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ON THE DISCRETE HARDY INEQUALITY WITH VARIABLE
EXPONENT

RENE ERLIN CASTILLO!, BABAR SULTANZ, AND HECTOR CAMILO CHAPARRO3

ABSTRACT. We obtain the celebrated Hardy’s inequality in the context of variable
exponent sequence spaces.

1. INTRODUCTION

The Hardy inequality is a classical result in analysis and the mathematical inequal-
ities, named after mathematician Godfrey Harold Hardy. It has a long and very
rich history, starting in 1915 when G.H. Hardy [1] needed an estimate for arithmetic

means, more precisely, an inequality of the form
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In his famous 1925 paper [2], Hardy proved the discrete and the integral version
of what is known today as Hardy’s inequalities. The discrete version of Hardy’s
inequality asserts that
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where p > 1 and {ak}z:i is a sequence of nonnegative real numbers.
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Since then, this type of inequality has been intensively studied. There are a lot of
research articles on the topic, as well as surveys and books. For example, the survey
[4] contains several proofs and historical aspects are given. In [3], authors proved
improved classical Hardy inequality for sequences of non-negative real numbers. In
[6], Lefévre obtained a short direct proof of the discrete Hardy inequality provided
that constant p’ is optimal. For more on Hardy’s inequality, we refer the reader to [5]
and [7].

In this note, we define the (variable) Lebesgue sequence spaces, equipped with
Luxemburg norm. We will prove Hélder’s inequality in this setting. Finally, our main
goal is to obtain the Hardy inequality (1.1) for these spaces.

2. l,) SPACES AND HOLDER’S INEQUALITY

We give here some definitions and results that will be useful in the coming section.
Let H be a measurable subset of R" and let p : H — [1,400) be a measurable
function. We suppose that

(2.1) 1 <p_(H) <p(x) < ps(H) < 400,
where p_ :=ess inf p(x), py = esssup p(z).
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Let p(-) > 1. The conjugate exponent of p(-) is denoted by p/(-) and is defined as
/ p()
p() = :

) p() -1
Definition 2.1. ¢,y denotes the variable exponent Lebesgue sequence space (some-
times denoted by £p,.)(N)), which is the set of all sequences a = {a,}, .y such that
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p(.)(a) = Z |an|p(m) < +00.
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We equip £,y with the Luxemburg norm

) a
lallpe) = inf {A Hlp() (A> < 1} :

where we use the convention that inf ) = +o0.

a
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" (Hallpo)
where ||al[,) # 0.

We state and prove Holder’s inequality for /..

Note that

Theorem 2.1. Let a € I,y and b € I,y with ﬁ + ﬁ = 1. Then,
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Proof. If ||al|py = 0 and ||b]|¢) = O, then ab = 0, so there is nothing to prove.
Therefore we may assume that ||a|,.) > 0 and ||b]|4.) > 0, moreover by homogeneity
we may assume that ||al|p) = [|b]lq¢) = 1.

By Young’s inequality for variable exponent we have
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where kyy =1+ p% — i. So, the proof is now complete. 0J

Remark 2.1. For the sake of completeness and the convenience of the reader, we would
like to present another proof of Theorem 2.1. In order to do so, let us first check that
q_ = q. Since % + Tlx) =1, then ﬁ q(q()) so q(z) = p(z)(¢(z) — 1). Now,

q- =essinf ¢(z) = essinf (p(x)) (¢(z) — 1) = essinf (—p(z)) (1 — ¢())

= —esssup (p()) (1 = ¢(z)) = —esssup (—p(z)) (¢(r) — 1) = —esssup (—¢(z))
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Alternative proof of Theorem 2.1. Young’s inequality can also be viewed as
1 1 1
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So,
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3. HARDY’S INEQUALITY ON /) SPACES

We state and prove our main result, which is the £,y version of (1.1).

Theorem 3.1. Let {a,} be a sequence of positive real numbers such that the series
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where C(p—,ps) = {ﬁ (p% - i + 1>]p+.

Proof. Let «,, = % where A, = a; +as + --- + a,. Then, A, = na,, so a1 + as +
-+ a, = na,, from which we get that
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Now, let us consider
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By Young’s inequality
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From which
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By Holder’s inequality we have

Then,

This implies
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where C'(p_,py) = [pf’:l (p% — i + 1)}10+ , which completes the proof. 0
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