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DECOMPOSABLE FILTERS OF LATTICES

S. EBRAHIMI ATANI1 AND M. SEDGHI SHANBEH BAZARI2

Abstract. In this paper, we introduce and investigate the latticial counterpart
of the filter-theoretical concepts of prime, second and irreducible. In a manner
analogous to modules over a commutative ring, the main purpose of this paper is
to investigate L-prime filters, L-second filters, meet-irreducible filters and special
decomposable filters of lattices.

1. Introduction

The notion of an order plays an important role not only throughout mathematics
but also in adjacent such as logic and computer science. The beauty of lattice theory
derives in part from the extreme simplicity of its basic concepts: (partial) ordering,
least upper and greatest lower bounds. In this respect, it closely resembles group
theory. Thus lattices and groups provide two of the most basic tools of universal
algebra, and in particular the structure of algebraic systems is usually most clearly
revealed through the analysis of appropriate lattices.

The idea of investigating a mathematical structure via its representations in simpler
structures is commonly used and often successful. Modules arise when the representing
subjects have an additive structure: representations as endomorphisms of abelian
groups and vector spaces are the main cases. A representation of a group G over a
field K is the same thing as a module over the corresponding group algebra K[G]. A
module over a ring R is “really just” an abelian groupM together with a ring morphism
from to the endomorphism ring of M . It is an important feature of this strategy that
any single representation will tell us only a certain amount about the original structure.
So, for example, one looks at the set of all irreducible characters (simple modules)
of a finite group, and even then for some purposes one has to look at more general
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modules. Thus arises the project of classifying all representations or, more realistically,
all representations of a certain significant type. A commonly adopted strategy is to
prove a decomposition theorem which says that every representation of the sort we
are considering may be built up from certain simpler ones, and then to develop
a description and structure theory for these simpler building blocks. An optimal
structure theory for the blocks is one which provides us with a complete list and with
representations of the members of the list, which are explicit enough to allow us to
answer many questions about the blocks with relatively little effort. Here we make the
general point that for the vast majority of rings, the description of arbitrary module
is infeasible. In particular one is interested in the description of certain significant
properties of filters of a lattice rather than in arbitrary filters: the second filters seem
to form such a class of filters which arise in practice and where there is hope of some
kind of description. Therefore the study of properties of lattices are very important.

The theory secondary representation is a sort of dual of the theory of primary
decomposition in a module over a non-trivial commutative ring was introduced in
[11]. The study of second modules (so secondary modules) is much newer having been
instigated in [12] and has been improved in various areas by a number of authors (see,
[1], [3], [6], [8]). In fact, the set of attached prime ideals of a module contains a lot
of information about the module itself. Prime modules have been studied by various
authors over the past 35 years (see, for example, [1, 4, 5, 7]). The structure theory
of lattices have been studied by several authors (see, [9, 10]). Decomposability is not
just the algebraic properties for some filters of lattices. There exist in other algebraic
areas, such as rings, modules and lattice-ordered group. Decomposable filter of a
lattice is the common tool to understand these properties. One point of this paper is
to investigte decomposability of filters of lattices.

Let L be a distributive lattice with 1. In this paper, we are interested in investigating
L-second filters and L-prime filters to use other notions of prime, second and associate
which exist in the literature as laid forth in [4, 11]. Here is a brief outline of the article.
Among many results in this paper, Section 2 lists some definitions, and prove the set
of all identity join of an Artinian filter F of L is the union of all the associated primes
of F and prime avoidance theorem. Also, we shall establish explicit descriptions of
L-second filters of L and then investigate the relationship among L-second filters, L-
prime filters and and meet-irreducible filters. It is shown that if F 6= 1 is an Artinian
filter, then F is a meet-irreducible decomposable. Some special L-representable filters
of L are investigated. Section 3 is devoted to full description of all L-prime filters,
L-second filters, and meet-irreducible filters of the lattice (L(Z),⊆) (L(Z) is the
collection of ideals of Z, the ring of integers) with respect to the following definitions:
mZ ∨ nZ = (m,n)Z and mZ ∧ nZ = [m,n]Z, for all ideals mZ and nZ of Z, where
(m,n) and [m,n] are greatest common divisor and least common multiple of m,n,
respectively.

Let us recall some notions and notations. By a lattice we mean a poset (L,≤) in
which every couple elements x, y has a g.l.b. (called the meet of x and y, and written
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x∧y) and a l.u.b. (called the join of x and y, and written x∨y). A lattice L is complete
when each of its subsets X has a l.u.b. and a g.l.b. in L. Setting X = L, we see that
any nonvoid complete lattice contains a least element 0 and greatest element 1 (in
this case, we say that L is a lattice with 0 and 1). A lattice L is called a distributive
lattice if (a∨ b)∧ c = (a∧ c)∨ (b∧ c) for all a, b, c in L (equivalently, L is distributive
if (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) for all a, b, c in L). A non-empty subset F of a lattice
L is called a filter, if for a ∈ F , b ∈ L, a ≤ b implies b ∈ F , and x ∧ y ∈ F for all
x, y ∈ F (so if L is a lattice with 1, then 1 ∈ F and {1} is a filter of L). A proper
filter F of L is called prime if x∨ y ∈ F , then x ∈ F or y ∈ F . A proper filter F of L
is said to be maximal if G is a filter in L with F $ G, then G = L. Let L be a lattice
with 0 and 1 (so if F is a filter, then 0 ∈ F if and only if F = L). If a ∈ L, then a
complement of a in L is an element b ∈ L such that a ∧ b = 0 and a ∨ b = 1. The
lattice L is complemented if every element of L has a complement in L. We say that
a filter F of L is an Artinian if any non-empty set of subfilters of F has a minimal
member with respect to set inclusion. This definition is equivalent to the descending
chain condition on subfilters of F . First we need the following lemma proved in [2, 9].

Lemma 1.1. Let L be a lattice.
(i) A non-empty subset F of L is a filter of L if and only if x∨z ∈ F and x∧y ∈ F

for all x, y ∈ F , z ∈ L. Moreover, since x = x ∨ (x ∧ y), y = y ∨ (x ∧ y) and
F is a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ L.

(ii) If F1, . . . , Fn are filters of L and a ∈ L, then ∨ni=1Fi = {∨ni=1ai : ai ∈ Fi} and
a ∨ Fi = {a ∨ ai : ai ∈ Fi} are filters of L and ∨ni=1Fi = ⋂n

i=1 Fi.
(iii) If D is an arbitrary non-empty subset of L, then the set T (D) consisting of

all elements of L of the form (a1 ∧ a2 ∧ · · · ∧ an) ∨ x (with ai ∈ D for all
1 ≤ i ≤ n and x ∈ L) is a filter of L containing D (so if D = {a}, then
T ({a}) = T (a) = {a ∨ t : t ∈ L}).

(iv) If L is distributive, F,G are filters of L, and x ∈ L, then (G :L F ) = {x ∈ L :
x ∨ F ⊆ G} and (F :L T (x)) = (F :L x) = {a ∈ L : a ∨ x ∈ F} are filters of L.

(v) If {Fi}i∈∆ is a chain of filters of L, then ∪i∈∆Fi is a filter of L.
(vi) If L is distributive, G,F1, . . . , Fn are filters of L, then G ∨ (∧ni=1Fi) =
∧ni=1(G ∨ Fi).

(vii) If L is distributive and F1, . . . , Fn are filters of L, then ∧ni=1Fi =
{∧ni=1ai : ai ∈ Fi} is a filter of L.

(viii) If L is a complemented lattice, then every prime filter of L is a maximal filter.

2. Meet-irreducible Filters and L-prime Filters

In this section, we collect some basic properties concerning L-second filters, L-prime
filters and meet-irreducible filters and then investigate the relationship among these
filters. Throughout this paper, we shall assume unless otherwise stated, that L is a
distributive lattice with 1. Our starting point is the following definition.
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Definition 2.1. (i) An element x of L is called identity join of filter F 6= 1, if
there exists y 6= 1 of F such that x ∨ y = 1.

(ii) A filter F of L is called L-prime in case F 6= 1 and (1 :L F ) = (1 :L G) for
every subfilter G 6= 1 of F .

(iii) A filter F of L is said to be meet-irreducible if F 6= 1 and the meet of any two
proper subfilters of F is always a proper subfilter.

(iv) A filter F of L will be called a L-second filter provided F 6= 1 and (1 :L F ) =
(G :L F ) for every proper subfilter G of F .

(v) A prime filter P of L is called an associated prime filter for F 6= 1, if there
exists a subfilter F ′ of F such that (1 :L F ′) = P (so F ′ 6= 1).

(vi) A filter F is called uniserial if its subfilters are linearly ordered by inclusion.
The set of all identity joins of a filter F is denoted Id(F ) and the set of all asso-

ciated prime filters of F is denoted Ass(F ). The notion of prime ideal is central to
commutative ring theory. There is a theorem that says if M is a non-zero module
over a Noetherian ring R, then the set of zero-divisors for M is the union of all the
associated primes of M . Motivated by this result and the prime avoidance theorem
the following theorem is a lattice counterpart of these theorems.
Theorem 2.1. (i) If F 6= 1 is an Artinian filter of L, then the set of identity

joins for F is the union of all the associated primes of F .
(ii) Let F1, . . . , Fn, where n ≥ 2, be filters of L such that at most two of F1, . . . , Fn

are not prime. If F is a filter of L such that F ⊆ ∪ni=1Fi, then F ⊆ Fj for
some j, with 1 ≤ j ≤ n.

Proof. (i) Let x ∈ ∪P∈Ass(F )P . Then there exist a subfilter F ′ 6= 1 of F and
P ∈ Ass(F ) such that x ∈ (1 :L F ′) = P ; hence x ∈ Id(F ). For the other
containment, let x ∈ Id(F ). Then there exists f 6= 1 such that x ∨ f = 1;
so H = {a ∈ F : a 6= 1, x ∨ a = 1} 6= ∅. Consider the poset (H,≤). Let
T = {fi}i∈Λ be a chain of H. Then G = {fi ∨ L : i ∈ Λ} is a non-empty set of
subfilters of F which is an Artinian filter. So there is an element 1 6= f ∈ H
such that min(G) = f ∨ L; so f ∨ L ⊆ fi ∨ L for every i ∈ Λ. Now for
each i ∈ Λ, there exists bi ∈ L such that f = fi ∨ bi; hence fi ≤ f for every
i ∈ Λ. Therefore by Zorn’s Lemma, H has a maximal element, say f . Since
1 6= f = f ∨ f ∈ f ∨ L, f ∨ L 6= 1. As x ∈ (1 :L f ∨ L), it suffices to show that
(1 :L f ∨L) = P 6= L is prime. Let a∨ b ∈ P and a /∈ P . (so a∨ f ∨L 6= 1). It
follows that a ∨ f 6= 1 and x ∨ (a ∨ f) = a ∨ (x ∨ f) = 1, so a ∨ f ∈ H; hence
a ∨ f = f by maximality of f . Thus b ∨ f = b ∨ a ∨ f = 1 which implies that
b ∨ f ∨ L = 1, and hence b ∈ P .

(ii) The proof is by induction on n. Consider first the case in which n = 2.
Suppose that F ⊆ F1 ∪ F2 such that F * F1; we show that F ⊆ F2. Let
a ∈ F be such that a /∈ F1. Let x ∈ F ∩ F1. Then F is a filter gives
a∧ x ∈ F ⊆ F1 ∪ F2; then a∧ x ∈ F2 so x ∈ F2. Therefore F ∩ F1 ⊆ F2. Thus
F = F ∩ (F1 ∪ F2) = (F ∩ F1) ∪ (F ∩ F2) ⊆ F2. Assume, inductively, that
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n = k + 1, where k ≥ 2, and that result has been proves in the case where
n = k. Since at most two of the Fi are not prime, we can assume that Fk+1 is
prime. We claim that there is a j with 1 ≤ j ≤ k + 1 such that F ⊆ ∪i 6=jFi
(1 ≤ i ≤ k+ 1). Assume to the contrary, for each j = 1, . . . , k+ 1, it is the case
that F * ∪i 6=jFi (1 ≤ i ≤ k+1). Thus for each j with 1 ≤ j ≤ k+1, there exists
aj ∈ F \(F1∪· · ·∪Fj−1∪Fj+1∪· · ·∪Fk+1); aj ∈ Fj for all j, with 1 ≤ j ≤ k+1.
Since Fk+1 is prime, we have ∨ki=1ai /∈ Fk+1. Therefore ∨ki=1ai ∈ ∪ki=1Fi \ Fk+1
and ak+1 ∈ Fk+1. Set c = ak+1 ∧ (∨ki=1ai) = ∨ki=1(ai ∧ ak+1). Then c /∈ Fk+1
(otherwise,∨ki=1ai ∈ Fk+1, a contradiction ). By a similar argument we can not
have c ∈ Fj for all j with 1 ≤ j ≤ k. But c ∈ F since aj ∈ F for j = 1, . . . , k+1,
and so we have a contradiction to the hypothesis that F ⊆ ∪k+1

i=1Fi. So there
is a j with 1 ≤ j ≤ k + 1 such that F ⊆ ∪i 6=jFi (1 ≤ i ≤ k + 1). Now by
inductive hypothesis to deduce that F ⊆ Fi for some i with 1 ≤ i ≤ k+ 1. �

We now to investigate the relationship among L-second filters, L-prime filters and
meet-irreducible filters.
Proposition 2.1. Let F 6= 1 be a filter of L. Then the following hold.

(i) F is L-second if and only if for each a in L, either a ∨ F = 1 or a ∨ F = F .
(ii) F is L-second if and only if |F | = 2.
(iii) F is L- second if and only if the only subfilters of F are 1 and F itself.
(iv) If F is L-second, then it is meet-irreducible.
(v) If F is L-second, then it is L-prime.
(vi) If F is L-second, then (1 :L F ) is a prime filter of L.
(vii) If F and G are L-second filters of L with (1 :L F ) = (1 :L G) = P , then

G = F .
Proof. (i) Assume that F is a L-second filter of L and let a ∈ L be such that

a ∨ F 6= F . Then a ∈ (a ∨ F :L F ) = (1 :L F ) gives a ∨ F = 1. Conversely,
suppose that F ′ is a proper subfilter of F ; we show that (F ′ :L F ) = (1 :L F ).
Since the inclusion (1 :L F ) ⊆ (F ′ :L F ) is clear, we will prove the reverse
inclusion. Let x ∈ (F ′ :L F ). By assumption, either x ∨ F = 1 or x ∨ F = F ;
hence x ∨ F = 1 since F ′ is a proper subfilter, and so we have equality.

(ii) Assume to the contrary, |F | ≥ 3. Then there exist a, b ∈ F such that a 6= b,
a 6= 1 and b 6= 1 which implies that either a∧b 6= a or a∧b 6= b. We may assume
that a∧ b 6= a. It suffices to show that a∨F 6= 1 and a∨F 6= F . If a∨F = 1,
then a = a ∨ a ∈ a ∨ F = 1 which is a contradiction. If a ∨ F = F , then
a∧ b ∈ F gives a∧ b = a∨ f for some f ∈ F , and so a∧ b ≤ a ≤ a∨ f = a∧ b;
hence a = a ∧ b that is a contradiction. Thus |F | = 2. Conversely, suppose,
F = {1, a}. Then for every b ∈ L we have b ∨ a = 1 or b ∨ a = a; therefore
b ∨ F = 1 or b ∨ F = F , as required.

(iii) Let the only subfilters of F are 1 and F itself and a ∈ L. Since a ∨ F is a
subfilter of F , we get a∨F = 1 or a∨F = F . Therefore F is a L-second filter.
The other implication follows from (ii).
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(iv) Apply (ii) and (iii).
(v) Let a ∈ L and x ∈ F such that a ∨ x = 1 and a ∨ F 6= 1. Then a ∨ F = F

since F is a L-second filter. It follows that x = a ∨ y for some y ∈ F which
implies that x = a ∨ y = a ∨ (a ∨ y) = a ∨ x = 1. Thus F is L-prime.

(vi) Since F 6= 1, (1 :L F ) 6= L. Let x ∨ y ∈ (1 :L F ) with x /∈ (1 :L F ), so
x ∨ F = F . Then (x ∨ y) ∨ F = (x ∨ F ) ∨ (y ∨ F ) = F ∨ (y ∨ F ) = 1 gives
y ∨ F = 1. Thus (1 :L F ) is prime.

(vii) By (ii) and (iii), set F = {1, a} and G = {1, b}. An inspection will show that
a ∨ F = F and b ∨ G = G which implies that a, b /∈ P ; hence a ∨ G 6= 1 and
b∨F 6= 1. Now by (iii), F is a L-second gives b∨F = F , and so b ≤ a∨ b = a.
Similarly, G is a L-second gives a ≤ a ∨ b = b. Thus F = G. �

Let F be a L-second filter of L. If this the case, then (1 :L F ) = P is prime by
Proposition 2.1 (vi), and we say that F is P -L-second. A L-second representation of
a filter F of L is obtained by writing F as the meet of a finite number of L-second
filters of L, say F = ∧ni=1Fi. The representation is said to be minimal if the prime
filters (1 :L Fi) = Pi are distinct and none of the subfilters Fi of F , is redundant.
Any L-second representation of F can be refind to a minimal one (see Proposition
2.3 (vii). The set of prime filters attached to the filter F over the lattice L is denoted
by AttL(F ). If F = ∧ni=1Fi is a minimal L-second representation of F , where Fi is
Pi-L-second, then AttL(F ) = {P1, . . . , Pn} and thus AttL(F ) is a finite set whenever
F has a L-second representation. If such representation exists, we shall say F is
L-representable.

Example 2.1. Let D = {1, . . . , n}. Then the set L(D) = {X : X ⊆ D} forms a
complemented distributive lattice under set inclusion with greatest element D and
least element ∅ (note that if x, y ∈ L(D), then x ∨ y = x ∪ y and x ∧ y = x ∩ y). The
set of all prime filters (resp. maximal filters) of L(D) is denoted by Spec(L(D)) (resp.
Max(L(D))). Then the following hold.

(i) If a is a minimal element of a filter F of a lattice L, then we show that F = a∨F .
Clearly, a ∨ F ⊆ F . For the reverse inclusion, let x ∈ F . Since a ∧ x ∈ F ,
a ∧ x = a ≤ x by minimality of a. As a = a ∨ a ∈ a ∨ F and it is a filter, we
get x ∈ a ∨ F , and so we have equality.

(ii) If F is a filter of L(D), then there exists a subset a of D such that F = a∨L(D)
(since F is a finite set, the results follows from (i)).

(iii) We show that every prime filter F of L(D) is of the form {m} ∨ L(D), where
m ∈ D. By Lemma 1.1 (viii), it suffices to show that they are maximal. First
we show that {m} ∨L(D) (m ∈ D) is a maximal filter. Since ∅ /∈ {m} ∨L(D),
{m} ∨ L(D) 6= L(D). Let G be a filter of L(D) such that {m} ∨ L(D) $ G ⊆
L(D); we show that G = L(D). Then there is a subset a of D such that a ∈ G
and m /∈ a. Since {m} ∈ G, G is a filter gives {m} ∧ a = {m} ∩ a = ∅ ∈ G,
and so G = L(D). Let F be a maximal filter of L(D). Then F = b ∨ L(D)
for some subset b of D by (ii). It is enough to show that |b| = 1. Assume
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to the contrary, |b| ≥ 2. Then there exist i1, i2 ∈ b with i1 6= i2. Therefore
we have b ∨ L(D) $ {i1} ∨ L(D) $ L(D) that is a contradiction. Thus
Max(L(D)) = Spec(L(D)) = {{m} ∨ L : m ∈ D}.

(iv) If F 6= 1 is a filter of L(D), then we prove that F is L-representable and
there exists a subset b of D such that AttL(F ) = {{n} ∨ L(D) : n /∈ b}.
Clearly, for each m ∈ D, the set {D,D \ {m}} is a L-second filter of L(D).
Conversely, assume that G is a L-second filter of L(D). Then G = {D,X}
by Proposition 2.1. Since X 6= D, there are elements m1, . . . ,mk ∈ D such
that X = D \ {m1, . . . ,mk}. If k 6= 1, then X $ D \ {m1} 6= D; hence
D \ {m1} ∈ G since G is a filter that is a contradiction. Thus a filter G of
L(D) is L-second if and only if G = {D,D \ {m}} for some m ∈ D. Let
F be a filter of L(D) with F 6= 1. By (ii), F = a ∨ L(D) for some subset
a of D. Now we show that H is a L-second subfilter of F if and only if
H = {D,D \ {n}} for some n /∈ a. If H is L-second, then H = {D,D \ {s}}.
As F = {X ⊆ D : a ⊆ X}, we get a ⊆ D \ {s}; thus s /∈ a. The other
implication is clear. Set Λ = {i ∈ D : i /∈ a} and Fi = {D,D \ {i}}, where
i ∈ Λ. Then it is enough to show that F = ∧i∈ΛFi. It is clear that ∧i∈ΛFi ⊆ F .
For the other containment, let X ∈ F . If X = D, we are done. Otherwise,
there exist i1, . . . , ik ∈ D such that X = D \ {i1, . . . , ik}. Since a ⊆ X,
i1, . . . , ik /∈ a. As ∧kj=1(D \ {ij}) = ∩kj=1(D \ {ij}) = D \ {i1, . . . , ik} = X and
∧kj=1(D \ {ij}) ∈ ∧i∈Λ({D,D \ {i}}), we get X ∈ ∧i∈Λ({D,D \ {i}}), and so
we have equality. Now for each i ∈ Λ, we show that (1 :L Fi) = {i} ∨ L(D)
(see (iii)). Let X ∈ {i}∨L(D) (so i ∈ X). Then X ∨Fi = {D,X ∪D \ {i}} =
{D}; so {i} ∨ L(D) ⊆ (1 :L Fi). The reverse inclusion is clear, and so we
have equality. If i, j ∈ Λ with i 6= j, then {i} ∨ L(D) 6= {j} ∨ L(D) since
{i} ∨ L(D) is the set of subsets of D contains i. Thus F is L-representable
with AttL(F ) = {{i} ∨ L(D) : i ∈ Λ}.

Let F 6= 1 be a filter of L. A meet-irreducible decomposition F is an expression
for F as a meet of finitely many meet-irreducible filters of L. We say that F is a
meet-irreducible decomposable filter of L precisely when it has a meet-irreducible
decomposition.

Theorem 2.2. Let F be an Artinian filter of L with F 6= 1. Then the following hold.
(i) F contains only a finite number of L-second subfilters.
(ii) F is a meet-irreducible decomposable.
(iii) If L is a complemented lattice, then F is a L-representable.

Proof. (i) Suppose the result is false. Let F be an Artinian filter of L with
F 6= 1 such that F does not contain a finite number of L-second subfilters.
Let H 6= 1 be a subfilter of F minimal with respect to the property that
H does not contain a finite number of L-second subfilters. (So H is not a
L-second filter). So there exists a ∈ L such that a ∨ H 6= 1 and a ∨ H $ H
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by Proposition 2.1. Set K = {h ∈ H : a ∨ h = 1}. If x, y ∈ K and z ∈ L,
then (x ∧ y) ∨ a = (x ∨ a) ∧ (y ∨ a) = 1 and (x ∨ z) ∨ a = 1 gives K is a
subfilter of H by Lemma 1.1 (i) such that K ∨a = 1, and so K $ H. If K 6= 1,
then K contains only a finite number of L-second subfilters K1, . . . , Km and
H ∨ a contains only a finite number of L-second subfilters H1, . . . , Hn. Let X
be a L-second subfilter of H. Then a ∨X = 1 or a ∨X = X. If a ∨X = 1,
then X ⊆ K and hence X = Ki for some i. Similarly, if a ∨ X = X, then
X = Hj for some j. Therefore every L-second subfilter of H belongs to the
list K1, . . . , Km, H1, . . . , Hn of subfilters of H. Thus H has at most n + m
of L-second subfilters which is a contradiction. If K = 1, then X = Hj for
some j and again H has at most a finite number of L-second subfilters, a
contradiction.

(ii) Assume to the contrary, F is not meet-irreducible decomposable. Then the
set of subfilters say G 6= 1 of F which are not a finite meet of meet-irreducible
filters has a minimal element H. Clearly H is not meet-irreducible. Thus H is
the meet of two strictly smaller subfilters H1 , H2. Then H1 , H2 are a finite
meet of meet-irreducible filters by minimality of H. So H is a finite meet of
meet-irreducible filters, that is a contradiction.

(iii) By (ii), it is enough show that if G is a meet-irreducible filter, then G is a L-
second filter. Assume to the contrary, G is not L-second. Then by Proposition
2.1, a ∨G 6= G and a ∨G 6= 1 for some a ∈ L. Set G1 = {x ∈ G : a ∨ x = 1}
and G2 = a ∨ G. Clearly, G 6= G1 and G 6= G2. Let y ∈ G. By assumption,
a ∧ a′ = 0 and a ∨ a′ = 1 for some a′ ∈ L. Then we have y = (y ∨ a′) ∧ (a ∨ y),
where y ∨ a′ ∈ G1 and a ∨ y ∈ G2; hence G = G1 ∧G2, and therefore G is not
meet-irreducible, as required. �

The next proposition gives a more explicit description of L-prime filters.

Proposition 2.2. Let F 6= 1 be a filter of L. Then the following hold.
(i) F is L-prime if and only if for any a in L and x in F , a ∨ x = 1 implies that

x = 1 or a ∨ F = 1.
(ii) F is L-prime if only if (1 :L F ) is a prime filter of L.
(iii) If {1} is a prime filter, then F is L-prime.
(iv) If P 6= 1 is a prime filter with (1 :L P ) 6= 1, then there exists a L-prime filter

F such that (1 :L F ) = P .
(v) If there exist x, y ∈ F such that x 6= 1 and y 6= 1 with x∨ y = 1, then F is not

L-prime.
(vi) If L is complemented and |F | ≥ 3, then F is not a L-prime filter.

Proof. (i) Assume that F is a L-prime filter of L and let a ∨ x = 1 with x 6= 1,
where a ∈ L and x ∈ F . Then T (x) is a subfilter of F with T (x) 6= 1; so
(1 :L F ) = (1 :L T (x)). As a∨T (x) = 1, we have a∨F = 1. Conversely, suppose
that F ′ is a subfilter of F such that F ′ 6= 1; we show that (1 :L F ) = (1 :L F ′).
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Clearly, (1 :L F ) ⊆ (1 :L F ′). For the other containment, let z ∈ (1 :L F ′).
There exists 1 6= w ∈ F ′ such that z ∨ w = 1 which implies that z ∨ F = 1;
hence z ∈ (1 :L F ), as required.

(ii) Since F 6= 1, (1 :L F ) 6= L. Let x ∨ y ∈ (1 :L F ) be such that x /∈ (1 :L F ), so
1 6= x ∨ a ∈ F for some a ∈ F which implies that y ∨ (x ∨ a) = 1. Then F is
L-prime gives y∨F = 1. Conversely, suppose that (1 :L F ) = P is a prime filter
and F ′ 6= 1 is a proper subfilter of F ; we show that (1 :L F ′) = (1 :L F ). Clearly,
(1 :L F ) ⊆ (1 :L F ′). Let 1 6= f ′ ∈ F ′. Then f ′ = f ′ ∨ f ′ ∈ f ′ ∨ F ′ ⊆ f ′ ∨ F
gives f ′ /∈ P . Let x ∈ (1 :L F ′). Then x ∨ f ′ = 1 ∈ P gives x ∈ P , and so we
have equality. Thus F is a L-prime filter.

(iii) By (ii), It suffices to show that (1 :L F ) = {1}. Let x ∈ (1 :L F ). Then there
exists 1 6= a ∈ F with x ∨ a ∈ {1}. Now {1} is a prime filter gives x ∈ {1},
and so we have equality.

(iv) Set F = (1 :L P ). By (ii), it suffices to show that (1 :L F ) = P . Since
the inclusion P ⊆ (1 :L F ) is clear, we will prove the reverse inclusion. Let
x ∈ (1 :L F ). By assumption, there is an element 1 6= f ∈ F with x∨f = 1 ∈ P
(so f ∨ F 6= 1); hence f /∈ P . Now P is prime gives x ∈ P , as required.

(v) Assume to the contrary, F is L-prime. Since x∨y = 1, either x = 1 or y∨F = 1.
So y ∨F = 1. Now y = y ∨ y ∈ y ∨F gives y = 1 that is a contradiction. Thus
F is not a L-prime.

(vi) Suppose the result is false. Then G = (1 :L F ) is a prime filter. Let x and y
be distinct elements of F such that x 6= 1 and y 6= 1. By assumption, there
exist x′, y′ ∈ L such that x ∧ x′ = 0 = y ∧ y′ and x ∨ x′ = 1 = y ∨ y′. It
follows that either x ∈ G and x′ /∈ G or x /∈ G and x′ ∈ G since G is a prime
filter. Since 1 6= x = x ∨ x /∈ G, we get x′ ∈ G. Similarly, y′ ∈ G. Thus
x′ ∧ y′ ∈ G; hence (x′ ∧ y′) ∨ (x ∧ y) = 1 since x ∧ y ∈ F . It then follows
that x = x ∧ 1 = x ∧ [(x′ ∧ y′) ∨ (x ∧ y)] = x ∧ (x ∧ y) = x ∧ y. Similarly,
y = x ∧ y = x which is a contradiction. �

Let F be a L-prime filter of L. If this is the case, then P = (1 :L F ) is a prime
filter by Proposition 2.2, and we say that F is a P -L-prime filter. Also it is easy to
see that every subfilter G 6= 1 of a L-prime filter F is L-prime.

Assume that F is a filter of L and let (Fi)i∈Λ be a non-empty family of subfilters of
F . If G = ∧i∈ΛFi, then each element g ∈ G can be expressed in the form g = ∧ni=1fλi

,
where {λ1, . . . , λn} is a finite subset of Λ and fλi

∈ Fλi
for 1 ≤ i ≤ n. We can actually

write this as g = ∧λ∈Λfλ, where it is understood that fλ ∈ Fλ for all λ ∈ Λ but only
finitely many of the fλ are different from 1. So G is a subfilter of F . A L-prime
subfilter G of a filter F of L is called a maximal L-prime subfilter if G is not contained
in another L-prime subfilter of F .

Proposition 2.3. The following hold.
(i) Let P be a prime filter of L. Then the meet of any non-empty family of

P -L-prime subfilters of a filter F of L is also a P -L-prime subfilter of F .



68 S. EBRAHIMI ATANI AND M. SEDGHI SHANBEH BAZARI

(ii) If F1 and F2 are maximal P -L-prime subfilters of F , then F1 = F2.
(iii) Every L-prime subfilter of a filter F of L is contained in a uniqe maximal

L-prime subfilter of F .
Proof. (i) Suppose that (Fi)i∈Λ is a non-empty family of P -L-prime subfilters of

F and let G = ∧i∈ΛFi. Then P ⊆ (1 :L G) ⊆ (1 :L Fi) = P for all i ∈ Λ, gives
(1 :L G) = P . Now the assumption follows from Proposition 2.2 (ii).

(ii) By (i), F1 ∧F2 is a P -L-prime filter. Since F1 ⊆ F1 ∧F2, F2 ⊆ F1 ∧F2, andF1,
F2 are maximal P -L-prime, we get F1 = F1 ∧ F2 = F2.

(iii) Assume that G is a L-prime subfilter of F and let ∆ be the set of L-prime
subfilters of F , say F ′, with G ⊆ F ′. So G ∈ ∆. Of course, the relation of
inclusion, ⊆, is a partial order on ∆. Let (Fi)i∈Λ be a chain of elements ∆. Set
H = ∪i∈ΛFi (so 1 6= G ⊆ H). Clearly, H is a subfilter of F . Let a ∈ L and
x ∈ H such that a ∨ x = 1. Then x ∈ Fi for some i, and so Fi is a L-prime
gives either x = 1 or a ∨ Fi = 1. If x = 1, then we are done. So suppose that
x 6= 1 and a∨Fi = 1. It follows that a∨H = 1. Thus H is a L-prime subfilter
of F . Now ∆ is easily seen to be inductive under ⊆, so by Zorn’s Lemma ∆
has a maximal element, i.e., F has a maximal L-prime subfilter contains G
which is unique by (ii). �

Theorem 2.3. Let F be an Artinian filter with F 6= 1. Then the following hold.
(i) F contains only a finite number of maximal L-prime subfilter.
(ii) A filter F of L is L-prime if and only if Ass(F ) = {P} for some prime filter P .

Proof. (i) We know that every maximal L-prime subfilter of F cotains a L-second
subfilter (since F is an Artinian filter) which is a L-prime subfilter by Propo-
sition 2.1 (v). Now by Proposition 2.3 (iii), every L-second subfilter of F is
contained in a uniqe maximal L-prime subfilter. Now the assertion follows
from Theorem 2.2 (i).

(ii) Clearly, if F is L-prime, then Ass(F ) = {(1 :L F )}. Conversely, let Ass(F ) =
{P}. By Proposition 2.2 (ii), it suffices to show that (1 :L F ) = P . Since P ∈
Ass(F ), there exists a subfilter F ′ 6= 1 of F such that (1 :L F ) ⊆ (1 :L F ′) = P .
For the reverse inclusion, let x ∈ P . If x ∨ F 6= 1, then x ∨ F has a L-second
subfilter G (since x ∨ F is an Artinian filter). By Proposition 2.1, |G| = 2,
so we can write G = {1, x ∨ f}, where f ∈ F . As G is a L-prime filter by
Proposition 2.2, so (1 :L G) = P ∈ Ass(F ). Then x ∈ P gives x ∨ G = 1, so
x ∨ f = 1, which is a contradiction; hence x ∨ F = 1, and so we have equality.

�

Theorem 2.4. If F 6= 1 is an uniserial filter, then F is a meet-irreducible and a
L-prime.
Proof. Clearly, F is a meet-irreducible filter. Now we show that F is a L-prime filter.
Suppose F is not L-prime. Then there exists a proper subfilter F ′ 6= 1 of F such that
(1 :L F ) $ (1 :L F ′). Then there exsits an element x ∈ (1 :L F ′) such that x /∈ (1 :L F )
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(so x ∨ F 6= 1 ). By assumption, either x ∨ F ⊆ F ′ or F ′ ⊆ x ∨ F . If x ∨ F ⊆ F ′,
then x ∨ (x ∨ F ) ⊆ x ∨ F ′ = 1 gives x ∨ F = 1 that is a controdiction. Now we
may assume that F ′ ⊆ x ∨ F . Let f ′ ∈ F ′. Then f ′ = x ∨ f for some f ∈ F ; hence
1 = x∨ f ′ = x∨ (x∨ f) = x∨ f = 1 which is a contradiction since F ′ 6= 1. Thus F is
a L-prime filter. �

The following Example shows that L-prime filters and meet-irreducible filters are
different concepts.

Example 2.2. (a) let L be the lattice as described in Figure 1.

0

f

a

db

c

1

Figure 1. Lattice L

(i) Clearly, the filter {1} is prime. Then the filter F = {1, c, d, b, a} of L is
L-prime by Proposition 2.2 (iii). An inspection will show that F1 = {1, c},
F2 = {1, c, d}, and F3 = {1, c, b} are all of proper subfilters of F with
Fi 6= 1 (1 ≤ i ≤ 3). Since F = F2 ∧ F3, we get F is not a meet-irreducible
filter. Moreover, F2 * F3 and F3 * F2 gives F is not an uniserial filter.
Thus a L-prime filter need not be meet-irreducible (resp. uniserial) filter.

(ii) Clearly, the filter G = {1, c, d, b, a, f} of L is a L-prime filter and a meet-
irreducible filter, but it is not an uniserial filter (note that F1, F2, F3, F are
all of proper subfilters of G not equal to 1). Thus the converse of Theorem
2.4 is not true. Moreover, since F is a subfilter of the meet-irreducible
filter G, we obtain that a subfilter of a meet-irreducible filter, in general,
is not meet irredeucible.

(b) let L′ be the lattice as described in Figure 2. Consider the filter F =
{1, a, b, c, d} of L′. Since a ∨ b = 1, F is not a L-prime filter by Proposi-
tion 2.2 (v). Clearly, F is a meet-irreducible filter, but it is not uniserial.

Example 2.3. (a) Let (L,≤) be a complete lattice which is a chain.
(i) If F is a proper filter of L, then there exists b ∈ L with b /∈ F ; so

H = {x ∈ L : x /∈ F} 6= ∅. Assume that sup(H) = a and let x ∈ L. If
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0

d

c

ba

1

Figure 2. Lattice L′

a ≤ x with a 6= x, then x ∈ F (otherwise, x /∈ F gives x ∈ H that is a
contradiction). If x ≤ a with a 6= x, then there exists h ∈ H such that
x ≤ h since L is a chain which implies that x /∈ F (otherwise, F is a filter
gives h ∈ F , a contradiction). Thus F is of the form either [a, 1] or (a, 1].

(ii) Since L is a chain, every proper filter of L is prime (so {1} is prime).
Moreover, the only maximal filter of L is (0, 1].

(iii) By Proposition 2.2 (iii), every filter F 6= 1 of L is L-prime.
(b) Assume that R is a local Dedekind domain with unique maximal ideal P = Rp

and let E = E(R/P ), the R-injective hull of R/P . For each positive integer n,
set An = (0 :E P n). Then by [8, Lemma 2.6], every non-zero proper submodule
of E is equal to Am for somem with a strictly increasing sequence of submodules
A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · . The collection of submodules of E form
a complete lattice which is a chain under set inclusion which we shall denote
by L(E) with respect to the following definitions: An ∨ Am = An + Am and
An ∧ Am = An ∩ Am for all submodules An and Am of E. Then by (a), the
following hold.
(i) Every proper filter of L(E) is of the form [An, E] for some n.
(ii) Every proper filter of L(E) is prime. Moreover, the only maximal filter of

L(E) is [A1, E].
(iii) Every filter F 6= 1 is L(E)-prime.
(iv) For every filter F 6= 1, F is not L-second (otherwise, F = {An, E} for

some n by Proposition 2.1, but An+1 ∨ F 6= F and An+1 ∨ F 6= 1).

3. Further Results

The collection of ideals of Z, the ring of integers, form a lattice under set inclusion
which we shall denote by L(Z) with respect to the following definitions: mZ ∨ nZ =
(m,n)Z and mZ ∧ nZ = [m,n]Z for all ideals mZ and nZ of Z, where (m,n) and
[m,n] are greatest common divisor and least common multiple of m,n, respectively.
Note that L(Z) is a distributive complete lattice with least element the zero ideal and
the greatest element Z. In this section we give a full description of all L-prime filters,
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L-second filters, and meet-irreducible filters of L(Z). First we need the following
lemma proved in [9, Theorem 2.9].

Lemma 3.1. For the lattice L(Z) the following hold.
(i) If p is a prime number and k is a positive integer, then the set Fpk = {mZ ∈

L(Z) : pk - m} is a prime filter of L(Z). Moreover, L(Z) \ {0} is the only
maximal filter of L(Z).

(ii) Every prime filter of L(Z) is of the form either Fpk for some prime number p
and positive integer k or L(Z) \ {0}.

Theorem 3.1. Let P be the set of all prime numbers. Then the following hold.
(i) The set of all L(Z)-prime filters of L(Z) is

(∪p∈P{{Z, pZ, p2Z, . . . }}) ∪ (∪p∈P{{Z, pZ, p2Z, . . . , pnZ} : n ∈ N})
(ii) The set of all L(Z)-second filters of L(Z) is ∪p∈P{{Z, pZ}}.
(iii) The set of all meet-irreducible filters of L(Z) is

(∪p∈P{{Z, pZ, p2Z, . . . }}) ∪ (∪p∈P{{Z, pZ, p2Z, . . . , pnZ} : n ∈ N})

Proof. (i) First we show that if p is a prime number, then F = {Z, pZ, p2Z, . . . }
is a L-prime filter of L(Z). Clearly, F is a filter of L(Z). Let mZ ∈ L(Z)
and plZ ∈ F for some positive integer l with mZ ∨ plZ = Z and plZ 6= Z; we
show that mZ ∨ F = Z. By assumption, (m, pl) = 1 gives (m, pk) = 1 for all
positive integer k; hence mZ ∨ F = Z. Thus F is L-prime by Proposition 2.2
(i). Next we prove that for every L(Z)-prime filter G of L(Z), there exists a
prime number p such that G is a subfilter of F = {Z, pZ, p2Z, . . . }. To see
that, let G be a L(Z)-prime filter of L(Z), so (1 :L(Z) G) is a prime filter which
implies that either (1 :L(Z) G) = Fpk or (1 :L(Z) G) = L(Z) \ {0} for some
prime number p by Lemma 3.1 (ii). Let Z 6= mZ ∈ G. If (1 :L(Z) G) = Fpk ,
then for each prime q 6= p, qZ ∈ Fpk implies that qZ ∨mZ = Z; so (q,m) = 1.
Therefor m = ps for some s, and hence mZ = psZ (note that in this case
(1 :L(Z) G) = Fp). If (1 :L(Z) G) = L(Z) \ {0}, then mZ ∨ G = 1 gives G = 1
which is a contradiction. If G is a proper subfilter of F , then there exists
ptZ ∈ F with t ≥ 1 and ptZ /∈ G. Let m + 1 be the least positive integer
such that pm+1Z /∈ G; so pmZ ∈ G. Then for each t ≤ m, pmZ ⊆ ptZ; hence
ptZ ∈ G since G is a filter. Thus G = {Z, pZ, . . . , pmZ}. An inspection will
show that for each p ∈ P, every proper subfilter (6= 1) of F = {Z, pZ, p2Z, . . . }
is equal to {Z, pZ, . . . , pmZ} for some integer m with a strictly increasing
sequence of subfilters {Z, pZ} ⊂ · · · ⊂ {Z, pZ, . . . , pmZ} ⊂ · · · which are L-
prime Since every subfilter (6= 1) of a L-prime filter F is L-prime, and the
proof is complete.

(ii) It suffices to show that a filter G 6= 1 is L(Z)-second if and only if G = {Z, pZ}
for some prime number p. Assume that G = {Z, pZ} and let mZ ∈ L(Z). If
(m, p) = 1, then mZ ∨G = Z. If p | m, then mZ ∨Z = Z and mZ ∨ pZ = pZ,
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and so mZ ∨ G = G. Thus G is a L(Z)-second filter by Proposition 2.1.
Now assume that F is a L-second filter of L(Z); we show that there is a
prime number q such that F = {Z, qZ}. By Proposition 2.1 (ii), we have
F = {Z,mZ} for some integer m. If m is prime, we are done. Otherwise,
m = d1d2 for some integers 1 < d1 < m and 1 < d2 < m, so mZ $ d1Z 6= Z;
hence d1Z ∈ F (since F is a filter) which is a contradiction.

(iii) By (i), it is enough to show that a filter of L(Z) is meet-irreducible if and only
if it is L(Z)-prime. By the structure of L(Z)-prime filters, we get every L(Z)-
prime is meet-irreducible. Conversely, suppose that F 6= 1 is a meet-irreducible
filter; we show that F is L(Z)-prime. Assume to the contrary, F is not L-prime.
Then there exist distinct prime numbers p, q and mZ, nZ ∈ F such that p | m,
q | n. First we show that Fp ∧ Fq = L(Z) \ {0}. Clearly, Fp ∧ Fq ⊆ L(Z) \ {0}.
For the reverse inclusion, assume that kZ ∈ L(Z) \ {0}. There exist integers
s ≥ 0, t ≥ 0, and u such that k = psqtu with (u, pq) = 1. Then qtZ ∈ Fp,
psuZ ∈ Fq, and psuZ ∧ qtZ = [qt, psu]Z = kZ ∈ Fp ∧ Fq, and so we have
equality. Now set F1 = Fp∨F = Fp∩F and F2 = Fq∨F = Fq∩F . Since q | n,
nZ ⊆ qZ; hence F is filter gives qZ ∈ F , but qZ /∈ F2. Thus F 6= F2. Similarly,
F 6= F1. Therefore we have F1 ∧ F2 = (Fp ∧ Fq) ∨ F = (L(Z) \ {0}) ∩ F = F
that is a contradiction since F is meet-irreducible. Thus F is L(Z)-prime. �

Remark 3.1. (i) By Theorem 3.1, every L-second filter of L(Z) is of the form
G = {Z, pZ} for some p, so we conclude that a L(Z)-prime (resp. meet-
irreducible) filter need not be L-second.

(ii) By Lemma 3.1 (i), F2 = {mz ∈ L(Z) : 2 - m} is a prime filter. SetH = {Z, 3Z}
and G = {Z, 5z}. Then H,G are subfilters of F2 with (1 :L(Z) H) = F3,
(1 :L(Z) G) = F5, and F3 6= F5; hence F2 is not a L(Z)-prime. Moreover,
F = {Z, 2Z} is a L(Z)-prime by Theorem 3.1, but 10Z ∨ 6Z = 2Z ∈ F and
6Z, 10Z /∈ F gives F is not a prime filter. Thus L-prime (resp. meet-irreducible)
filters and prime filters are different concepts.

(iii) If P = L(Z) \ {0}, then (1 :L P ) = 1, so (1 :L P ) is not L-prime. Thus it
shows that the condition (1 :L P ) 6= 1 is necessary in Proposition 2.2 (iv).

Theorem 3.2. If m ≥ 2 is an integer number, then G = {dZ ∈ L(Z) : d | m} is a
meet-irreducible decomposable filter of L(Z).

Proof. There are distinct prime numbers p1, p2, . . . , pn and positive numbers α1, α2,
. . . , αn such that m = pα1

1 p
α2
2 · · · pαn

n . For each 1 ≤ i ≤ n, we set Gi = {Z, piZ, p2
iZ,

. . . , pαi
i Z}. Then Gi is a meet-irreducible subfilter of G by Theorem 3.1 for all

1 ≤ i ≤ n. Now we show that G = ∧ni=1Gi. Since the inclusion ∧ni=1Gi ⊆ G is clear,
we will prove the reverse inclusion. Let dZ ∈ G. There exist integers β1, β2, . . . , βn
such that d = pβ1

1 p
β2
2 · · · pβn

n with 0 ≤ βi ≤ αi (1 ≤ i ≤ n). Then pβi
i Z ∈ Gi (1 ≤ i ≤ n)

gives ∧ni=1p
βi
i Z = [pβ1

1 , p
β2
2 , . . . , p

βn
n ]Z = dZ ∈ ∧ni=1Gi, and so we have equality. Thus

G is a meet-irreducible decomposable. �
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