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NUMERICAL MODELING OF LAMINAR CASSON FLUID FLOW
IN ECCENTRIC ANNULAR ENTRANCE REGIONS

AMANY M. ATEIA1 AND OSAMA H. GALAL2

Abstract. The laminar flow of an incompressible Casson fluid in the entrance
region of an eccentric annulus was analyzed numerically. Such asymmetric annular
structures are critical in applications like drilling, heat exchangers and biomedical
simulations. The Casson fluid model, which is relevant for biological (e.g., blood),
industrial (e.g., drilling fluids) and environmental (e.g., mudflows) systems, was
investigated using the Finite Difference Method (FDM) with variable mesh size.
The Navier-Stokes equations in bipolar coordinates were solved to calculate pressure
gradients and axial velocities for varying radius ratios S, relative eccentricities e
and yield stress values τD. The results for the entrance region, which were validated
against the literature on fully developed flow, showed an accuracy of 97.89% to
99.68%. The entrance region pressure gradient exceeded the fully developed zone
by 6.16 to 50.52 times, while the axial velocity ranged from 43.75% to 53.65% of its
fully developed value. These findings underscore the importance of entrance region
dynamics in engineering design.

1. Introduction

In heat exchangers, well drilling, and plastic extrusion, flow in the entrance region
of concentric and/or eccentric annuli is important from an industrial standpoint. In
engineering, however, the amount of power required to pump fluids through such
systems is critical. The two factors that determine how much power is required
to pump an incompressible fluid are the volumetric flow rate and the pressure drop.
However, the pressure drop in the entrance region is greater than in the fully developed
zone due to the acceleration of the fluid motion and the higher velocity gradients at the
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wall within this region. Since the fully developed pressure drop for the entire flow zone
is used in the design calculations, the pumping power is underestimated. As a result,
estimating the excess pressure gradient at the entrance region relative to the fully
developed one is critical. In addition, the Casson fluid model is often used to describe
the flow behavior of non-Newtonian fluids with yield stress, such as blood, chocolate,
and certain industrial slurries [1]. It finds applications in biomedical engineering to
model blood flow in vessels [2], in food processing to optimize the handling of viscous
products such as chocolate [3] and in drilling operations to predict the behavior of
muds and cement pastes [4]. This model helps engineers design efficient systems by
accurately capturing the fluid’s resistance to flow until a critical stress is reached [5].

However, numerous studies on laminar incompressible flow have focused on the
entrance region of the concentric annular duct. For instance, an early work conducted
theoretical studies on the velocity distribution, pressure drop and hydrodynamic entry
length of pipes with annular space [6]. In addition, using the Casson stress-strain
relation as a guide, the Runge-Kutta method was used to ascertain how blood flows
in the entrance region of annuli [1]. The Finite Difference Method (FDM) was used
to solve the axial, incompressible, isothermal, laminar and steady flow of a power-
law fluid in a concentric annulus [3]. The entrance region for Herschel-Bulkley and
Bingham non-Newtonian fluids in concentric annuli with a rotating inner wall and a
stationary outer one was studied using the FDM [7,8]. Recent studies have extended
this focus to include advanced non-Newtonian models, such as the exploration of
temperature-dependent thermophysical properties under bioconvection effects [9] and
heat transport in Casson fluid flows within Darcy-Forchheimer media [10]. In addition,
the entrance effects in concentric rings with inner ring rotation for the blood model
Casson non-Newtonian fluid were also investigated [2]. They also investigated how the
Casson fluid affects heat and mass transmission as the inner walls of the concentric
annuli moved [11]. The non-Newtonian Bingham fluid was also investigated in the
entry region of the annular space between two rotating coaxial cylinders [12].

On the other hand, several researchers have studied the problem of eccentric annuli
in detail. Examples include the study of non-Newtonian fluid in eccentric annuli for
highpolymer aqueous solutions of CMC, HEC, and MC [13]. The yield-power law
fluids’velocity and viscosity profiles were derived using FDM by solving the governing
laminar flow equation [4]. In their innovative method [14], the laminar eccentric
annular flow of non-Newtonian fluids was investigated, where the eccentric annulus
is represented by an infinite number of concentric annuli with varied outer radii. A
fully developed laminar flow of a Newtonian fluid across an eccentric annulus was
investigated computationally and experimentally [15]. In addition, when Newtonian
and non-Newtonian fluids were examined in an eccentric annulus, the case of inner
cylinder rotation was also taken into consideration [16].

Current research has further explored complex flow phenomena in eccentric ge-
ometries, including bioconvection flows with triple stratification [17], irreversibility
analysis in porous media [18], and radiative mixed convection in hybrid nanofluids
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[19]. Furthermore, using an approximation of the velocity distribution, the eccentric
annulus was treated as a slit with variable height in order to assess the loss coefficient
for power-law and Bingham fluids [20]. Furthermore, the eccentric or concentric an-
nular duct provided a computational solution to the fully developed Casson model
problem [5]. The FDM was also used to solve the hydrodynamic entrance region prob-
lem for the eccentric annulus [21]. Other references have investigated related aspects,
such as non-Newtonian flow properties [22], slot-flow approximations for eccentric
annuli [23] and viscoplastic fluid dynamics in annular geometries [24]. More recent
advancements in non-Newtonian fluid dynamics, such as non-Fourier diffusion models
[25], entropy generation in 3D flows [26], magnetohydrodynamic Sutterby nanofluid
flows [27], stratified Carreau nanofluid studies [28], the dynamics of chemically re-
active magneto-hybrid nanomaterials with heat radiation in porous media [29] and
radiative convective flows with magnetic fields [30], underscore the ongoing relevance
of such studies.

Therefore, this study attempts to fill a gap in the literature by proposing a numerical
solution to the Casson model’s entrance problem in eccentric or concentric annuli
ducts. The fluid velocity and pressure gradients were evaluated at the entrance and
fully developed regions and the ratios between them were calculated. In addition,
comparisons of the calculated values with those found in the literature revealed a
high degree of consistency. In contrast to previous studies that focused primarily
on the fully developed flow or simpler concentric geometries, this work introduces a
novel approach by tackling the complex entrance region dynamics of Casson fluid flow
within eccentric annuli using a finite difference method with a variable mesh size. This
method, combined with the adoption of bipolar coordinates, enables a more precise
resolution of the non-uniform flow fields inherent to eccentric configurations. This
challenge was often overlooked in previous studies that focused on Newtonian fluids
or uniform annuli. Furthermore, the study’s emphasis on the Casson fluid, a non-
Newtonian model with yield stress relevant for industrial and biological applications,
distinguishes it from traditional analyses, offering new insights into the pressure and
velocity behaviors under varying radius ratios (S), relative eccentricities (e) and yield
stress values (τD). By quantifying these parameters in the entrance region, which has
been insufficiently explored in previous literature, this research provides a significant
advance. When validated against established work, accuracy rates of 97.89% to 99.68%
are achieved for fully developed regions, increasing the reliability of design predictions
for engineering systems.

Furthermore, this paper is divided into five sections. Section 2 provides the prob-
lem formulation and solution, while Section 3 introduces the numerical model and
application. Sections 4 and 5 include the results, along with discussion and conclusion,
respectively.
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2. Problem Formulation

2.1. Governing Equations. Figure 1 shows the geometry of the problem. The
eccentric annulus comprises two cylindrical surfaces with inner radius R1 and outer
radius R2, which are offset by the eccentricity d. It does not involve rotating disks
or mechanical transmission; the study focuses on the transition of steady laminar
flow from the entrance region to the fully developed region. In the entrance region
of an eccentric or concentric annulus, the fluid is assumed to be laminar, steady,
incompressible and non-Newtonian, in particular a Casson fluid with constant physical
properties. The continuity (2.1) and momentum equations (2.2)–(2.4) in Cartesian

 

Figure 1. Geometry of studied eccentric annulus

coordinates are transformed into bipolar coordinates for the eccentric geometry, with
the focus on the axial flow (z-direction) as the primary, with transverse components
(u, v) secondary per boundary layer assumptions [21,31]. Neglecting the body forces,
the continuity equation is represented as follows

(2.1) ∇ · w = 0,

while the momentum equations are given by
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where the apparent viscosity, µ, is given by:

(2.5) µ =

Kc +

 τ0√(
∂w
∂x

)2
+
(

∂w
∂y

)2


1
2


2

,

where Kc is the model viscosity and τ0 is the yield stress.
Considering the no-slip condition at the walls, and due to symmetry, the solution

can be evaluated for only one-half of the eccentric annulus. This yields the following

Inner conditions: w = we, u = v = 0,
Boundary conditions: w = u = v = 0,

Symmetry lines: ∂w

∂n
= ∂u

∂n
= ∂v

∂n
= 0.

2.2. Bipolar Coordinates System Formulation. It is convenient to represent the
governing equations in the bipolar coordinate system, (ξ, η, z) when analyzing flow in
eccentric annuli. The eccentric annulus, which consists of sets of orthogonal circles,
is represented by the two coordinates (ξ, η), while the z-axis is perpendicular to the
paper’s plane. The walls of the eccentric annulus are represented by ξ = ξ1 and ξ = ξ2.
Moreover, the relation between the rectangular coordinates x, y, z and the bipolar
coordinates ξ, η, z is given by [22] as:(

x

a

)2
+
(
y

a
− coth ξ

)2
= csch2ξ, for − ∞ < ξ < +∞,(

x

a
− cot η

)2
+
(
y

a

)2
= csc2η, for 0 < η < 2π,

x = a sinh ξ
ψ

, y = −a sin η
ψ

,

where

(2.6)

z = za, R1 sinh ξ1 = R2 sinh ξ2, ψ = cosh ξ − cos η,

ξ1 = cosh−1
(

1 − S2 −M2

2SM

)
,

ξ2 = cosh−1
(

1 − S2 +M2

2M

)
.

The relative displacement M = d
R2

or the relative eccentricity e = d
R2−R1

, with the
radius ratio S = R1

R2
, are the two factors that characterize the annulus. Using the

values of S, e, and M , which are between 0 and 1.0, the preceding 2.6 can be used
to calculate ξ1 and ξ2. Due to the problem’s symmetry, only one half, which lies
between η = 0 and η = π, is taken into consideration. The bipolar coordinate system
is explained in further detail in [31,32], where the continuity equation and the three
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momentum equations can be expressed as:
∂
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where

(2.8) µ =

Kc +
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∂w
∂x
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(
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∂y
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
1/2


2

, h = a

cosh ξ − cos η .

Hughes and Gaylord [33] provided the general orthogonal curvilinear coordinate
formulas along with the required bipolar coordinate system for (2.7) to (2.8) and
(2.5). Feldman et al. [21] proposed an order of magnitude analysis that follows the
boundary layer assumptions assuming that the length of the entrance region to the
duct hydraulic diameter ratio is significantly greater than 1. As a result, the model
assumes a uniform entrance velocity profile and disregards the transverse pressure
gradient. Additionally, the continuity equation is unaffected by the order of magnitude
analysis, and all three scalar components are replaced by a simplified form of the axial
momentum equation. In bipolar coordinates, the continuity equation and the three
reduced momentum equations are

(2.9) ∂

∂ξ
(hu) + ∂

∂η
(hv) + ∂

∂z
(h2w) = 0,

(2.10) ρ

(
u

h
· ∂w
∂ξ

+ v

h
· ∂w
∂η

+ w
∂w

∂z

)
= −dp

dz
+ 1
h2

[
∂

∂ξ
µ
∂w

∂ξ
+ ∂

∂η
µ
∂w

∂η

]
.

The pressure gradient, dp
dz

, is a total derivative and a function of only z, whereas u,
v, and w in (2.9) and (2.10) are functions of ξ, η, and z, respectively. Given that the
pressure gradient is only one of three unknown of velocitycomponents, a comprehensive
mathematical model cannot be formed by (2.9) and (2.10) only. Similar challenges
existed when Carlson and Hornbeck [34] solved the hydrodynamic entrance region of
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a square-sectioned duct. By assuming that all transverse flow was conducted along
straight lines that crossed the center of the duct, they were able to create a relationship
between the two transverse velocity components in the square cross-section. As stated
in Feldman et al. [21], a brief examination of the process that causes transverse flow
in an annular duct provides important insights into its behavior. When a flow with a
uniform axial profile and no transverse components enters a circular tube, the flow near
the wall is retarded, and the transverse flow is directed radially and symmetrically
toward the center. Similarly, external axial flow along a cylinder’s lateral surface
causes radially symmetrical transverse flow outward from the cylinder’s center. In a
concentric annulus formed by inserting a cylinder inside the tube, the two transverse
flows collide and vanish along a surface of revolution. If we consider two boundary
layers growing concurrently along the two walls, then this surface lies between the
two boundary layers, and the cylindrical surface with constant radius serves as a good
approximation. The ridge of maximum axial velocities for fully developed flow is cut
by this cylinder. This representation is accurate at axial points far from the duct inlet
and reasonable near the duct inlet.

Similar mechanisms operate in the eccentric case as well. The expected paths of
the transverse flow were described in Feldman et al. [21]. It would follow the radial
lines originating from its surface if the transverse flow of either surface could act
independently of the other one. The transverse flows of each surface, however, are
forced to curve away from their respective radial lines by the presence of the other
surface. As they approach each other, the two flows follow paths that tend to transfer
flow from the narrower side of the annulus to the wider side of the annulus. The
cylindrical surface that intersects the ridge of the maximum axial velocity for the
fully developed flow can be used to approximate the surface along which the two
transverse flows merge under conditions similar to those proposed for the concentric
case. This surface can be represented mathematically by one with a constant radius,
R∗. However, as absolute eccentricity increases, this curve significantly deviates from
a constant radius, adopting an egg-shaped form. Fortunately, as will be shown later
in this paper, the solution’s sensitivity to the transverse flow prescription is negligible.
For a concentric annulus, the classical closed-form representation of R∗ is

R∗ = R2

√
1 − S2

ln(1/S2) , for e ̸= 0.9, S ̸= 0.1,

R∗ = R2

2 , for e = 0.9, S = 0.1.

For all but the most eccentric geometry (e = 0.9, S = 0.1), this representation is
also used to approximate R∗. The circle formed by the R∗ curve in this extreme case
does not contain the center of the curve defining the outer wall due to the use of
the chosen R∗ representation. Consequently, the model fails because the radial lines
originating from the inner and outer walls do not intersect as shown. R∗ is therefore
assumed in this case to be equal to 50% of the outer wall’s radius [21].
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Based on the above description and assumptions, a mathematical relationship for
the transverse velocity ratio, v/u, was developed as

(2.11) u

v
= F

(t2 − t1)
1 + t1t2

, ξ ̸= ξ∗,

where
(2.12)

F = csc(ξ2) − csch(ξ∗)
csch(ξ) − csch(ξ∗) , for ξ < ξ∗ or F = csc(ξ1) − csch(ξ∗)

csch(ξ) − csch(ξ∗) , for ξ > ξ∗,

t2 = H(1 − S) sinh(ξ)
0.5 sinh(ξ2) cot(η) −H(1 − S) sin(η) , ξ∗ = sinh−1

(
a

R∗

)
,(2.13)

t1 = H(1 − S) sin(η)
H(1 − S) sinh(ξ) − cosh(ξ2)

or(2.14)

t1 = H(1 − S) sin(η)
H(1 − S) sinh(ξ) − cosh(ξ1)

, for ξ > ξ∗,

H = 0.5 sinh(ξ2)
(1 − S)(cosh(ξ) − cos(η)) ,(2.15)

for ξ = ξ∗, u = 0.(2.16)

A complete model of the hydrodynamic entrance region is provided by (2.9), (2.10),
and (2.11) to (2.16) along with zero-velocity boundary conditions and a uniform inlet
velocity profile. However, several hydrodynamic entrance region solutions, such as
those for parallel plates by Bodoia [35], a circular tube by Hornbeck [36], and a
square duct by Carlson and Hornbeck [34], have also used the integral form of the
continuity equation as noted by Hornbeck [36] and Feldman and Hornbeck [21]. These
solutions all contain the differential version of the continuity equation, a reduced axial
momentum equation in which the pressure gradient is a total derivative, and, in the
case of the square duct, a transverse flow model, making them identical to consistent
with the present model. Nevertheless, the integral form of the continuity equation
is mathematically redundant because it can simply be produced by applying the
divergence theorem to the differential form. This form is not represented in all nodal
regions close to the duct walls in the finite difference solution, avoidingredundancy.
The integral continuity equation has the following bipolar coordinate form

(2.17) π

2a
2(1 − S)2wecsch2(ξ2) =

∫ π

0

∫ ξ1

ξ2
wh2dξdη,

where we represents the volume rate of flow per unit of cross-sectional area, was
calculated using the average axial velocity. Equation (2.17), which imposes a physical
constraint and excludes the transverse velocity components, is particularly useful [21].
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2.3. Method of Solution. Here, it is more convenient to represent the variables and
parameters in dimensionless form for the model as

(2.18)
U = uRe

we

, V = vRe

we

, W = w

we

, P = p− pe

ρw2
e

, Z = z

DhRe

, H = h

Dh

,

µr = µRe

ρweDh

, τD = τoRe

ρw2
e

and Re = ρ

k2
c

weDh,

where pe is the pressure at the entrance, Re is the Reynolds number, τD is the
dimensionless yield stress, and Dh is the hydraulic diameter given by

(2.19) Dh = 2(R2 −R1) = 2a(1 − S) csch ξ2.

The following equations are obtained by substituting (2.18) and (2.19) into (2.5),
(2.9), (2.10) and (2.11) to (2.17).

Assumed by the dimensionless form of viscosity

µr =

Kc +

 HτD√(
∂w
∂x

)2
+
(

∂w
∂y

)2


1
2


1/2

.

The dimensionless forms continuity and momentum equations now take the form
∂

∂ξ
(HU) + ∂

∂η
(HV ) + ∂

∂z
(H2W ) = 0,

(2.20) U

H
· ∂W
∂ξ

+ V

H
· ∂W
∂η

+W
∂W

∂z
= −dP

dZ
+ 1
H2

[
∂

∂ξ

(
µr
∂W

∂ξ

)
+ ∂

∂η

(
µr
∂W

∂η

)]
.

All other variables in (2.12) to (2.16) are already dimensionless due to the dimen-
sionless nature of u and v in (2.18), which makes u/v equal to U/V . Thus, (2.11)
through (2.16) are not altered, except that (2.11) and (2.16) are updated to:

(2.21) U

V
= F

t2 − t1
1 + t1t2

, for ξ ̸= ξ∗, and U = 0, for ξ = ξ∗.

Then, the dimensionless integral form of the continuity equation (2.17) is as follows

(2.22) 8(1 − S)
π(1 + S)

∫ π

0

∫ ξ1

ξ2
WH2 dξ dη = 1.0,

which employs the trapezoidal rule for the double integral. Moreover, the dimensionless
boundary conditions are:

U = V = W = 0, at ξ = ξ1 and ξ = ξ2,

W = 1, at Z = 0,
∂W

∂η
= 0, at η = 0 and η = π.
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3. Numerical Model and Implementation

3.1. Numerical Model. A numerical marching technique that divides the hydrody-
namic entrance region into a number of parallel planes that are perpendicular to the
z-axis provides a finite difference solution to the model. To create a finite difference
grid that covers half of the symmetric annular cross section, sets of constant ξ curves
(with index i) and constant η curves (with index j) are used to segment off the region
defined by ξ1 ≤ ξ ≤ ξ2. This grid was selected to be fine enough to produce solutions
with acceptably low truncation errors without requiring excessive computational cost
or storage. Starting from either wall, the ξ interval from ξ1 to ξ∗ and the one from ξ∗

to ξ2 is divided into m variable segments. The steep velocity gradients near the walls
are accommodated very fine grid spacing. The η interval from 0 to π is divided into l
equal segments. Therefore, there are (2m− 1)l interior grid points, with indices (i, j),
for which values of the three velocity components, Ui,j, Vi,j, and Wi,j, are required,
while (l+ 1) points on each ξ boundary for which have all values of Ui,j, Vi,j, and Wi,j

set to zero. Non-uniform step lengths in the ξ direction (variable mesh size), uniform
step lengths in the η direction, and non-uniform step lengths in the z direction are each
represented by ∆ξi (where ∆ξi = ξi+1 − ξi), ∆η, and ∆z, respectively. Consequently,
the continuity equation, using central difference, takes the following form

(3.1)

Hi,j−1Ui,j−1,k+1 −Hi−1,jUi−1,j,k+1 −Hi−1,j−1Ui−1,j−1,k+1 +Hi,jUi,j,k+1

2∆ξi−1

+ −Hi,j−1Vi,j−1,k+1 +Hi−1,jVi−1,j,k+1 −Hi−1,j−1Vi−1,j−1,k+1 +Hi,jVi,j,k+1

2∆η

+
H2

i,jWi,j,k+1 +H2
i−1,jWi−1,j,k+1 +H2

i,j−1Wi,j−1,k+1 +H2
i−1,j−1Wi−1,j−1,k+1

4∆z

−
H2

i,jWi,j,k +H2
i−1,jWi−1,j,k +H2

i,j−1Wi,j−1,k +H2
i−1,j−1Wi−1,j−1,k

4∆z = 0,

while the momentum equation in the finite difference form is:

Ui,j,k

Hi,j

Wi+1,j,k+1
d2
(
∆ξ2

i

) − Wi−1,j,k+1

d2
(
∆ξ2

i−1

) + d3Wi,j,k+1
d2

+ Vi,j,k

Hi,j

(
Wi,j+1,k+1 − Wi,j−1,k+1

2∆η

)(3.2)

+ Wi,j,k

∆z
(Wi,j,k+1 − Wi,j,k)

= − dP

dZ
+ 1

H2
i,j

[
µri+1/2,j,k+1(Wi+1,j,k+1 − Wi,j,k+1)

d1 (∆ξi)
−

µri−1/2,j,k+1(Wi,j,k+1 − Wi−1,j,k+1)
d1 (∆ξi−1)

]

+ 1
H2

i,j

[
µri,j+1/2,k+1(Wi,j+1,k+1 − Wi,j,k+1) + µri,j−1/2,k+1(Wi,j,k+1 − Wi,j−1,k+1)

∆η2

]
,

where

(3.3) d1 = ∆ξi + ∆ξi−1

2 , d2 = 1
∆ξi

+ 1
∆ξi−1

, d3 = 1
∆ξ2

i−1
− 1

∆ξ2
i

.
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3.2. Problem Implementation. The previously obtained results were coded in
MATLAB [37]. However, the established difference scheme generates a system of
linear algebraic equations in V , W , and dP

dZ
. Subsequently, a set of (2m+ 1)(l+ 1) + 1

simultaneous linear algebraic equations in W and dP
dZ

are obtained by combining (2.22)
with (3.1) and (3.2) for i = 2 to 2m − 1 and j = 2 to l. At the first plane beyond
the inlet, the hydrodynamic model is solved independently of all subsequent planes.
The solution of the second plane depends only on the solution of the first one, and
the solution of the (k + 1)-th plane depends only on the solution of the k-th plane,
which is its direct predecessor. As a result, the entire hydrodynamic entrance region
is resolved by successively solving each plane in turn. The matrix form of the linear
algebraic equations is as follows

(3.4) AX = B,

where X denotes the unknowns of the algebraic equations, A represents their coeffi-
cients, and B contains their residuals. Then the matrix form of (3.4) may be expressed
in the following way

(3.5)
[
A1 A2
A3 A4

]
·
[
W
P

]
=
[
B1
B2

]
,

where A1 is a (2m− 1) × (l + 1) matrix that includes the coefficients of Wi,j in (3.2),
while A2 contains the coefficients of P in (3.2) and A3 has the coefficients of the axial
velocity Wi,j derived from the integral (2.22). Also,

A4 =
[
0 0

]
.

Additionally, B1 is a (2m−1)×(l+1) vector representing the residuals of (3.2) whereas
B2 is the vector that represents the residuals of (2.22). In order to solve nonsingular
linear systems with coefficient matrices, Keller [38] investigated the behavior of the
bordering algorithm (3.5). This algorithm has been used to solve a broad class of
differential equations boundary value problems that are discretized. The matrix form
(3.5) can be split into the following two equations using this technique

A1W + A2P =B1,(3.6)
A3W + A4P =B2.(3.7)

In which, the unknown W may be put in the form

(3.8) W = W̄ − ŴP.

Then (3.6) may be written as

(3.9) A1(W̄ − ŴP ) + A2P = B1,

i.e.,

(3.10) A1W̄ + P (A2 − A1Ŵ ) = B1.
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In order to eliminate P from (3.10), Ŵ is solved using

(3.11) A1Ŵ = A2,

and then W̄ is obtained through solving
(3.12) A1W̄ = B1.

However, the five-band system represented by (3.11) and (3.12) can be solved using
the relaxation method to obtain both W̄ and Ŵ . The sparsity of matrix A1 with
many zero elements that are ignored during the solution steps makes this method
appropriate for solving such systems. Therefore, the relaxation equation is expressed
as
(3.13)
α2i,j = we

ai,j

(ai,j−1α2i,j−1 + ai,j+1α2i,j+1 + ai−1,jα2i−1,j + ai+1,jα2i+1,j) + (1 − we)α1i,j,

where α represents an element in the unknowns vectors W̄ and Ŵ , the subscript 1
means the known values of the variables 1, and the subscript 2 means the unknown
values of the variables one. we is the relaxation factor, a is an element of matrix
A1, and b is an element of matrix A2 or matrix B1. Substitute (3.8) into (3.7) yields
A3(W̄ − ŴP ) = B2. Then,

A3ŴP = A3W̄ −B2.

Equation (3.8) is used to determine W once P is known. Following the acquisition of
all Wi,j for a plane, the unknown Ui,j and Vi,j in the plane are all directly evaluated
without any iterations using the numerical approximation to (3.1) and (2.21).

Starting with uniform axial velocity as a starting point, the flow in the annulus
develops during the computations. The process is repeated at the next plane after
resolving all unknowns at the (k+ 1) plane. Repeating this process until the flow has
fully developed, the relaxation parameter and the mesh size (axial and transverse)
affect the stability and convergence speed. Furthermore, the model’s finite difference
equations are stable and consistent based on the available numerical findings. At
a certain axial position on z, the truncation error of the difference scheme in (3.2)
is O(∆ξ + ∆η2). As a result, since ∆ξ and ∆η converge to zero, the difference
equation (3.2) tends to the differential equation (2.20). The very tiny axial step size
∆z, no larger than 0.25 × 105, was used near the inlet to account for the high axial
gradients typically occurring at the duct entrance. Z was increased to a maximum of
0.001 increased.

4. Results and Discussion

The exact solution of Snyder and Goldstein [39] for the magnitude of discharge, Q,
has been compared to the results of the current study while considering various values
of e. As shown in Table 1, the comparison has examined a fully developed Newtonian
fluid (τD = 0.0), with S = 0.5. Different dimensionless parameters were considered
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when calculating the discharge. Additionally, the accuracy of the current study was
evaluated, revealing that agreement with the exact solution increases as e increases.

Table 1. Comparison of numerical results of discharge, Q with the
exact solution of Synder and Goldstein

e Present Study Snyder and Goldstein Accuracy (%)
S = 0.5

0.2 0.051157 0.05226 97.88940
0.4 0.060041 0.06054 99.17575
0.6 0.073739 0.074052 99.57732
0.8 0.092061 0.09236 99.67627

Moreover, Table 2 compares the discharge values to those reported by Ateia et al. [5]
at S = 0.5 considering various values of τD and e. As e is increased or decreased, the
accuracy of the discharge values from the current study was evaluated and they were
found to be consistent.

Table 2. Comparison of numerical results of discharge with the nu-
merical solution of Ateia et al. for different values of τD

Reference τD = 0 τD = 0.025 τD = 0.05
Present study S = 0.5, e = 0.2 0.01197 0.020446 0.05116

[5] 0.01222 0.020845 0.05224
Accuracy (%) 97.9326 97.9542 98.0859

Present study S = 0.5, e = 0.4 0.01555 0.025390 0.06004
[5] 0.01537 0.025310 0.06049

Accuracy (%) 99.6839 99.2561 98.8289
Present study S = 0.5, e = 0.6 0.02068 0.032686 0.07398

[5] 0.02110 0.033011 0.07415
Accuracy (%) 99.0155 99.7707 98.0095

Present study S = 0.5, e = 0.8 0.02801 0.042758 0.09232
[5] 0.02859 0.043263 0.09237

Accuracy (%) 98.8327 99.9459 97.9713

This study’s dimensionless entrance solution for pressure is contrasted with that
of Feldman and Hornbeck [21]. Figure 2 depicts e = 0.9 and S = 0.1 for Newtonian
fluid flow (τD = 0.0), and the current findings are in good agreement with the earlier
conclusion.

However, Figures 3, 4 and 5 examine the effect of S, e, and τD on the pres-
sure gradient, respectively. Figure 3 illustrates the impact of the radius ratio (S =
0.1, 0.5 and 0.9) on the pressure gradient −dP

dZ
for constant values of relative eccen-

tricity e = 0.5 and yield stress τD = 0. It showed that as S decreases, the pressure
gradient grows and quickly reaches its maximum. For S = 0.1, 0.5 and 0.9, the ratio
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Figure 2. Comparison of the pressure gradient with the results of
Feldman and Hornbeck, e = 0.9, s = 0.1 and τD = 0.0

of pressure gradient values at Z = 0 to those at Z = 1 was 6.16, 7.90, and 17.65 times,
respectively. This indicates how high the pressure gradient at the entrance region
is. These significant increases (up to 17.65 times the fully developed values) stem
from steep velocity gradients near the inlet. In Figure 3, the pressure gradient range
expands as S increases, due to narrower annular gaps intensifying wall shear effects.
Moreover, Figure 4 shows how the relative eccentricity (e = 0.3, 0.5 and 0.7) affects
the pressure gradient −dP

dZ
for constant values of the radius ratio S = 0.5 and τD = 0.

As e decreases, the pressure gradient increases and quickly reaches its maximum. The
pressure gradient values at Z = 0 were 50.52, 35.44, and 21.99 times greater than
those at Z = 1 for e = 0.3, 0.5 and 0.7, respectively. This reflects the significant
increase in the pressure gradient within the entrance region. For a Newtonian fluid
τD = 0, decreasing e narrows the annular gap, intensifying shear and resistance near
the inner wall, which sharply elevates the pressure gradient at the inlet. Additionally,
the pressure gradient −dP

dZ
for fixed values of the radius ratio S = 0.5 and the relative

eccentricity e = 0.5 is affected by the yield stress τD = 0.0, 0.05, 0.5 and 1, as shown
in Figure 5. It increases as τD increases and gradually develops to its full value, which
is expected given increased viscosity and resulting elevation in pressure gradient. For
τD = 0.0, 0.05, 0.5 and 1, the pressure gradient ratios at the entrance region relative to
the steady fully developed zone were 10.64, 11.96, 14.83, and 16.86 times, respectively.
This draws the designers’ attention to the extremely high pressure in the entrance
areas. For a Casson fluid, higher τD enhances the yield stress, requiring greater pres-
sure to initiate flow, particularly at the entrance, where undeveloped flow amplifies
viscous resistance.
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Figure 3. Distribution of the pressure gradient (−dP
dZ

) versus Z for
different values of S for e = 0.5 and τD = 0.0

 

Figure 4. Distribution of the pressure gradient (−dP
dZ

) versus Z for
different values of e for S = 0.5 and τD = 0.0

On the other hand, Figures 6, 7, and 8 demonstrate the effects of S, e, and τD on
the axial velocity. Figure 6 depicts the impact of the radius ratio (S = 0.1, 0.5, and
0.9) on the axial velocity for constant values of the relative eccentricity e = 0.5 and
the yield stress τD = 0.0. As S decreases, the axial velocity increases to accommodate
the increased area. The ratio of the entrance zone velocity to the fully developed one
was 0.443626, 0.47152, and 0.437509 for S = 0.1, 0.5, and 0.9, respectively. For a
Newtonian fluid τD = 0, a lower S (smaller inner radius relative to the outer) widens
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the annular gap, reducing flow resistance and boosting axial velocity near the entrance.
However, as the flow develops, the velocity profile adjusts, leading to the observed
ratios reflecting the transition from entrance to fully developed conditions.

 

Figure 5. Distribution of the pressure gradient (−dP
dZ

) versus Z for
different values of e = 0.5 for S = 0.5 for different values of yield stress

Figure 6. Distribution of the velocity, w versus Z for different values
of S for e = 0.5 and τD = 0.0

Additionally, Figure 7 shows the influence of relative eccentricity, e = 0.3, 0.5
and 0.7 on axial velocity for fixed values of radius ratio, S = 0.5, and yield stress,
τD = 0. It was found that as e increases (due to an increase in area), the axial
velocity decreases. According to the results, the entrance zone velocity was 0.469391,
0.438141 and 0.437509 times its value in the fully developed region, respectively. For
a Newtonian fluid τD = 0, increasing e shifts the inner cylinder off-center, narrowing
the gap on one side and widening it on the other. This asymmetry increases resistance
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in the narrow region, reducing the axial velocity near the entrance despite the larger
overall area, while the fully developed flow adjusts to a more uniform profile.

 

Figure 7. Distribution of the velocity, w versus Z for different values
of e at S = 0.5 and τD = 0.0

Furthermore, Figure 8 illustrates how the yield stress, τD = 0, 0.5 and 1.0 affects
the axial velocity for constant values of the radius ratio, S = 0.1 and relative eccen-
tricity, e = 0.9. As τD increases, the viscosity rises and the axial velocity decreases
correspondingly . The ratios of the entrance region velocity to the fully developed
velocity were 0.496551714, 0.505679036 and 0.53654 for τD = 0, 0.5 and 1.0, respec-
tively. For a Casson fluid, higher τD increases the yield stress, enhancing resistance
to flow initiation and reducing axial velocity, particularly near the entrance where
flow is undeveloped. This effect is pronounced at low S and high e, as the narrow
annular gap and eccentricity amplify viscous opposition, though the fully developed
flow partially mitigates this reduction.

5. Concluding Remarks

The numerical findings were reported for the three-dimensional, steady, laminar
fluid flow under hydrodynamically developed conditions. The fluid was assumed to be
either Newtonian or non-Newtonian flowing through concentric or eccentric annulus
duct. Computer software was developed that utilized two-dimensional storage and a
marching strategy for solving differential equations line-by-line using the relaxation
method. Subsequently, the effects of the axial position Z, the relative e, and the
radius ratio S on the axial velocity profiles were studied.

Through this work, it was found that the pressure gradient is directly proportional
to the yield stress; τD, and inversely proportional to both the radius ratio; S, and the
relative eccentricity; e, whereas the axial velocity is inversely proportional to S, e, and



1680 A. M. ATEIA AND O. H. GALAL

 

Figure 8. Distribution of the velocity, w versus Z for different values
of τD at e = 0.9 and S = 0.1

τD. It was observed that the pressure gradient in the entrance region is significantly
greater than the fully developed one. This ratio ranged from 6.16 for S = 0.1, e = 0.5
and τD = 0 to 50.52 for S = 0.5, e = 0.3 and τD = 0. In contrast to the pressure
gradient, the axial velocity in the entrance region is consistently lower than in the
fully developed zone,with its ratio varying between 0.437509 for S = 0.5, e = 0.7 and
τD = 0 and 0.53654 for S = 0.1, e = 0.9 and τD = 1. This emphasizes the importance
of investigating the entrance region for system designers.

The accuracy of the current results was compared to values reported in the literature
showing good agreement.

Notations. We have used the following list of notations.
Dimensionless velocity components U, V,W
Coefficient matrix A
Velocity components u, v, w
Coefficients sub-matrices A1, A2, A3
Velocity vector W
Residuals vector B

Intermediate matrices W̄ , Ŵ
Residuals sub-vectors B1, B2
Volume rate of flow per unit we

Hydraulic diameter Dh

Eccentricity d
Dimensionless z component Z
Pressure gradient dp

dz
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Greek Symbols
Model viscosity K2

c

Apparent viscosity µ
Plane number k
Dimensionless viscosity µr

Relative eccentricity M
Bipolar system coordinates ξ, η, z
Dimensionless pressure P
Fluid density ρ
Entrance’s pressure gradient pe

Yield stress τD

Inner and outer radii R1, R2
Distance between two points ∆
Reynolds’s number Re

Gradient derivative ∇
Radius ratio S
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