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STRONG CONVERGENCE RESULTS FOR VARIATIONAL
INEQUALITY AND EQUILIBRIUM PROBLEM IN HADAMARD

SPACES

G. C. UGWUNNADI1,3, C. C. OKEKE1,3, A. R. KHAN2, AND L. O. JOLAOSO3

Abstract. The main purpose of this paper is to introduce and study a viscosity
type algorithm in a Hadamard space which comprises of a demimetric mapping, a
finite family of inverse strongly monotone mappings and an equilibrium problem for
a bifunction. Strong convergence of the proposed algorithm to a common solution
of variational inequality problem, fixed point problem and equilibrium problem is
established in Hadamard spaces. Nontrivial Applications and numerical examples
were given. Our results compliment some results in the literature.

1. Introduction

Let X be a metric space and C be a nonempty closed and convex subset of X. A
point x ∈ C is called a fixed point of a nonlinear mapping T : C → C, if

Tx = x.(1.1)
The set of fixed points of T is denoted by F(T). With the recent rapid developments
in fixed point theory, there has been a renewed interest in iterative schemes. The
properties of iterations between the type of sequences and kind of operators have
not been completely studied and are now under discussion. The theory of operators
has occupied a central place in modern research using iterative schemes because of
its promise of enormous utility in fixed point theory and its applications. In many
situations of practical utility, the mapping under consideration may not have an exact
fixed point due to some tight restriction on the space or the map, or an approximate
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fixed point is more than enough, an approximate solution plays an important role in
such situations. The theory of fixed points and consequently of approximate fixed
points finds application in mathematical economics, noncooperative game theory,
dynamic programming, nonlinear analysis, variational calculus, theory of integro-
differential equations and several other areas of applicable analysis see for instance
[9, 17, 23,25,26,31,33–35,40,45].

The mapping T : C → X is said to be:
(a) nonexpansive if

d(Tx, Ty) ≤ d(x, y), for all x, y ∈ C;
(b) quasi-nonexpansive if F (T ) 6= ∅ and

d(Tx, q) ≤ d(x, q), for all x ∈ C and q ∈ F (T );
(c) firmly nonexpansive if

d2(Tx, Ty) ≤ 〈−→xy,−−−→TxTy〉, for all x, y ∈ C;
(d) α-inverse strongly monotone if there exists α > 0 such that

d2(x, y)− 〈−−−→TxTy,−→xy〉 ≥ αΨT (x, y), for all x, y ∈ C,(1.2)

where ΨT (x, y) = d2(x, y) + d2(Tx, Ty) − 2〈−−−→TxTy,−→xy〉. It was established in
[3] that the quantity ΨT (x, y) is nonnegative.

Given a nonempty set C and f : C × C → R a bifunction, the Equilibrium Problem
(EP) is defined as follows:

find x∗ ∈ C such that f(x∗, y) ≥ 0, for all y ∈ C.(1.3)
The point x∗ in (1.3) is called an equilibrium point of f. We shall denote the solution
set of problem (1.3) by EP(f, C). EPs have been widely studied in Hilbert, Banach
and topological vector spaces [6, 12, 24] and Hadamard manifolds [11, 41]. One of
the most popular and effective methods used for solving problem (1.3) and other
related optimization problems is the Proximal Point Algorithm (PPA) which was
introduced in a Hilbert space by Martinet [37] and was further studied by Rockafellar
[47] in 1976. The PPA and its generalizations have also been studied extensively
in Banach spaces and Hadamard manifolds (see [11, 36] and the references therein).
Recently, many convergence results by the PPA for solving optimization problems
were extended from the classical linear spaces to the setting of nonlinear space such
as Riemannain manifolds and Hadamard spaces (see [4, 5, 10, 19,46,54] and reference
therein). Numerous applications in computer vision, machine learning, electronic
structure computation, system balancing, and robot manipulation can be reduced
to find solution of optimization and equilibrium problems in nonlinear setting (see
[1, 2, 27,43,50,53]).

Very recently, Kumam and Chaipunya [36] studied EP (1.3) in Hadamard spaces.
They established the existence of an equilibrium point of a bifunction satisfying some
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convexity, continuity and coercivity assumptions ([36], Theorem 4.1). They also estab-
lished some fundamental properties of the resolvent of a bifunction. Furthermore, they
proved that the PPA ∆-converges to an equilibrium point of a monotone bifunction
in a Hadamard space. More precisely, they proved:

Theorem 1.1. ([36, Theorem 7.3]) Let C be a nonempty closed and convex subset of
a Hadamard space X and f : C × C → R be a monotone, ∆-upper semicontinuous in
the first variable such that D(Jfr ) ⊃ C for all r > 0 where D stands for the domain.
Suppose that EP (f, C) 6= ∅ and for an initial guess x0 ∈ C, the sequence {xn} ⊂ C is
generated by

xn := Jfrn
(xn−1), n ∈ N,

where {rn} is a sequence of positive real numbers bounded away from 0. Then {xn}
∆-converges to an element of EP (f, C).

The Variational Inequality Problem (VIP) was first introduced by Stampacchia
[49] for modeling problems arising in mechanics. To study the regularity problem for
partial differential equations, Stampacchia [49] studied a generalization of the Lax-
Milgram theorem and called all problems of this kind to be VIPs. The theory of VIP
has numerous applications in diverse fields such as physics, engineering, economics,
mathematical programming and others (see [8, 32, 39] and references therein). The
VIP in a real Hilbert space H is formulated as follows:

find x ∈ C such that 〈Tx, y − x〉 ≥ 0, for all y ∈ C,(1.4)

where C is a nonempty closed and convex subset of H and T is a nonlinear mapping
defined on C. This formulation is recently extended to the framework of CAT(0) space
X by Alizadeh-Dehghan-Moradlou [3] as follows:

find x ∈ C such that 〈−−→Txx,−→xy〉 ≥ 0, for all y ∈ C,(1.5)

where −→xy stands for a vector in X defined in (2.1).
They established the existence of VIP (1.5) when T is an inverse strongly monotone

mapping in a CAT(0) space. Furthermore, they introduced the following iterative
algorithm for solving VIP (1.5): For arbitrary x1 ∈ C, generate sequence {xn} as

(1.6)

yn = PC(βnxn ⊕ (1− βn)Txn),
xn+1 = PC(αnxn ⊕ (1− αn)Syn), n ≥ 1,

where {αn}, {βn} are sequences in (0, 1), S and T are nonexpansive and inverse
strongly monotone mappings, respectively. They also obtained ∆-convergence of
Algorithm (1.6) to a solution of the VIP (1.5), which is also a fixed point of the
nonexpansive mapping S.

Remark 1.1. If X = H is a real Hilbert space, then 〈−→ab,−→cd〉 = 〈b − a, d − c〉 for all
a, b, c, d ∈ H. Thus, the VIP (1.6) reduces to the VIP (1.5) when X = H.
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Motivated by the work of Kumam and Chaipunya [36] and Alizadeh-Dehghan
-Moradlou [3], we introduce and study a viscosity type algorithm which comprises
of demimetric mapping, equilibrium problem for a monotone bifunction and a finite
family of inverse strongly monotone mappings. Strong convergence of the proposed
algorithm to common solution of a fixed point of a demimetric mapping, an equilib-
rium problem of a bifunction and variational inequality problem for a finite family of
certain monotone mappings is established in a Hadamard space X. Furthermore, we
applied our results to approximate solutions of minimization problems in X.

2. Preliminaries

We state some known and useful results which will be needed in the proof of our main
theorem. Throughout this paper, we shall denote the strong and ∆-convergence by
−→ and ⇀, respectively.

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y (or, a
geodesic from x to y) is a map γ : [a, b] ⊆ R → X such that γ(a) = x, γ(b) = y,
and d(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ [a, b]. In particular, γ is an isometry and
d(x, y) = b − a. We say that a metric space X is uniquely geodesic if every two
points of X are joined by only one geodesic segment (i.e., CAT(0) space). Examples of
CAT(0) spaces are Euclidean spaces Rn and Hilbert spaces. For more details, please
see [12, 20,21,28,48]. Complete CAT(0) spaces are often called Hadamard spaces.

Let (1−t)x⊕ty denote the unique point z in the geodesic segment joining x to y for
each x, y in a CAT(0) space such that d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y),
where t ∈ [0, 1]. Let [x; y] := {(1 − t)x ⊕ ty : t ∈ [0, 1]}, then a subset C of X is
convex if [x, y] ⊆ C for all x, y ∈ C.

In 2008, Breg and Nikolaev [6] introduced the concept of quailinearization mapping
in CAT(0) spaces. They denoted a pair (a, b) ∈ X × X by −→ab which they called a
vector and defined a mapping 〈·, ·〉 : (X ×X)× (X ×X)→ R by

〈
−→
ab,
−→
cd〉 = 1

2
(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
, a, b, c, d ∈ X,(2.1)

called the quasilinearization mapping. It is easy to verify that 〈−→ab,−→ab〉 = d2(a, b),
〈
−→
ba,
−→
cd〉 = −〈−→ab,−→cd〉, 〈−→ab,−→cd〉 = 〈−→ae,−→cd〉 + 〈−→eb,−→cd〉 and 〈−→ab,−→cd〉 = 〈−→cd,−→ab〉 for all

a, b, c, d, e ∈ X. It has been established that a geodesically connected metric space
is a CAT(0) space if and only if it satisfies the Cauchy-Schwartz inequality (see
[6]). Recall that the space X is said to satisfy the Cauchy-Swartz inequality if
〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d) for all a, b, c, d ∈ X.

Let {xn} be a bounded sequence in CAT(0) space X. For x ∈ X, we set
r(x, {xn}) = lim sup

n→∞
d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by
r({xn}) = inf{r(x, {xn})},
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and the asymptotic center A({xn}) of {xn} is the set
A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known (see [16, Proposition 7]) that in a CAT(0) space, A({xn}) consists of exactly
one point. A sequence {xn} ⊂ X is said to ∆-converge to x ∈ X if A({xnk

}) = {x}
for every subsequence {xnk

} of {xn}.

Definition 2.1 ([4]). Let X be a CAT(0) space and C be a nonempty closed and
convex subset of X. A mapping T : C → X is said to be k-demimetric if F (T ) 6= ∅
and there exists k ∈ (−∞, 1), such that

〈−→xy,
−−→
xTx〉 ≥ 1− k

2 d2(x, Tx), for all x ∈ X and y ∈ F (T ).(2.2)

Definition 2.2. Let C be a nonempty closed and convex subset of a Hadamard space
X. The metric projection PC : X → C assigns to each x ∈ X, the unique point PCx
in C such that

d(x, PCx) = inf{d(x, y) : y ∈ C}.
The map PC is nonexpansive [13].

Definition 2.3. Let C be a nonempty closed and convex subset of a Hadamard space
X. A mapping T : C → C is said to be ∆-demiclosed, if for any bounded sequence
{xn} in X such that ∆− lim

n→∞
xn = x and lim

n→∞
d(xn, Txn) = 0, then x = Tx.

Lemma 2.1 ([4]). Let X be a CAT(0) space and S : X → X be a k-demimetric
mapping with k ∈ (−∞, λ] with F (S) 6= ∅ and λ ∈ (0, 1). Suppose that Sλ = λx ⊕
(1− λ)Sx. Then Sλ is quasi-nonexpansive and F (Sλ) = F (S).

In [36], the authors introduce resolvent of a bifunction f associated with the EP (1.3).
They defined a perturbation bifunction f̄x : C × C → R of f by

f̄x(x, y) := f(x, y)− 〈−→xx,−→xy〉, for all x, y ∈ C.(2.3)

The perturbed bifunction f̄ has a unique equilibrium point called resolvent operator
Jf : X → 2C of the bifunction f (see [36]) and is defined by
Jf (x) := EP (C, f̄x) = {z ∈ C : f(z, y)− 〈−→zx,−→zy〉 ≥ 0, y ∈ C}

=
{
z ∈ C : f(z, y) + 1

2(d2(x, y)− d2(x, z)− d2(y, z)) ≥ 0 for all y ∈ C
}
,(2.4)

x ∈ X. It was established in [36] that Jf is well-defined.

Lemma 2.2 ([36]). Suppose that f is monotone and D(Jf ) 6= ∅. Then, the following
properties hold.

(i) Jf is singled-valued.
(ii) If D(Jf ) ⊃ C, then Jf is nonexpansive restricted to C.
(iii) If D(Jf ) ⊃ C, F (Jf ) = EP (C, f).

Lemma 2.3 ([36]). Suppose that f has the following properties:
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(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous;
(A4) for each x ∈ C, f(x, y) ≥ lim supt↓0 f((1− t)x⊕ tz, y) for all x, z ∈ C.

Then D(Jf ) = X and Jf is single-valued.

Remark 2.1 ([23]). It follows from (2.4) that the resolvent Jfr of the bifunction f
(r > 0) is given by

Jfr (x) := EP (C, f̄x) =
{
z ∈ C : f(z, y) + 1

r
〈−→xz,−→zy〉 ≥ 0, y ∈ C

}
, x ∈ X,(2.5)

where f̄ in this case is defined as

f̄x(x, y) := f(x, y) + 1
r
〈−→̄xx,−→xy〉, for all x, y ∈ C, x̄ ∈ X.(2.6)

Lemma 2.4 ([23]). Let C be a nonempty closed and convex subset of a Hadamard
space X and f : C×C → R be a monotone bifunction such that C ⊂ D(Jfr ) for r > 0.
Then, Jfr is firmly nonexpansive restricted to C. That is

d2(Jfr x, Jfr y) ≤ 〈−→xy,
−−−−−→
Jfr xJ

f
r y〉.(2.7)

Lemma 2.5 ([15]). Every bounded sequence in a Hadamard space always has a ∆-
convergent subsequence.

Lemma 2.6 ([29]). Let X be a Hadamard space and {xn} be a sequence in X. Then
{xn} ∆− converges to x if and only if lim sup

n→∞
〈−−→xnx,−→xy〉 ≤ 0 for all y ∈ X.

Lemma 2.7 ([56]). Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where
(i) {αn} ⊂ [0, 1], ∑αn =∞;
(ii) lim sup σn ≤ 0;
(iii) γn ≥ 0, n ≥ 0, ∑ γn <∞.

Then an → 0 as n→∞.

Lemma 2.8 ([3]). Let C be a nonempty closed and convex subset of Hadamard space
X and T : C → X be an α-inverse strongly monotone mapping. Assume µ ∈ [0, 1] and
define Tµ : C → X by Tµx = (1− µ)x⊕ µTx. If 0 < µ < 2α, then Tµ is nonexpansive
mapping and F (Tµ) = F (T ).

Lemma 2.9 ([3]). Let C be a nonempty bounded closed and convex subset of a
Hadamard space X and T : C → X be an α-inverse strongly monotone. Then
V I(C, T ) is nonempty, closed and convex.
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Lemma 2.10. ([7, Lemma 3]) Let X be a uniformly convex hyperbolic space with
modulus of uniform convexity η. For any c > 0, ε ∈ (0, 2], λ ∈ [0, 1] and v, x, y ∈ X,
d(x, v) ≤ c, d(y, v) ≤ c and d(x, y) ≥ εc implies that

d((1− λ)x⊕ λy, v) ≤ (1− 2λ(1− λ)η(c, ε))c.

If X is a CAT(0) space, then X is uniformly convex hyperbolic space ([30]).

Lemma 2.11 ([3]). Let C be a nonempty convex subset of a Hadamard space X and
T : C → X be a mapping. Then,

V I(C, T ) = V I(C, Tµ),
where µ ∈ (0, 1] and Tµ : C → X is a mapping defined by Tµx = (1− µ)x⊕ µTx for
all x ∈ C.

Remark 2.2 ([42]). It follows from Lemma 2.11 that
F (PCT ) = V I(C, T ) = V I(C, Tµ) = F (PCTµ).

Lemma 2.12. Let X be a CAT(0) space, x, y, z ∈ X and t ∈ [0, 1]. Then
(i) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z) (see [15]);
(ii) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y) (see [15]);
(iii) d2(tx⊕ (1− t)y, z) ≤ t2d2(x, z) + (1− t)2d2(y, z) + 2t(1− t)〈−→xz,−→yz〉 (see [13]).

Lemma 2.13 ([51]). Let X be a CAT(0) space, {xi : i = 1, 2, . . . , N} ⊂ X and
αi ∈ [0, 1] for each i = 1, 2, . . . , N , be such that ∑N

i=1 αi = 1. Then

d

(
N⊕
i=1

αixi, z

)
≤

N∑
i=1

αid(xi, z), for all x ∈ X.

Lemma 2.14 ([14]). Let X be a CAT(0) space, {xi : i = 1, 2, . . . , N} ⊂ X, {yi : i =
1, 2, . . . , N} ⊂ X and αi ∈ [0, 1] for each i = 1, 2, . . . , N , be such that ∑N

i=1 αi = 1.
Then

d

(
N⊕
i=1

αixi,
N⊕
i=1

αiyi

)
≤

N∑
i=1

αid(xi, yi).(2.8)

Lemma 2.15 ([17]). Let X be a Hadamard space and S : X → X be a nonexpansive
mapping. Then the conditions {xn} ∆-converges to x and d(xn, Sxn) → 0, imply
x = Sx.

Lemma 2.16 ([38]). Let {an} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} such that ani

< ani+1 for all i ∈ N. Then there exists a
subsequence {mk} ⊂ N such that mk →∞. and the following properties are satisfied
by all (sufficiently large) numbers k ∈ N

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.
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3. Main Results

We begin with a technical results which will be used to prove our main results.
Lemma 3.1 ([42]). Let C be a nonempty closed and convex subset of a CAT(0) space
X, Ti : C → X, i = 1, 2, . . . , N , be a finite family of αi-inverse strongly monotone
mappings and Ψµ : C → C be defined by Ψµx := ⊕N

i=1 βiPCTµi
x for all x ∈ C

and βi ∈ (0, 1), where Tµi
x := (1 − µi)x ⊕ µiTix, 0 < µi < 2αi with µi ∈ [0, 1]. If∑N

i=1 βi = 1, then the mapping Ψµ is nonexpansive. If in addition, ∩Ni=1F (PCTµi
) 6= ∅,

then F (Ψµ) = ⋂N
i=1 F (PCTµi

).
Proposition 3.1 ([23]). Let X be a Hadamard space and f : C × C → R be a
monotone bifunction operator. Then

d2(u, Jfr x) + d2(Jfr x, x) ≤ d2(u, x), for all u ∈ F (Jfr ), x ∈ X and r > 0.
Theorem 3.1. Let C be a nonempty closed and convex subset of a Hadamard space
X, f : C × C → R be a monotone and upper semicontinuous bifunction such that
conditions (A1)-(A4) of Lemma 2.3 are satisfied, C ⊂ D(Jfr ) for r > 0 and Ti :
C → X, i = 1, 2, . . . , N , be a finite family of αi-inverse strongly monotone mappings.
Let h be a contraction of C into itself with coefficient θ ∈ (0, 1) and S : C → C
be a k-demimetric mapping with k ∈ (−∞, λ] and λ ∈ (0, 1). Suppose that Υ :=
F (S) ∩ EP (f, C) ∩

(⋂N
i=1 V I(C, Ti)

)
is nonempty and {xn} is a sequence generated

by an arbitrary x1 ∈ X as follows:

(3.1)


un = Jfrn

xn,

yn = Ψµun := ⊕N
i=1 βiPCTµi

un,

xn+1 = αnh(xn)⊕ (1− αn)[βnyn ⊕ (1− βn)Sλyn], n ≥ 1,
where Sλx = λx ⊕ (1 − λ)Sx is ∆-demiclosed and Tµi

x = (1 − µi)x ⊕ µiTix, 0 <
µi < 2βi, for each i = 1, 2, . . . , N. Suppose that {αn} and {βn} are sequences in (0, 1),
{βi} ⊂ (0, 1) and rn ∈ (0,∞) satisfying the following conditions:

(i) lim
n→∞

αn = 0, ∑∞n=1 αn =∞;
(ii) ∑N

i=1 βi = 1.
Then {xn} converges strongly to p ∈ Υ, where p = PΥh(p).

Proof. Let p ∈ F (S) ∩ EP (f, C) ∩
(⋂N

i=1 V I(C, Ti)
)
. By Lemma 3.1, we have that

Ψµ is nonexpansive, that is,
d(yn, p) = d(Ψµun, p) ≤ d(un, p).(3.2)

Since Jfrn
is firmly nonexpansive, we have

d(un, p) = d(Jfrn
(xn), p) ≤ d(xn, p).(3.3)

Let vn = βnyn ⊕ (1− βn)Sλyn, then we obtain
d(vn, p) = d(βnyn ⊕ (1− βn)Sλyn, p)
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≤ βnd(yn, p) + (1− βn)d(Sλyn, p)
≤ βnd(yn, p) + (1− βn)d(yn, p)
= d(yn, p).(3.4)

It follows from (3.1), (3.3) and Lemma 2.12 (i) that
d(xn+1, p) = d(αnh(xn)⊕ (1− αn))vn, p)

≤ αnd(h(xn), p) + (1− αn)d(vn, p)
≤ αnd(h(xn), p) + (1− αn)d(yn, p)
≤ αnd(h(xn), h(p)) + αnd(h(p), p) + (1− αn)d(xn, p)
≤ αnθd(xn, p) + αnd(h(p), p) + (1− αn)d(xn, p)

= [1− αn(1− θ)]d(xn, p) + αn(1− θ)d(h(p), p)
1− θ

≤ max
{
d(xn, p),

d(h(p), p)
1− θ

}
.

Hence, {xn} is bounded. Consequently, {yn}, {un}, {Jfrn
xn} and {Sλyn} are all

bounded.
We now divide the rest of the proof into two cases.
Case 1. Suppose that {d(xn, p)} is monotonically non-increasing. Then there

exists lim
n→∞
{d(xn, p)}. This shows that

lim
n→∞

[d(xn+1, p)− d(xn, p)] = 0.(3.5)

Hence, we obtain from (3.1), Lemma 2.12 (ii), (3.2) and Proposition 3.1 that
d2(xn+1, p) ≤ αnd

2(h(xn), p) + (1− αn)d2(vn, p)− αn(1− αn)d2(h(xn), vn)
≤ αnd

2(h(xn), p) + (1− αn)d2(yn, p)
≤ αnd

2(h(xn), p) + (1− αn)d2(un, p)

≤ αnd
2(h(xn), p) + (1− αn)

[
d2(yn, p)− d2(un, yn)

]
= αnd

2(h(xn), p) + (1− αn)d2(xn, p)− (1− αn)d2(un, yn).(3.6)
From (3.6), we get

(1− αn)d2(yn, un) ≤ αnd
2(h(xn), p) + d2(xn, p)− d2(xn+1, p).

Hence, we obtain from (3.5) and condition (i) that
lim
n→∞

d(yn, un) = 0 = lim
n→∞

d(Ψµun, un).(3.7)

Also, from (3.1), Lemma 2.12 (ii) and Proposition 3.1 we get
d2(xn+1, p) ≤ αnd

2(h(xn), p) + (1− αn)d2(vn, p)− αn(1− αn)d2(h(xn), vn)
≤ αnd

2(h(xn), p) + (1− αn)d2(yn, p)
≤ αnd

2(h(xn), p) + (1− αn)d2(un, p)
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≤ αnd
2(h(xn), p) + (1− αn)

[
d2(xn, p)− d2(un, xn)

]
= αnd

2(h(xn), p) + (1− αn)d2(xn, p)− (1− αn)d2(un, xn).(3.8)
Thus,

(1− αn)d2(un, xn) ≤ αnd
2(h(xn), p) + d2(xn, p)− d2(xn+1, p).

Hence, from condition (i) and (3.5), we have
lim
n→∞

d(un, xn) = lim
n→∞

d(Jfrn
xn, xn) = 0.(3.9)

By (3.1) and Lemma 2.12 (ii), we get
d2(xn+1, p) ≤αnd2(h(xn), p) + (1− αn)d2(vn, p)− αn(1− αn)d2(h(xn), vn)

≤αnd2(h(xn), p) + (1− αn)[βnd2(yn, p) + (1− βn)d2(Sλyn, p)
− βn(1− βn)d2(yn, Sλyn)]
≤αnd2(h(xn), p) + (1− αn)d2(xn, p)− (1− αn)βn(1− βn)d2(yn, Sλyn).

Hence,
(1−αn)βn(1−βn)d2(Sλyn, yn) ≤ αn[d2(h(xn), p)− d2(xn, p)] + d2(xn, p)− d2(xn+1, p).
By condition (i) and (3.5), we obtain

lim
n→∞

d(Sλyn, yn) = 0.(3.10)

Also, by (3.1), (3.7) and (3.9)
d(yn, xn) ≤ d(Ψµun, un) + d(un, xn)→ 0, n→∞.(3.11)

We also obtain from (3.1) and condition (i) that

d(xn+1, vn) = d(αnh(xn)⊕ (1− αn)vn, vn) ≤ αnd(h(xn), vn)→ 0 as n→∞.
(3.12)

Also, from the definition of vn and (3.10), we obtain
d(vn, yn) ≤ βnd(yn, yn) + (1− βn)d(Sλyn, yn)→ 0 as n→∞.(3.13)

Thus, from (3.11), (3.12) and (3.13), we get
d(xn+1, xn) ≤ d(xn+1, vn) + d(vn, yn) + d(yn, xn)→ 0.(3.14)

Next we show that
lim sup〈

−−−→
h(z)z,−→xnz〉 ≤ 0.

As {un} is bounded, so by Lemma 2.5, there exists a subsequence {unk
} of {un} such

that ∆- lim
k→∞

unk
= z. Also since Ψµ is nonexpansive, we obtain from (3.7), Lemma 2.15,

Lemma 3.1 and Remark 2.2 that z ∈ F (Ψµ) = ∩Ni=1F (PCTµi
) = ∩Ni=1V I(C, Tµi

). Let
us show that z ∈ EP (f, C). Since {Jfrn

(xn)} is bounded, there exists a subsequence
{wk} of {Jfrn

(xn)} such that

lim
k→∞

d(wk, p) = lim inf
n→∞

d(Jfrn
xn, p)



VARIATIONAL INEQUALITY AND EQUILIBRIUM PROBLEM 835

and that {wk} ∆-converges to some z ∈ X, where wk = Jfrnk
xnk

for all k ∈ N. By the
definition of the resolvent Jfrn

, we have

rnk
f(wk, y) + 1

2(d2(xnk
, y)− d2(xnk

, wk)− d2(y, wk)) ≥ 0,

for all y ∈ C. In particular, letting y = Jfz, we have

d2(xnk
, Jfz)− d2(xnk

, wk)− d2(Jfz, wk) ≥ −2rnk
f(wk, Jfz).

Similarly, by the definition of Jf , we have

d2(wk, z)− d2(Jfz, z)− d2(Jfz, wk) ≥ −2f(wk, Jfz).

Since f is monotone, we have

d2(Jfz, xnk
)− d2(wk, xnk

)− d2(wk, Jfz)− rnk
d2(wk, z)− rnk

d2(Jfz, z)
− rnk

d2(Jfz, wk) ≥ 0,

and hence

(1 + rnk
)d2(Jfz, wk) ≤ d2(Jfz, xnk

)− d2(wk, xnk
) + rnk

d2(wk, z)− rnk
d2(Jfz, z)

≤ d2(Jfz, xnk
) + d2(wk, z).

It follows that

d2(Jfz, wk) ≤
1
rnk

(d2(Jfz, xnk
)− d2(Jfz, wk) + d2(z, wk))

≤ 1
rnk

d(wk, xnk
)(d(Jfz, xnk

)− d(Jfz, wk)) + d2(z, wk),

for all k ∈ N and consequently, we obtain

lim sup
k→∞

d2(Jfz, wk) ≤ lim sup
k→∞

d2(z, wk).

Since the asymptotic center of {wk} is unique point z, we have z = Jfz, that is,
z ∈ EP (C, f).

Furthermore, since {xn} is bounded, there exists a subsequence {xnk
} of {xn}

such that ∆ − lim
k→∞

xnk
= z. It follows from (3.11) that there exists a subsequence

{ynk
} of {yn} such that ∆ − lim

k→∞
ynk

= z. Since Sλ is ∆-demiclosed, it follows from
(3.10) and Lemma 2.1 that z ∈ F (Sλ) = F (S). Hence, z ∈ Υ := F (S) ∩ EP (f, C) ∩⋂N
i=1 V I(C, Tµi

).
Observe that

lim sup
n→∞

〈
−−−→
h(z)z,−→xnz〉 ≤ lim sup

k→∞
〈
−−−→
h(z)z,−−→xnk

z〉.(3.15)

Since {xnk
} ∆-converges to z, therefore by Lemma 2.6, we have

lim sup
k→∞

〈
−−−→
h(z)z,−→xnz〉 ≤ 0.
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This together with (3.15) gives

lim sup
n→∞

〈
−−−→
h(z)z,−→xnz〉 ≤ 0.(3.16)

Also, we have

〈
−−−→
h(z)z,−−−→zxn+1〉 = 〈

−−−→
h(z)z,−→zxn〉+ 〈

−−−→
h(z)z,−−−−→xnxn+1〉

= 〈
−−−→
h(z)z,−→zxn〉+ d(z, h(z))d(xn, xn+1).(3.17)

Hence from (3.14), (3.16) and (3.17) we have that

lim sup
n→∞

〈
−−−→
h(z)z,−−−→zxn+1〉 ≤ 0.(3.18)

Finally, we prove that xn → z as n→∞. For any n ∈ N, we set ϑn = αnz⊕(1−αn)vn,
d2(xn+1, z) =d2(αnh(xn)⊕ (1− αn)vn, z)

≤d2(ϑn, z) + 2〈−−−−→xn+1ϑn,
−−−→xn+1z〉

≤ [αnd(z, z) + (1− αn)d(vn, z)]2

+ 2
[
αn〈
−−−−−→
h(xn)ϑn,−−−→xn+1z〉+ (1− αn)〈−−→vnϑn,−−−→xn+1z〉

]
≤(1− αn)2d2(vn, z) + 2

[
α2
n〈
−−−−→
h(xn)z,−−−→xn+1z〉+ αn(1− αn)〈

−−−−−→
h(xn)vn,−−−→xn+1z〉

+ αn(1− αn)〈−→vnz,−−−→xn+1z〉+ (1− αn)2〈−−→vnvn,−−−→xn+1z〉
]

≤(1− αn)2d2(yn, z) + 2
[
αn〈
−−−−→
h(xn)z,−−−→xn+1z〉+ αn(1− αn)〈

−−−−−→
h(xn)vn,−−−→xn+1z〉

+ αn(1− αn)〈−→vnz,−−−→xn+1z〉+ (1− αn)2d(vn, vn)d(xn+1, z)
]

≤(1− αn)2d2(xn, z) + 2
[
αn〈
−−−−→
h(xn)z,−−−→xn+1z〉+ αn(1− αn)〈

−−−−−→
h(xn)vn,−−−→xn+1z〉

+ αn(1− αn)〈−→vnz,−−−→xn+1z〉
]

≤(1− αn)2d2(xn, z) + 2αn〈
−−−−→
h(xn)z,−−−→xn+1z〉

≤(1− αn)2d2(xn, z) + 2αn〈
−−−−−−→
h(xn)h(z),−−−→xn+1z〉+ 2αn〈

−−−→
h(z)z,−−−→xn+1z〉

≤(1− αn)2d2(xn, z) + 2αnθd(xn, z)d(xn+1, z) + 2αn〈
−−−→
h(z)z,−−−→xn+1z〉

≤(1− αn)2d2(xn, z) + 2αnθ
(
d2(xn, z) + d2(xn+1, z)

)
+ 2αn〈

−−−→
h(z)z,−−−→xn+1z〉.

As {αn} and {xn} are bounded so there is M > 0 such that 1
1−θαn

d2(xn, z) ≤ M. It
now follows that

d2(xn+1, z) ≤
(1− αn)2 + θαn

1− θαn
d2(xn, z) + 2αn

1− θαn
〈
−−−→
h(z)z,−−−→xn+1z〉
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≤(1− αn)2 + θαn
1− θαn

d2(xn, z) + 2αn
1− θαn

〈
−−−→
h(z)z,−−−→xn+1z〉+ α2

nM

≤
[
1− 1− 2θαn − (1− 2αn)

1− θαn

]
d2(xn, z) + 2αn

1− θαn
〈
−−−→
h(z)z,−−−→xn+1z〉+ α2

nM

≤
[
1− 1− 2θαn − (1− 2αn)

1− θαn

]
d2(xn, z)

+ αn

[ 2
1− θαn

〈
−−−→
h(z)z,−−−→xn+1z〉+ αnM

]
.(3.19)

Set γn = 1−2θαn−(1−2αn)
1−θαn

, δn = αn

[
2

1−θαn
〈
−−−→
h(z)z,−−−→xn+1z〉+ αnM

]
. Now it follows from

(3.18), (3.19) and Lemma 2.7 that {xn} converges strongly to z.
Case 2. Suppose that {d(xn, p)} is monotonically non-decreasing. There exists

a subsequence {nj} of {n} such that d(xnj
, z) < d(xnj+1, z) for all j ∈ N. Then by

Lemma 2.16, there exists a nondecreasing sequence {mk} ⊂ N such that mk →∞.

d2(xmk
, z) ≤ d2(xmk+1, z) and d2(xk, z) ≤ d2(xmk+1, z),(3.20)

for all k ∈ N. Therefore,

0 ≤ lim inf
k→∞

[d(xmk+1, z)− d(xmk,z)]

≤ lim sup
k→∞

[d(xmk+1, z)− d(xmk
, z)]

≤ lim sup
k→∞

[αmk
d(h(xmk

), z) + (1− αmk
)d(vmk

, z)− d(xmk
, z)]

≤ lim sup
k→∞

[αmk
d(h(xmk

), z) + (1− αmk
)d(xmk

, z)− d(xmk
, z)]

= lim sup
k→∞

[αmk
(d(h(xmk

), z)− d(xmk
, z))] = 0.

This implies that

lim
k→∞

[d(xmk+1, z)− d(xmk
, z)] = 0.(3.21)

By an argument as in Case 1, we get

lim sup
k→∞

〈
−−−→
h(z)z,−−−−→xmk+1z〉 ≤ 0(3.22)

and
d2(xmk+1, z) ≤ (1− γmk

)d2(xmk
, z) + γmk

δmk
.

Since d2(xmk
, z) ≤ d2(xmk+1, z) we get

γmk
d2(xmk

, z) ≤ d2(xmk
, z)− d2(xmk+1, z) + γmk

δmk
≤ γmk

δmk
.(3.23)

Thus, from (3.20), we get

lim
k→∞

d2(xmk
, z) = 0.(3.24)
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It follows from (3.20), (3.22) and (3.24) the lim
k→∞

d2(xk, z) = 0. Therefore, we con-
clude from Case 1 and Case 2 that {xn} converges strongly to z ∈ Υ. �

Lemma 3.2. Let C be a nonempty closed and convex subset of a Hadamard space
X and fj : C × C → R, j = 1, 2, . . . ,m, be a finite family of monotone bifunctions
such that (A1)-(A4) are satisfied. Then for r > 0, we have F

(⋂m
j=1 J

fm
r

)
= ∩mi=1(Jfm

r ),
where

m⋂
j=1

Jfj
r = Jfmr ◦ Jfm−1

r ◦ · · · ◦ Jf2
r ◦ Jf1

r .

The proof of Lemma 3.2, follows immediately from the proof of Theorem 3.1 in
[55].

Theorem 3.2. Let C be a nonempty closed and convex subset of a Hadamard space X,
fj : C × C → R, j = 1, 2, . . . ,m, be monotone and upper semicontinuous bifunctions
such that conditions (A1)-(A4) are satisfied, C ⊂ D(Jfr ) for r > 0 and Ti : C → X,
i = 1, 2, . . . , N , be a finite family of αi-inverse strongly monotone mappings. Let
h be a contraction of C into itself with coefficient θ ∈ (0, 1) and S : C → C be a
k-demimetric mapping with k ∈ (−∞, λ] and λ ∈ (0, 1). Suppose that Γ := F (S) ∩
EP (fj, C) ∩ ∩Ni=1V I(C, Ti) is nonempty and {xn} is the sequence generated by an
arbitrary x1 ∈ X as:

(3.25)


un = Πm

j=1J
fj
rnxn,

yn = Ψµun := ⊕N
i=1 βiPCTµi

un,

xn+1 = αnh(xn)⊕ (1− αn)[βnyn ⊕ (1− βn)Sλyn], n ≥ 1,

where Sλx = λx⊕ (1−λ)Sx is ∆-demiclosed, Tµi
x = (1−µi)x⊕µiTix, 0 < µi < 2αi,

for each i = 1, 2, . . . , N, and ⋂mj=1 J
fj
r = Jfmr ◦Jfm−1

r ◦ · · ·◦Jf2
r ◦Jf1

r . Suppose that {αn}
and {βn} are sequences in (0, 1), {βi} ⊂ (0, 1) and rn ∈ (0,∞) satisfy the following
conditions:

(i) lim
n→∞

αn = 0, ∑∞n=1 αn =∞;
(ii) ∑N

i=1 βi = 1.
Then {xn} converges strongly to p ∈ Γ, where p = PΓh(p).

Proof. Follows immediately from Theorem 3.1 and Lemma 3.2. �

4. Application to Minimization Problems

In this section, we give an application of our results to solve Minimization Problems.
Let X be a Hadamard space and f : X → (−∞,∞] be a proper and convex function.
The problems in optimization require to find x ∈ X such that

f(x) = arg min
y∈X

g(y).

So arg miny∈X g(y) denotes the set of minimizers of g.
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Let v : X → R be a proper convex and lower semicontinuous function. Consider
the bifunction fv : C × C → R defined by

fv(x, y) = v(y)− v(x), for all x, y ∈ C.
Then, fv is monotone and upper semi continuous (see [3]). Moreover, EP (fv, C) =
arg minC v, Jfv = proxv and D(proxv) = X (see [3]), where proxv : X → X is given
by

proxv(x) := arg min
x∈X

[
v(y) + 1

2d
2(y, x)

]
, for all x ∈ X.

Now we consider the following minimization and fixed point problems:

find x ∈ F (S) ∩ F (Ψµ) such that v(x) ≤ v(y), for all y ∈ C, i = 1, 2, . . . ,m,
(4.1)

where S is a demimetric mapping and Ψµ is as defined in Lemma 3.1.
Let us denote the solution set of problem (4.1) by Ω.

Theorem 4.1. Let C be a nonempty closed and convex subset of a Hadamard space
X, vj : X → R, j = 1, 2, . . . ,m, be proper convex lower semicontinuous functions
and Ti : C → X, i = 1, 2, . . . , N , be a finite family of αi-inverse strongly monotone
mappings. Let h be a contraction of C into itself with coefficient θ ∈ (0, 1) and
S : C → C be a k-demimetric mapping with k ∈ (−∞, λ] and λ ∈ (0, 1). Suppose that
Ω is nonempty and {xn} is the sequence generated by an arbitrary x1 ∈ X as

(4.2)


un = Πm

j=1prox
vi
rn
xn,

yn = Ψµun := ⊕N
i=1 βiPCTµi

un,

xn+1 = αnh(xn)⊕ (1− αn)[βnyn ⊕ (1− βn)Sλyn], n ≥ 1,
where Sλx = λx ⊕ (1 − λ)Sx is ∆-demiclosed and Tµi

x = (1 − µi)x ⊕ µiTix, 0 <
µi < 2αi, for each i = 1, 2, . . . , N. Suppose that {αn} and {βn} are sequences in (0, 1),
{βi} ⊂ (0, 1) and rn ∈ (0,∞) satisfy the following conditions:

(i) lim
n→∞

αn = 0, ∑∞n=1 αn =∞;
(ii) ∑N

i=1 βi = 1.
Then {xn} converges strongly to p ∈ Ω, where p = PΩh(p).

Proof. Set Jfi
rn

= proxvi
rn

in Algorithm 3.25 and apply Theorem 3.2 to approximate
solutions of problem (4.1). �

Remark 4.1. (i) If we replace h(xn) by ”u“ (for arbitrary u) in our Algorithm 3.1 and
Algorithm 3.25 (which are viscosity type), then we get the Halpern-type algorithm and
the conclusion of our theorems still hold. However, we use a viscosity-type algorithm
instead of Halpern-type algorithm due to the fact that viscosity-type algorithms have
higher rate of convergence than Halpern-type.

(ii) A characterization of metric projection goes as follows:

p = PΓh(p)⇔ 〈
−−−→
ph(p),−→yp〉 ≥ 0, for all y ∈ C.(4.3)
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Therefore, one advantage of adopting Algorithm 3.1 for our convergence analysis, is
that it also converges to the variational inequality (4.3) (see for example [22]).

(iii) In Theorem 1.1, ∆-convergence to an element of EP (f, C) was obtained while
we obtained strong convergence result which is also a solution of some variational
inequality problems. Hence, Theorem (3.1) provides genuine extension of Theorem
1.1.

(iv) Theorem 4.1 generalizes Theorem 10 of [52] and Theorem 3.1 of [44] from
Hilbert space to CAT(0) spaces.

5. Numerical Example

Example 5.1. We give numerical in (R2, ‖ · ‖2) (where R2 is the Euclidean plane) to
support our main result.

Let ρ : R2 × R2 → [0,+∞) defined by

ρ(x, y) =
√

(x1 − y1)2 + (x2
1 − x2 − y2

1 + y2)2, x, y ∈ R2.

Then (R2, ρ) is an Hadamard space (see, for instance, [18, Example 5.2]) with geodesic
joining x to y given by

(1− t)x⊕ ty = ((1− t)x1 + ty1, ((1− t)x1 + ty1)2 − (1− t)(x2
1 − x2)− t(y2

1 − y2).
(5.1)

Now, define Φ : R2 → R by
Φ(x1, x2) = (100(x2 − 2)− (x1 − 2)2)2 + (x1 − 3)2.

Then, it follows from [18, Example 5.2] that Φ is a proper convex and lower semicon-
tinuous function in (R2, ρ) but not convex in the classical sense.

Let S : R2 → R be defined by Sx̄ = S(x1, x2) = (−2x1, 3x2
1 + x2). Then S is

3-generalized demimetric mapping in the sense ρ with F (S) = (0, 0), λ = 1
4 .

Let X = R2 and be an R-tree with radical metric dr, where dr(x, y) = d(x, y)
if x and y are situated on a Euclidean straight line passing through the origin and
dr(x, y) = d(x, 0)+d(y, 0), otherwise. We put p = (0, 1), q = (1, 0) and C = A∪B∪D,
where A = {(0, t) : t ∈ [2/3, 1]}, B = {(t, 0) : t ∈ [2/3, 1]}, D = {(t, s) : t+ s = 1, t ∈
(0, 1)} and defined T : C → C by

(5.2) Tx :=


q, if x ∈ A,
p, if x ∈ B,
x, if x ∈ D.

Then, T is 1
4− inverse strongly monotone in (X, dr) but not inverse strongly monotone

in the classical sense.
In what follows, we choose rn = 1

5 , βi = 1
N
, µi = 0.035, αn = 1

n+1 , βn = 3n
5n+2 for

n ∈ N and i = 1, 2, . . . , N. We study the behaviour of the sequence generated by
Algorithm 3.1 for following initial values with N = 10.

Case I: x0 = (−2,−7)′,
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Figure 1. Example 5.1: Case I – Case II.

Case II: x0 = (5,−1)′,
Case III: x0 = (3, 6)′,
Case IV: x0 = (−4, 1)′.
We also used ‖xn+1−xn‖2 < 10−4 as stopping criterion and plot the graphs of error
||xn+1 − xn||2 against number of iteration in each case. The computation results are
shown in Figure 1–2. The numerical results show that the change in the initial values
does not have significant effects on the number of iteration and CPU time taken for
computation by Algorithm 3.1.

6. Conclusion

In this paper, we investigate a priori on the resolvent operator for a given bifunc-
tion, demimetric mapping and a finite family of inverse strongly monotone mappings.
Main results here are that the resolvent operator here is single-valued and firmly
nonexpansive. We then define proximal viscosity algorithm by iterating the resolvent
of different bifurcating parameters. Strong convergence of the proposed algorithm to
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Figure 2. Example 5.1: Case III – Case IV

a common solution of variational inequality problem, fixed point problem and equilib-
rium problem is established in Hadamard spaces. Some applications and numerical
example were also given.
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