1, u2, hy) =m2rm(u0, u1, u2, ft,y) + 2mnrm(u0, u1, u2, f t+r
2 ,y)

+ n2rm(u0, u1, u2, fr,y).
As rm[u0, u1, u2, ft,y] is log-convex in Jensen sense so by using Lemma 3.1, the right
hand side of the above expression is non negative so hy is m-convex, similarly hx is
also m-convex, so h is m-convex on coordinates, which implies rm(h) ≥ 0 and

m2rm(ft) + 2mnrm(f t+r
2

) + n2rm(fr) ≥ 0.

Hence, t 7→ Υm(ft) is log-convex in Jensen sense. �

Theorem 3.2. Assume that ft is of class H1 and Υm be the functional defined in
(2.8). If the function Υm(ft) is continuous for each t ∈ (c, d), then Υm(ft) is log-convex
for each t ∈ (c, d).

Proof. If a function is continuous and log-convex in Jensen sense, then it is log-convex
(see [3, p. 48]). It is given that Υm(ft) is continuous for each t ∈ (c, d), hence Υm(ft)
is log-convex for each t ∈ (c, d). �

Lemma 3.2. If f is a convex function for all x1, x2, x3 of an open interval I for
which x1 < x2 < x3, then

(x3 − x2)f(x1) + (x1 − x3)f(x2) + (x2 − x1)f(x3) ≥ 0.
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Theorem 3.3. Let ft ∈ H1 and Υm be the functional defined in (2.8). If Υm(ft) is
positive, then for some r < s < t, where r, s, t ∈ (c, d), one has

[Υm(fs)]t−r ≤ [Υm(fr)]t−s [Υm(ft)]s−r .
Proof. Consider the functional Υm(ft). Also let r < s < t, where r, s, t ∈ (c, d), since
Υm(ft) is log-convex, that is, log Υm(ft) is convex. By taking f = log Υm in Lemma
3.2, we have

(t− s) log Υm(fr) + (r − t) log Υm(fs) + (s− r) log Υm(ft) ≥ 0,
which can be written as

[Υm(fs)]t−r ≤ [Υm(fr)]t−s [Υm(ft)]s−r .
�
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