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CLASSIFICATION OF TORQUED VECTOR FIELDS AND ITS
APPLICATIONS TO RICCI SOLITONS

BANG-YEN CHEN

Abstract. Recently, the author defined torqued vector fields in [Kragujevac J.
Math. 41(1) (2017), 93–103]. In this paper, we classify all torqued vector fields
on Riemannian manifolds. Moreover, we investigate Ricci solitons with torqued
potential fields. In particular, we prove that every Ricci soliton with torqued
potential field is an almost quasi-Einstein manifold; and it is an Einstein manifold
if and only if the potential field is a concircular vector field. Some related results
on Ricci solitons are also obtained.

1. Introduction

A vector field v on a (pseudo) Riemannian manifold M is called torse-forming if it
satisfies [32]

∇Xv = φX + ψ(X)v,(1.1)

for any vector X ∈ TM , where φ is a function, ψ is a 1-form and ∇ is the Levi-Civita
connection of M (see also [27, 30]). If the 1-form ψ in (1.1) vanishes identically, then
the vector field v is called concircular (cf. [4, 30, 31, 33]). If φ = 1 and ψ = 0, then
the vector field v is called concurrent [30, 33]. The vector filed v is called recurrent if
it satisfies (1.1) with φ = 0. Furthermore, if ϕ = ψ = 0, the vector field v in (1.1) is
called a parallel vector field.

The author made the following definition in [9].

Definition 1.1. A nowhere zero vector field T on a Riemannian manifold (or, more
generally, in a pseudo-Riemannian manifold) is called a torqued vector field if it satisfies
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the following two conditions

∇XT = ϕX + α(X)T and α(T) = 0.(1.2)

The function ϕ is called the torqued function and the 1-form α is called the torqued
form of T.

A vector field ξ on a Riemannian manifold (M, g) is said to define a Ricci soliton if
it satisfies

(1.3)
1

2
Lξg + Ric = λg,

where Lξg is the Lie-derivative of the metric tensor g with respect to ξ, Ric is the Ricci
tensor of (M, g) and λ is a constant. We shall denote a Ricci soliton by (M, g, ξ, λ).
We call the vector field ξ the potential field of the Ricci soliton. A Ricci soliton
(M, g, ξ, λ) is called shrinking, steady or expanding according to λ > 0, λ = 0, or
λ < 0, respectively (see, e.g., [7, 10–12, 28]). A trivial Ricci soliton is one for which
the potential field ξ is zero or Killing, in which case the metric is Einsteinian.

Compact Ricci solitons are the fixed points of the Ricci flow:
∂g(t)

∂t
= −2 Ric(g(t))

projected from the space of metrics onto its quotient modulo diffeomorphisms and
scalings, and often arise as blow-up limits for the Ricci flow on compact manifolds.
Further, Ricci solitons model the formation of singularities in the Ricci flow and they
correspond to self-similar solutions (cf. [28]).

During the last two decades, the geometry of Ricci solitons has been the focus of
attention of many mathematicians. In particular, it has become more important after
Grigori Perelman applied Ricci solitons to solve the long standing Poincaré conjecture
posed in 1904 (cf. [28]).

In this paper we classify all torqued vector fields on Riemannian manifolds. More-
over, we investigate Ricci solitons with torqued potential fields. In particular, we
prove that if a Ricci soliton (M, g,T, λ) has torqued potential field T, then (M, g) is
an almost quasi-Einstein manifold; and (M, g) is an Einstein manifold if and only if
the torqued potential field T is a concircular vector field. Some related results on
Ricci solitons are also obtained.

2. Classification of Torqued Vector Fields

For a 1-dimensional Riemannian manifold M with metric g = ds2, every nowhere
zero vector field T = ρ∂/∂s on M satisfies

∇XT =
∂ρ

∂s
X.

Thus every nowhere zero vector field on 1-dimensional Riemannian manifold is a
torqued vector field. Therefore, throughout this article, we only consider torqued
vector fields defined on Riemannian manifolds of dimension ≥ 2.
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We recall the following definition.

Definition 2.1. The twisted product B ×f F of two pseudo-Riemannian manifolds
(B, gB) and (F, gF ) is the product manifold B × F equipped with the metric

(2.1) g = gB + f 2gF ,

where f is a positive function on B × F , which is called the twisting function.
In particular, if the function f in (2.1) depends only on B, then it is called a warped

product and the function f is called the warping function.

We denote the set of lifts of vector fields on B and F to B × F by L(B) and L(F ),
respectively.

First, we recall the following result proved in [9].

Theorem 2.1. If a Riemannian manifold M admits a torqued vector field T, then M
is locally a twisted product I ×f F such that T is always tangent to I, where I is an
open interval.

Conversely, for each twisted product I ×f F , there exists a torqued vector field T

such that T is always tangent to I.

In views of Theorem 2.1 we make the following.

Definition 2.2. A torqued vector field T is said to be associated with a twisted product
I ×f F if T is always tangent to I.

Now, we prove the following result which classifies torqued vector fields.

Theorem 2.2. Every torqued vector field T associated with a twisted product I ×f F
is of the form:

T = µf
∂

∂s
,

where s is an arc-length parameter of I, µ is a nonzero function on F , and f is the
twisting function.

Proof. Let M = I ×f F be a twisted product with twisting function f . Then the
metric tensor of M is given by

g = ds2 + f 2gF ,(2.2)

where s is an arc-length parameter of I and gF is the metric tensor of F .
Let us consider a vector field on M defined by V = µf∂/∂s, where µ is a nonzero

function on F . Then we have

∇VV = µ
∂f

∂s
V,

∇VV = (V ln(µf))V + µ
∂f

∂s
V.
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Thus V = µf∂/∂s is a torqued vector field satisfying (1.2) with the torqued function
ϕ = µ∂f/∂s and the torqued form α satisfying

α(V) = 0 and α(V ) = V (lnµf),

for any vector field V ∈ L(F ).
Now, let T be an arbitrary torqued vector field associated with I ×f F . Then, by

definition, we have

∇XT = ϕX + α(X)T and α(T) = 0,(2.3)

Since T is tangent to I, we may put

T = ρ
∂

∂s
, ρ = |T|.(2.4)

It follows (2.3) and (2.4) that

ρϕ
∂

∂s
= ∇TT = (Tρ)

∂

∂s
+ ρ2∇ ∂

∂s

∂

∂s
.(2.5)

On the other hand, it follows from (2.2) that the Levi-Civita connection of I ×f F
satisfies

∇ ∂
∂s

∂

∂s
= 0, ∇ ∂

∂s
V = ∇V

∂

∂s
=
∂(ln f)

∂s
V,(2.6)

for any vector field V ∈ L(F ) (cf. [2]). So, we derive from (2.5) and the first equation
of (2.6) that

ϕ = ρ
∂(ln ρ)

∂s
.(2.7)

From (2.3), (2.4) and the second equation of (2.6) we find

ϕV + α(V )T = ∇V T = (V ρ)
∂

∂s
+ ρ

∂(ln f)

∂s
V,

for any vector field V ∈ L(F ). Therefore we obtain

ϕ = ρ
∂(ln f)

∂s
, α(V ) = V (ln ρ).(2.8)

Now, we find from (2.7) and (2.8) that

∂

∂s
(ln f − ln ρ) = 0.

Hence, we get ρ = µf for some function µ defined on F . Consequently, the theorem
follows. �

As an application of Theorem 2.2, we have the following classification of torqued
vector fields on Einstein manifolds.
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Theorem 2.3. Every torqued vector field T on an Einstein manifold M is of the
form:

T = ζZ,(2.9)

where Z is a concircular vector field on M and ζ is a function satisfying Zζ = 0.
Conversely, every vector field of the form (2.9) is a torqued vector field on M .

Proof. Let T be a torqued vector field on a Riemannian manifold M . Then Theorem
2.2 implies that M is a twisted product I ×f F such that T = µf∂/∂s for some
nonzero function µ satisfying Tµ = 0.

In particular, if M is a Einstein manifold, it is locally a warped product I ×f̃ F̃
with warping function f̃ , where F̃ is a Riemannian manifold conformally equivalent
to F according to [21, Corollary 1]. Therefore we obtain

T = ζf̃
∂

∂s
,

where ζ is a function satisfying Tµ = 0.
Now, if we put Z = f̃∂/∂s, then we find from (2.6) that

∇ ∂
∂s
Z =

∂f̃

∂s

∂

∂s
,

∇VZ = f̃∇V
∂

∂s
=
∂f̃

∂s
V,(2.10)

for any vector field V ∈ L(F ). Consequently, there exists a concircular vector field Z
such that T = ζZ with Zζ = 0.

Conversely, it is easy to verify that the vector field given by (2.9) is a torqued vector
field. �

Another application of Theorem 2.2 is the following.

Corollary 2.1. Up to constants, there exists at most one concircular vector field
associated with a warped product I ×η F .

Proof. Let Z1 and Z2 be two concircular vector fields associated with the warped
product I ×η F . Then it follows from Theorem 2.2 that

Zi = µiη
∂

∂s
, i = 1, 2,

for some functions µ1, µ2 on F . From (2.6), (2.10) and the definition of concircular
vector field, we find

ϕiV = ∇VZi = η(V µi)
∂

∂s
+ µi

∂η

∂s
V,

for any vector field V ∈ L(F ). Hence we obtain V µi = 0. Therefore the functions µ1

and µ2 are both constant. Hence Z1 and Z2 differ only by a constant. �
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Remark 2.1. If v1 and v2 are two concurrent vector fields on a Riemannian manifold
M , then we have ∇Xvi = X for i = 1, 2. Hence

∇X(v1 − v2) = 0.

Thus we get v2 = v1 + c, where c is a parallel vector (i.e., ∇c = 0). Consequently, up
to parallel vectors, there exists at most one concurrent vector field on a Riemannian
manifold.

3. Applications to Ricci Solitons

A pseudo Riemannian manifold (M, g) is called a quasi-Einstein manifold if its
Ricci tensor Ric satisfies

Ric = ag + bα⊗ α,
for functions a, b, and 1-form α.

It is well-known that quasi-Einstein manifolds arose during the study of exact
solutions of the Einstein field equations as well as during considerations of quasi-
umbilical hypersurfaces of conformally flat spaces. In particular, it was well-known
that Robertson-Walker spacetimes are quasi-Einstein (see, e.g., [17]).

For results on quasi-Einstein hypersurfaces in spaces of constant curvature we
refer to [16, 18, 19] amongst others. More recently, quasi-Einstein manifolds were
investigated amongst others in [13,20,23–25].

Remark 3.1. As far as I know, the term “quasi-Einstein” was already used in 1980
(see [22, 29]).

A pseudo Riemannian manifold (M, g) is called a generalized quasi-Einstein [15]
(resp., mixed quasi-Einstein [26] or nearly quasi-Einstein [14]) manifold if its Ricci
tensor satisfies

Ric = ag + bα⊗ α + cβ ⊗ β,
(resp., Ric = ag + bα⊗ β + cβ ⊗ α or Ric = ag + bE)

where a, b, c are functions, α, β are 1-forms, and E is a non-vanishing symmetric
(0, 2)-tensor on M .

In this paper, we make the following.

Definition 3.1. A pseudo Riemannian manifold is called almost quasi-Einstein if its
Ricci tensor satisfies

Ric = ag + b(β ⊗ γ + γ ⊗ β)

for some functions a, b and 1-forms β and γ.

In this section, we study Ricci solitons with torqued potential field.

Proposition 3.1. If the potential field of a Ricci soliton (M, g,T, λ) is a torqued
vector field T, then (M, g) is an almost quasi-Einstein manifold.
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Proof. Assume that (M, g,T, λ) is a Ricci soliton whose potential field is a torqued
vector field. Then (1.2) holds, which implies

(LTg)(X, Y ) = g(∇XT, Y ) + g(∇Y T, X)(3.1)
= 2ϕg(X, Y ) + α(X)g(T, Y ) + α(Y )g(T, X).

for any vector fields X, Y tangent to M .
By combining (1.3) and (3.1), we find

Ric(X, Y ) = (λ− ϕ)g(X, Y )− 1

2
α(X)g(T, Y )− 1

2
α(Y )g(T, X).(3.2)

If we denote the dual 1-form of T by γ, then (3.2) yields

Ric = (λ− ϕ)g − 1

2
(α⊗ γ + γ ⊗ α).

Therefore (M, g) is an almost quasi-Einstein manifold. �

An immediate consequence of (3.1) is the following.

Corollary 3.1. A torqued vector field T on a Riemannian manifold M is a Killing
vector field if and only if T is a recurrent vector field satisfies

∇XT = α(X)T and α(T) = 0,

where α is a 1-form.

Recall that a Ricci soliton (M, g, ξ, λ) with dimM ≥ 3 is called trivial if (M, g) is
an Einstein manifold.

The following result provides a very simple characterization for a Ricci soliton with
torqued potential field to be trivial.

Theorem 3.1. A Ricci soliton (M, g,T, λ) with torqued potential field T is trivial if
and only if T is a concircular vector field.

Proof. Assume that (M, g,T, λ) is a Ricci soliton on a Riemannian n-manifold with a
torqued potential field T. Then (3.2) holds for any vector fields X, Y tangent to M .
In particular, we have

Ric(T, V ) = −1

2
α(T)g(T, V )− 1

2
α(V )g(T,T).

for any vertical vector field V . Since T is torqued, we have α(T) = 0. Thus

(3.3) Ric(T, V ) = −1

2
α(V )g(T,T),

for any vector field V perpendicular to T. Thus, if (M, g) is an Einstein manifold,
then (3.3) gives α(V )g(T,T) = 0. Since T is nowhere zero, we obtain α(V ) = 0 for
any vector V orthogonal to T. Combining this with α(T) = 0 gives α = 0. Hence the
potential field T is a concircular vector field.



246 B.-Y. CHEN

Conversely, if (M, g, Z, λ) is a Ricci soliton with concircular vector field Z, then we
have ∇XZ = ϕX for some function ϕ. Thus

(LZg)(X, Y ) = g(∇XZ, Y ) + g(∇YZ,X) = 2ϕg(X, Y ),

for any X, Y tangent to M . After combining this with (1.3) we find

(3.4) Ric(X, Y ) = (λ− ϕ)g(X, Y ),

which implies that (M, g) is an Einstein manifold. Consequently, the Ricci soliton is
a trivial one. �

Remark 3.2. Let (M, g, ξ, λ) be a Ricci soliton with dimM ≥ 3. If the potential field
ξ of the Ricci soliton is a concircular vector field Z, then Z must satisfies ∇XZ = cX
for some constant c. This can be seen as follows: Since λ given in (3.4) is a constant
and dimM ≥ 3, the function ϕ in (3.4) is also a constant since (M, g) is an Einstein
manifold.

4. Ricci Solitons with Canonical Torqued Potential Field

In view of Theorem 2.1 we give the following.

Definition 4.1. For a twisted product I×f F , the torqued vector field f∂/∂s is called
the canonical torqued vector field of I ×f F , where s is an arc-length parameter on I.
We denote the canonical vector field f∂/∂s by Tfca.

Recall from Theorem 2.1 that if a Riemannian manifold M admits a torqued vector
field, then M is locally a twisted product I ×f F , where f is the twisting function
and F is a Riemannian (n− 1)-manifold.

Now, we prove the following.

Theorem 4.1. If (I×f F, g,Tfca, λ) is a Ricci soliton with the canonical torqued vector
field Tfca as its potential field, then we have:

(a) Tfca is a concircular vector field and
(b) (I ×f F, g) is an Einstein manifold.

Proof. Assume that (I ×f F, g,Tfca, λ) is a Ricci soliton with the canonical torqued
vector field Tfca as its potential field. Then (1.2) holds for T = Tfca, which implies

(L
T
f
ca
g)(X, Y ) = 2ϕg(X, Y ) + α(X)g(Tfca, Y ) + α(Y )g(Tfca, X),(4.1)

for any X, Y tangent to M . Combining (1.3) and (4.1) gives

Ric(X, Y ) = (λ− ϕ)g(X, Y )− 1

2
α(X)g(Tfca, Y )− 1

2
α(Y )g(Tfca, X).(4.2)

Since Tfca is the canonical torqued vector field on I ×f F , we have

g = ds2 + f 2gF , Tfca = f
∂

∂s
.(4.3)
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Hence it follows from (2.8) that

ϕ = fs, α(V ) = V (ln f),(4.4)

for any vector field V ∈ L(F ). Because α(Tfca) = 0, we derive from (4.2), (4.3) and
(4.4) that

Ric(Tfca,T
f
ca) = (λ− fs)f 2,(4.5)

Ric(Tfca, V ) = −V (f 2)

4
,(4.6)

Ric(V,W ) = (λ− fs)g(V,W ),

for vector fields V,W ∈ L(F ). Since M is an open portion of the twisted product
I ×f F , we also have (cf. e.g., [21])

Ric(Tfca,T
f
ca) = (1− n)ffss, n = dimM,(4.7)

Ric(Tfca, V ) = (2− n)V (fs),(4.8)

Ric(V,W ) = RicF (V,W ) + (3− n){VW (ln f)− (∇F
VW )(ln f)}(4.9)

+ (n− 1)V (ln f)W (ln f)− g(V,W ){∆(ln f)

+ g(∇(ln f),∇(ln f))},

for any vector fields V,W ∈ L(F ), where ∆(ln f) is the Laplacian of ln f on M .
From (4.5) and (4.7) we find

(1− n)fss = (λ− fs)f.(4.10)

On the other hand, it follows from (4.6) and (4.8) that

4(n− 2)V (fs) = V (f 2),

for any vector field V ∈ L(F ).
After solving the differential equation (4.9) we get

4(n− 2)fs − f 2 = k(s),(4.11)

for some function k = k(s). Now, by taking the derivative of (4.11) we obtain

fss =
2ffs + k′(s)

4(n− 2)
.(4.12)

After substituting (4.12) into (4.10) we find

(n− 3)fs = (n− 1)
k′(s)

2f
+ 2(n− 2)λ.(4.13)

By solving (4.11) for fs and by substituting it into (4.13) we obtain

(n− 3)f 3 − [(n− 3)k(s) + 8(n− 2)2λ]f = 2(n2 − 3n+ 2)k′(s).(4.14)

Equation (4.14) implies that the twisting function f is a function depending only on
s, not on F . Hence I ×f F is a warped product. Therefore, the canonical torqued
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vector field Tfca is a concircular vector field. Consequently, by Theorem 3.1, (I×f F, g)
is an Einstein manifold. �

Remark 4.1. Ricci solitons (M, g, Z, λ) with concircular potential field Z have been
completely determined in [5, Theorem 5.1].

Remark 4.2. If the potential field of the Ricci soliton defined on (I×f F, g) in Theorem
4.1 is an arbitrary torqued vector field T associated with I ×f F , then it follows from
Theorem 2.2 that T = µf∂/∂s for some function µ defined on F . In this case, we may
consider the twisted product I ×f̃ F̃ instead, where f̃ = µf and F̃ is the manifold F
with metric g̃F = µ−2gF . Then (I ×f̃ F̃ , g̃,T, λ) with g̃ = ds2 + f̃ 2g̃F is a Ricci soliton
whose potential field T is the canonical torqued vector field Tf̃ca of I ×f̃ F̃ .

An application of Theorem 4.1 is the following.

Corollary 4.1. Let (I ×f F, g,Tfca, λ) be a steady Ricci solitons with the canonical
torqued vector field Tfca as its potential field. If dimF ≥ 2, then we have:

(a) Tfca is a parallel vector field,
(b) f is a constant, say c,
(c) (I ×c F, g) is a Ricci-flat manifold, and
(d) F is also Ricci-flat.

Proof. Let (I ×f F, g,Tfca, λ) be a Ricci soliton with the canonical torqued vector field
Tfca as its potential field. Then it follows from Theorem 4.1 that Tfca is a concircular
vector field. Thus we have

∇XT
f
ca = ϕX,(4.15)

for some function ϕ. Thus we find from (4.2) that the Ricci tensor of I ×f F satisfies

Ric(X, Y ) = (λ− ϕ)g(X, Y ),(4.16)

for any vector fields X, Y . Since dimF ≥ 2 and I×f F is an Einstein manifold, (4.16)
implies that ϕ is a constant, say b. Therefore, it follows from (4.15) that

∇XT
f
ca = bX.(4.17)

Now, suppose that the Ricci soliton is steady. Then we have λ = 0. Hence Eq.
(4.16) yields

Ric(X, Y ) = −bg(X, Y ),(4.18)

for any vector fields X, Y .
On the other hand, it follows from (4.15) that the Riemann curvature tensor R

satisfies
R(X,Tfca)T

f
ca = ∇X∇T

f
ca
Tfca −∇T

f
ca
∇XT

f
ca −∇[X,Tf

ca]
Tfca = 0.

Thus Ric(Tfca,T
f
ca) = 0. Therefore we get b = 0 and hence I ×f F is a Ricci-flat

manifold by (4.18). Moreover, it follows from (4.17) that Tfca is a parallel vector field.
Moreover, we conclude from (4.5) that fs = 0. Thus f is a constant. Therefore F is
Ricci-flat as well. �
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