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QUOTIENT HOOPS INDUCED BY QUASI-VALUATION MAPS

R. A. BORZOOEI1, G. R. REZAEI2, M. AALY KOLOGANI3, AND Y. B. JUN4

Abstract. In this paper, our aim was making a metric space on hoop algebras,
because of that, we introduced the notion of valuation maps from F -quasi-valuation
map based on hoops and related properties of them are investigated. By using
these notions, we introduced a quasi-metric space. The continuity of operations of a
hoop is studied with topology induced by a quasi-valuation. Also, we studied hoop
homomorphism and investigated that under which condition this homomorphism
is an F -quasi-valuation map. Moreover, we wanted to find a congruence relation
on hoops in a new way and study about the quotient structure that is made by it.
So, we defined a congruence relation by F -quasi-valuation map and proved that the
quotient is a hoop.

1. Introduction

Non-classical logic has become a considerable formal tool for computer science
and artificial intelligence to deal with fuzzy information and uncertainty information.
Many-valued logic, a great extension and development of classical logic, has always
been a crucial direction in non-classical logic. In order to research the many-valued
logical system whose propositional value is given in a lattice, Bosbach in [14, 15],
proposed the concept of hoops, and discussed their some properties. Hoops are
naturally ordered commutative residuated integral monoids. In the last years, hoops
theory and related structues was enriched with deep structure theorems [1, 3–10, 12,
13, 16–18, 22, 24, 27]. Many of these results have a strong impact with fuzzy logic.
Particularly, from the structure theorem of finite basic hoops one obtains an elegant
short proof of the completeness theorem for propositional basic logic, introduced
by Hájek in [21]. The algebraic structures corresponding to Hájek’s propositional
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(fuzzy) basic logic, BL-algebras, are particular cases of hoops. The main example
of BL-algebras in interval [0, 1] endowed with the structure induced by a t-norm.
MV-algebras, product algebras and Gödel algebras are the most known classes of BL-
algebras. Recent investigations are concerned with non-commutative generalizations
for these structures. During these years, many researchers study on hoops in different
way, and got some results on hoops [11, 20, 23, 26]. Algebra and topology, the two
fundamental domains of mathematics, play complementary roles. Topology studies
continuity and convergence and provides a general framework to study the concept
of a limit. Algebra studies all kinds of operations and provides a basis for algorithms
and calculations. Many of the most important objects of mathematics represent a
blend of algebraic and of topological structures. Topological function spaces and
linear topological spaces in general, topological groups and topological fields and
topological lattices are objects of this kind. Very often an algebraic structure and a
topology come naturally together. The rules that describe the relationship between
a topology and algebraic operation are almost always transparent and natural the
operation has to be continuous, jointly continuous, jointly or separately. In the 20th
century many topologists and algebraists have contributed to topological algebra.
Song, Roh and Jun, in [25] introduced the notion of quasi-valuation maps based
on a subalgebra and an ideal in BCK/BCI-algebras, and then they investigated
several properties. They provided relations between a quasi-valuation map based on
a subalgebra and a quasi-valuation map based on an ideal. In a BCI-algebra, they
gave a condition for a quasi-valuation map based on an ideal to be a quasi-valuation
map based on a subalgebra, and found conditions for a real-valued function on a
BCK/BCI-algebra to be a quasi-valuation map based on an ideal. Using the notion
of a quasi-valuation map based on an ideal, they constructed (pseudo) metric spaces,
and shew that the binary operation ? in BCK-algebras is uniformly continuous. In
[2], Aaly and Rezaei, introduced the notion of quasi-valuation maps such as (S�,
S→) S-quasi-valuation maps and F -quasi-valuation map based on subalgebras and
filters and related properties of them are investigated. Also, they studied the relation
between them and proved that every F -quasi-valuation map is an S-quasi-valuation
map. Finally, by using the notion F -quasi-valuation map, they introduced a metric
space and proved that if λ is an F -quasi-valuation map of hoop H then all operation
of H are continuous.

In this paper, our aim was making a metric space on hoop algebras, because of
that, we introduced the notion of valuation maps from F -quasi-valuation map based
on hoops and related properties of them are investigated. By using these notions, we
introduced a quasi-metric space. The continuity of operations of a hoop is studied with
topology induced by a quasi-valuation. Also, we studied hoop homomorphism and
investigated that under which condition these homomorphism is an F -quasi-valuation
map. Moreover, we wanted to find a congruence relation on hoops in a new way and
study about the quotient structure that is made by it. So, we defined a congruence
relation by F -quasi-valuation map and proved that the quotient is a hoop.
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2. Preliminaries

By a hoop we mean an algebra (H,�,→, 1) in which (H,�, 1) is a commutative
monoid and for all x, y, z ∈ H the following assertions are valid:
(H1) x→ x = 1;
(H2) x� (x→ y) = y � (y → x);
(H3) x→ (y → z) = (x� y)→ z.
We define a relation “≤” on a hoop H by

(∀x, y ∈ H)(x ≤ y ⇔ x→ y = 1).

It is easy to see that (H,≤) is a poset. A hoop H is bounded if there is an element
0 ∈ H such that, for all x ∈ H, 0 ≤ x. Let x0 = 1 and xn = xn−1 � x, for any n ∈ N.
If H is a bounded hoop, then we define a negation ” ′ ” on H such that, for all x ∈ H,
x′ = x→ 0. A nonempty subset S of H is called a subhoop of H if it satisfies:

(∀x, y ∈ S)(x� y ∈ S, x→ y ∈ S).

Note that every subhoop contains the element 1.

Proposition 2.1 ([19]). Let (H,�,→, 1) be a hoop. For any x, y, z ∈ H, the following
conditions hold:

(a1) (H,≤) is a meet-semilattice with x ∧ y = x� (x→ y);
(a2) x� y ≤ z if and anly if x ≤ y → z;
(a3) x� y ≤ x, y and xn ≤ x for any n ∈ N;
(a4) x ≤ y → x;
(a5) 1→ x = x and x→ 1 = 1;
(a6) x� (x→ y) ≤ y and x� y ≤ x ∧ y ≤ x→ y;
(a7) x→ y ≤ (y → z)→ (x→ z);
(a8) x ≤ y implies x� z ≤ y � z, z → x ≤ z → y and y → z ≤ x→ z;
(a9) x→ (y → z) = (x� y)→ z = y → (x→ z).

A nonempty subset F of a hoop H is called a filter of H (see [19]) if the following
assertions are valid:

(∀x, y ∈ H)(x, y ∈ F ⇒ x� y ∈ F ),(2.1)
(∀x, y ∈ H)(x ∈ F, x ≤ y ⇒ y ∈ F ).(2.2)

Note that the conditions (2.1) and (2.2) mean that F is closed under the operation
� and F is upward closed, respectively.

Note that a subset F of a hoop H is a filter of H if and only if the following
assertions are valid (see [19]):

1 ∈ F,
(∀x, y ∈ H) (x→ y ∈ F, x ∈ F ⇒ y ∈ F ) .
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Definition 2.1 ([2]). A real valued function λ of H is called
• an S�-quasi-valuation map of H if

(∀x, y ∈ H)(λ(x� y) ≥ λ(x) + λ(y));
• an S→-quasi-valuation map of H if

(∀x, y ∈ H)(λ(x→ y) ≥ λ(x) + λ(y));
• an S-quasi-valuation map of H if it is an S�-quasi-valuation map and an S→-

quasi-valuation map of H.

Definition 2.2 ([2]). A real valued function λ of H is called an F -quasi-valuation
map of H if

λ(1) = 0,
(∀x, y ∈ H)(λ(y) ≥ λ(x) + λ(x→ y)).

Proposition 2.2 ([2]). Let λ be an F -quasi-valuation map on H. Then the following
statements hold:

(i) λ is an S-quasi-valuation map on H;
(ii) λ is an order preserving map;
(iii) for any x ∈ H, λ(x) ≤ 0.

Theorem 2.1 ([2]). If an F -quasi-valuation map λ of H satisfies the following con-
dition

(∀x ∈ H)(λ(x) = 0⇒ x = 1),
then (H, dλ) is a metric space.

Note. In what follows, let H denote a hoop unless otherwise specified.

3. Quasi-Valuation Maps on Hoops

In this section, we introduce the notion of valuation maps from F -quasi-valuation
map based on hoops and related properties of them are investigated. By using these
notions, we introduce a quasi-metric space. The continuity of operations of a hoop
was studied with topology induced by a quasi-valuation.

If a F -quasi-valuation map λ of H satisfies:
(∀x ∈ H) (x 6= 1⇒ λ(x) 6= 0) ,

then we say that λ is an F -valuation map of H.

Example 3.1. Let H = {0, a, b, 1} be a set with Cayley tables (Table 1 and 2). Then
(H, �, →, 1) is a bounded hoop. Define a map λ on H as follows:

λ : H → R, x 7→


−30, if x = 0,
−25, if x = a,
−20, if x = b,

0, if x = 1.
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Table 1. Cayley table for the binary operation “�”

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

Table 2. Cayley table for the binary operation “→”

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

It is routine to verify that λ is an F -valuation map of H.
For any non-empty subset F of H and a negative real number k, define a real valued

function λF on H as follows:

λF : H → R, x 7→
{

0, if x ∈ F,
k, otherwise.(3.1)

Lemma 3.1 ([2]). If F is a filter of H, then the function λF in (3.1) is an F -quasi-
valuation map of H and FλF = F .

Theorem 3.1. The function λF in (3.1) is an F -valuation map of H if and only if
F is the trivial filter of H, that is F = {1}.
Proof. Straightforward. �

In the following, we introduce quasi-metric space by using the notion of valuation
maps from F -quasi-valuation map based on hoops. The continuity of operations of a
hoop will study with topology induced by a quasi-valuation.
Definition 3.1. A function d : H×H → R is called a quasi-metric on H if it satisfies:

(∀x, y ∈ H) (d(x, y) ≤ 0, d(x, x) = 0) ,
(∀x, y ∈ H) (d(x, y) = d(y, x)) ,
(∀x, y, z ∈ H) (d(x, z) ≥ d(x, y) + d(y, z)) .

We say that the pair (H, d) is a quasi-metric space.
Theorem 3.2. If λ is an F -quasi-valuation map of H, then (H, dλ) is a quasi-metric
space which is called the quasi-metric space induced by λ, where

dλ : H ×H → R, (x, y) 7→ λ(x→ y) + λ(y → x).
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Proof. Since λ is an F -quasi-valuation map of H, by Proposition 2.2, λ is order
preserving and for any x ∈ H, λ(x) ≤ 0. Thus, according to definition of dλ, it is
clear that, for any x, y ∈ H, dλ(x, y) ≤ 0. Let x ∈ H. Then dλ(x, x) = λ(x → x) =
λ(1) = 0. Also, for any x, y ∈ H,

dλ(x, y) = λ(x→ y) + λ(y → x) = λ(y → x) + λ(x→ y) = dλ(y, x).

Moreover, by Proposition 2.1 (a7), for any x, y, z ∈ H, (x→ y)� (y → z) ≤ x→ z.
Since λ is an F -quasi-valuation map of H, by Proposition 2.2, λ is order preserving
and S-quasi-valuation map of H. Then

λ(x→ y) + λ(y → z) ≤ λ((x→ y)� (y → z)) ≤ λ(x→ z).

By the similar way, λ(z → y) + λ(y → x) ≤ λ((z → y) � (y → x)) ≤ λ(z → x).
Hence,

dλ(x, y) + dλ(y, z) = λ(x→ y) + λ(y → x) + λ(y → z) + λ(z → y)
≤ λ(x→ z) + λ(z → x) = dλ(x, z).

Therefore, (H, dλ) is a quasi-metric space which is called the quasi-metric space
induced by λ. �

Proposition 3.1. Every quasi-metric space (H, dλ) induced by an F -quasi-valuation
map λ of H satisfies:

dλ(x, y) ≤min{dλ(x→ a, y → a), dλ(a→ x, a→ y)},
dλ(x→ y, a→ b) ≥dλ(x→ y, a→ y) + dλ(a→ y, a→ b),
dλ(x� y, a� b) ≥dλ(x� y, a� y) + dλ(a� y, a� b),

for all a, b, x, y ∈ H.

Proof. Let (H, dλ) be a quasi-metric space. By Proposition 2.1 (a7) for any x, y, z ∈ H,
x→ y ≤ (y → a)→ (x→ a) and y → x ≤ (x→ a)→ (y → a). Since λ is an F -quasi-
valuation map of H, by Proposition 2.2, λ is order preserving and S-quasi-valuation
map of H. Then

dλ(x, y) ≤ λ(x→ y) + λ(y → x) ≤ λ((y → a)→ (x→ a)) + λ((x→ a)→ (y → a))
= dλ(x→ a, y → a).

By the similar way, dλ(x, y) ≤ dλ(a→ x, a→ y). Hence,

dλ(x, y) ≤ min{dλ(x→ a, y → a), dλ(a→ x, a→ y)}.

Now, let x, y, a ∈ H. Then by Proposition 2.1 (a7), we have

((x→ y)→ (y → a))� ((y → a)→ (a→ b)) ≤ (x→ y)→ (a→ b).

By the similar way,

((a→ b)→ (a→ y))� ((a→ y)→ (x→ y)) ≤ (a→ b)→ (x→ y).
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Since λ is an F -quasi-valuation map of H, by Proposition 2.2, λ is order preserving
and S-quasi-valuation map of H. Then it is clear that

dλ(x→ y, a→ y) + dλ(a→ y, a→ b) ≤ dλ(x→ y, a→ b).
Also, since y � a ≤ y � a, by Proposition 2.1 (a2) and (a8), we have y ≤ a→ (y � a),
and so x→ y ≤ (x�a)→ (y�a). Then, by Proposition 2.2, λ is order preserving, thus,
λ(x→ y) ≤ λ((x�a)→ (y�a)). By the similar way, λ(y → x) ≤ λ((y�a)→ (x�a)).
Hence,
dλ(x, y) =λ(x→ y) + λ(y → x) ≤ λ((x� a)→ (y � a)) + λ((y � a)→ (x� a))

=dλ(x� a, y � a).
Then, for any x, y, a, b ∈ H, since (H, dλ) is a quasi-metric space, we have,

dλ(x� y, a� y) + dλ(a� y, a� b) ≤ dλ(x� y, a� b). �

Theorem 3.3. If λ is an F -valuation map of H, then the quasi-metric space induced
by λ satisfies the following assertion,

(∀x, y ∈ H) (dλ(x, y) = 0⇒ x = y) .(3.2)

Proof. Let λ be an F -valuation map of H. Then λ is an F -quasi-valuation map of H.
Thus, by Theorem 3.2, dλ(x, y) is quasi-metric. Now, for any x, y ∈ H, if dλ(x, y) = 0,
then λ(x → y) + λ(y → x) = 0. Since λ is an F -quasi-valuation map of H, by
Proposition 2.2, for any x ∈ H, λ(x) ≤ 0. So, by routine calculations, it is clear that
λ(x → y) = λ(y → x) = 0, and so by Theorem 2.1, x → y = 1 and y → x = 1.
Therefore, x = y. �

We consider conditions for an F -quasi-valuation map to be an F -valuation map.

Theorem 3.4. If the quasi-metric space (H, dλ) induced by an F -quasi-valuation map
λ of H satisfies the condition (3.2), then λ is an F -valuation map of H.

Proof. Let λ be an F -quasi-valuation map of H and there exists 1 6= x ∈ H such that
λ(x) = 0. Since λ is an F -quasi-valuation map of H that satisfying the condition
(3.2), we have

dλ(1, x) = λ(1→ x) + λ(x→ 1) = λ(x) + λ(1) = 0.
Then dλ(1, x) = 0. Since (H, dλ) is a quasi metric, we have x = 1, which is a
contradiction. Hence, for any 1 6= x ∈ H, λ(x) 6= 0. Therefore, λ is an F -valuation
map of H. �

Note. If (H, dλ) is a quasi-metric space, then for any x ∈ H and ε < 0 the set
Bε(x) = {y ∈ H | dλ(x, y) > ε} is called a ball of radius |ε| with center at x. The set
U ⊆ H is open in (H, dλ) if, for any x ∈ U , there is an ε < 0 such that Bε(x) ⊆ U .
The topology Tdλ induced by dλ is the collection of all open sets in (H, dλ).

Theorem 3.5. If Tλ is an induced topology by dλ, then (H,�,→,Tλ) is a topological
hoop.
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Proof. By Theorem 3.3, (H, dλ) is a quasi-metric space. Let x, y ∈ H such that
x→ y ∈ Bε(x→ y) for any ε < 0. We claim that Bε(x)→ Bε(y) ⊆ Bε(x→ y). For
this, suppose z ∈ Bε(x) → Bε(y). Then there exist p ∈ Bε(x) and q ∈ Bε(y) such
that z = p→ q. Thus, dλ(x, p) ≥ ε

2 and dλ(y, q) ≥ ε
2 . By Proposition 3.1, it is clear

that dλ(x→ y, p→ y) ≥ dλ(x, p) and dλ(p→ y, p→ q) ≥ dλ(y, q). Thus,

dλ(x→ y, p→ q) ≥ dλ(x→ y, p→ y) + dλ(p→ y, p→ q) ≥ ε

2 + ε

2 = ε.

So, dλ(x → y, p → q) ≥ ε. Hence, z ∈ Bε(x → y) and so, (H,→,Tλ) is a topolog-
ical hoop. By the similar way, we can prove that (H,�,Tλ) is a topological hoop.
Therefore, (H,�,→,Tλ) is a topological hoop. �

Theorem 3.6. For any F -quasi-valuation map λ of H, if we define a relation Rλ on
H as follows:

(∀x, y) ((x, y) ∈ Rλ ⇔ dλ(x, y) = 0) ,
then Rλ is a congruence relation on H.

We say that Rλ is a congruence relation on H induced by λ.
Proof. Let x, y, z ∈ H. For proving that Rλ is a congruence relation on H, first of
all we have to prove that Rλ is an equivalence relation on H. It is clear that Rλ is
reflexive and symetric relation on H. Suppose (x, y) ∈ Rλ and (y, z) ∈ Rλ. Then
dλ(x, y) = 0 and dλ(y, z) = 0. By Proposition 2.1 (a7), for any x, y, z ∈ H, we have
(x→ y)�(y → z) ≤ x→ z. Since λ is an F -quasi-valuation map of H, by Proposition
2.2, λ is order preserving and S-quasi-valuation map of H, then λ(x → y) + λ(y →
z) ≤ λ(x→ z). By the similar way, λ(z → y) + λ(y → x) ≤ λ(z → x). Hence,
0 = λ(x→ y) + λ(y → x) + λ(y → z) + λ(z → y) ≤ λ(x→ z) + λ(z → x) = dλ(x, z).
Since λ is an F -quasi-valuation map of H, by Proposition 2.2, for any x ∈ H, λ(x) ≤ 0.
Then dλ(x, z) = 0 and so (x, z) ∈ Rλ. Therefore, Rλ is a transitive relation on H.
Now, we prove that Rλ is a congruence relation on H. For any x, y, z ∈ H such that
(x, y) ∈ Rλ. Since y ≤ z → (y � z), by Proposition 2.1 (a8),

x→ y ≤ x→ (z → (y � z)) = (x� z)→ (y � z).
Since λ is an F -quasi-valuation map of H, by Proposition 2.2, λ is order preserving,
then λ(x→ y) ≤ λ((x� z)→ (y � z)). By the similar way, it is clear that

λ(y → x) ≤ λ((y � z)→ (x� z)).
Hence,

0 = dλ(x, y) ≤ λ((x� z)→ (y � z)) + λ((y � z)→ (x� z)) = dλ(x� z, y � z).
Since λ is an F -quasi-valuation map of H, by Proposition 2.2, for any x ∈ H, λ(x) ≤ 0.
Then dλ(x� z, y � z) = 0 and so (x� z, y � z) ∈ Rλ. Moreover, if (x, y) ∈ Rλ, then
by Proposition 3.1, it is clear that (x → z, y → z) ∈ Rλ and (z → x, z → y) ∈ Rλ.
Therefore, Rλ is a congruence relation on H induced by λ. �
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For any congruence relation Rλ induced by F -quasi-valuation map λ of H, let Hλ

denote the set of all equivalence classes, that is,
Hλ := {xλ | x ∈ H},

where xλ := {y ∈ H | (x, y) ∈ Rλ}.

Theorem 3.7. If λ is an F -quasi-valuation map of H, then (Hλ,�,�, 1λ) is a hoop,
where

(∀xλ, yλ ∈ Hλ) (xλ � yλ = (x� y)λ, xλ � yλ = (x→ y)λ) .

Proof. Let x ∈ H. Then it is clear that xλ � xλ = (x→ x) = 1λ and (Hλ,�, 1λ) is a
commutative monoid. Suppose xλ, yλ, zλ ∈ Hλ. Then

(xλ � yλ) � zλ =(x� y)λ � zλ = ((x� y)→ z)λ = (x→ (y → z))λ
=xλ � (yλ � zλ).

Moreover, by routine calculations, we have
xλ � (xλ � yλ) = (x� (x→ y))λ = (y � (y → x))λ = yλ � (yλ � xλ).

Therefore, (Hλ,�,�, 1λ) is a hoop. �

Theorem 3.7 is illustrated by the following example.

Example 3.2. According to Example 3.1, Hλ = {1λ, xλ, yλ, 0λ}.

Lemma 3.2 ([2]). If λ : H → R is an F -quasi-valuation map of H, then the set
Fλ := {x ∈ H | λ(x) = 0}

is a filter of H.

Proposition 3.2. If λ is an F -quasi-valuation map of H, then Fλ = 1λ.

Proof. Let λ be an F -quasi-valuation map of H. Then, by Lemma 3.2, we have
Fλ = {x ∈ H | λ(x) = 0} = {x ∈ H | λ(1→ x) + λ(x→ 1) = 0}

= {x ∈ H | dλ(1, x) = 0}
= {x ∈ H | (x, 1) ∈ Rλ}
= 1λ. �

For any filter F of H, let ηF be a relation on H defined by
(∀x, y ∈ H) ((x, y) ∈ ηF ⇔ x→ y ∈ F, y → x ∈ F ) .

Then ηF is a congruence relation on H (induced by F ). Denote by H/F the set of all
equivalence classes, that is,

H/F := {[x] | x ∈ H},
where [x] = {y ∈ H | (x, y) ∈ ηF}.

Theorem 3.8. If λ is an F -quasi-valuation map of H, then ηFλ = Rλ.
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Proof. Let x, y ∈ H. Then

(x, y) ∈ ηFλ ⇔ x→ y ∈ Fλ and y → x ∈ Fλ
⇔ λ(x→ y) = λ(y → x) = 0
⇔ λ(x→ y) + λ(y → x) = 0
⇔ dλ(x, y) = 0
⇔ (x, y) ∈ Rλ. �

Theorem 3.9. Let λ and g be F -quasi-valuation maps of H with λ 6= g. If 1λ = 1g,
then Rλ and Rg coincide and so Hλ = Hg.

Proof. By routine calculations, we can see that 1λ = {x ∈ H | λ(x) = 0}. Suppose
x, y ∈ H such that (x, y) ∈ Rλ. Then dλ(x, y) = 0 and so λ(x→ y) + λ(y → x) = 0.
Thus, λ(x → y) ≥ −λ(y → x). Since λ is an F -quasi-valuation map of H, by
Proposition 2.2, we get that λ(x→ y) = λ(y → x) = 0. Thus, x→ y, y → x ∈ 1λ. By
assumption, 1λ = 1g we get that x→ y, y → x ∈ 1g, and so g(x→ y) = g(y → x) = 0.
Hence, g(x → y) + g(y → x) = 0, and so dg(x, y) = 0. So (x, y) ∈ Rg. The proof of
converse is similar. Therefore, Rλ and Rg coincide and so Hλ = Hg. �

Theorem 3.10. For any filter F and any F -quasi-valuation map λ of H such that
1λ ⊆ F consider the set

Fλ := {xλ | x ∈ F}.

Then the following assertions are valid:
(1) (∀x ∈ H)

(
x ∈ F ⇔ xλ ∈ Fλ

)
;

(2) Fλ is a filter of Hλ.

Proof. (1) It is clear that if x ∈ F , then xλ ∈ Fλ. Suppose xλ ∈ Fλ. Then there exists
y ∈ F such that xλ = yλ. Thus, (x, y) ∈ Rλ. Since Rλ is a congruence relation on H,
we have (y → x, 1) = (y → x, y → y) ∈ Rλ. Hence, y → x ∈ 1λ. Since 1λ ⊆ F , we
have y → x ∈ F . Moreover, y ∈ F and F is a filter of H, then x ∈ F .

(2) Since F is a filter of H, 1 ∈ F , and so 1λ ∈ Fλ. Suppose xλ, xλ � yλ ∈ Fλ.
Then by (1), x ∈ F and x → y ∈ F . Since F is a filter of H, y ∈ F . Thus, by (1),
yλ ∈ Fλ. Therefore, Fλ is a filter of Hλ. �

Proposition 3.3. For any F -quasi-valuation map λ of H, let F ∗ be a filter of Fλ.
Then the set

F := {x ∈ H | xλ ∈ F ∗}
is a filter of H and 1λ ⊆ F .

Proof. Since F ∗ is a filter of Fλ, 1λ ∈ F ∗ and so 1 ∈ F . Now, suppose x, x→ y ∈ F .
Then xλ, (x → y)λ ∈ F ∗. Since F ∗ is a filter of Fλ, we have yλ ∈ F ∗ and so y ∈ F .
Hence, F is a filter of H. �
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Let F(Hλ) denote the set of all filters of Fλ and let F(H, λ) denote the set of all
filters of H containing 1λ. Then there exists a bijection between F(Hλ) and F(H,λ),
that is,

f : F(Hλ)→ F(H,λ), F 7→ Fλ

is a bijection.

Theorem 3.11. Let g : H → G be a homomorphism of hoops. Then the following
hold.

(1) If λ is an F -quasi-valuation map of G, then the composition λ ◦ g of λ and g
is an F -quasi-valuation map of H.

(2) If g is an isomorphism and if λ is an F -quasi-valuation map of G, then Hλ◦g
and Gλ are isomorphic.

Proof. (1) Since g is a homomorphism of hoops, we have (λ ◦ g)(1) = λ(g(1)) = λ(1).
Since λ is an F -quasi-valuation map of H, we have λ(1) = 0 and so (λ ◦ g)(1) = 0.
Now, suppose x, y ∈ H. Since λ is an F -quasi-valuation map of H, we have

(λ ◦ g)(x→ y) + (λ ◦ g)(x) = λ(g(x→ y)) + λ(g(x))
= λ(g(x)→ g(y)) + λ(g(x))
≤ λ(g(y)) = (λ ◦ g)(y).

(2) Let define the map φ : Hλ◦g → Gλ such that, for any xλ◦g ∈ Hλ◦g, φ(xλ◦g) =
(g(x))λ. Now, we prove that φ is an isomorphism. For this, let xλ◦g, yλ◦g ∈ Hλ◦g. Then

φ(xλ◦g � yλ◦g) = φ((x� y)λ◦g)
= (g(x� y))λ = (g(x)� g(y))λ
= (g(x))λ � (g(y))λ = φ(xλ◦g) � φ(yλ◦g)

and
φ(xλ◦g � yλ◦g) = φ((x→ y)λ◦g)

= (g(x→ y))λ = (g(x)→ g(y))λ
= (g(x))λ � (g(y))λ = φ(xλ◦g) � φ(yλ◦g),

Hence, φ is a homomorphism of hoop.
Let x, y ∈ H such that φ(x) = φ(y). Then λ ◦ g(x) = λ ◦ g(y). Thus, g(x)λ = g(y)λ,

and so (g(x), g(y)) ∈ Rλ. Hence, dλ(g(x), g(y)) = 0. Since dλ is a quasi-metric and
g is an isomorphism, we have g(x) = g(y) and so x = y. Hence, φ is a one to one
homomorphism.

Let xλ ∈ Gλ. Since g is unto, there exists y ∈ G, such that g(y)λ = xλ. Then
(λ ◦ g)(y) = xλ, thus, φ(y) = xλ. Hence, φ is an isomorphism and so Hλ◦g and Gλ are
isomorphic. �

Theorem 3.12. For any F -quasi-valuation map λ of H, we have the following as-
sertions.
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(1) The map π : H → Hλ, x 7→ xλ, is an onto homomorphism.
(2) For any F -quasi-valuation map φ∗ of Hλ, there exists an F -quasi-valuation

map φ of H such that φ = φ∗ ◦ π.
(3) The map λ∗ : Hλ → R, xλ 7→ λ(x), is an F -quasi-valuation map of Hλ.

Proof. (1) By definition of Hλ, the proof is clear.
(2) Let define φ = φ∗(xλ). We show that φ is an F -quasi-valuation map of H. For

this, since 1 ∈ H, we have φ(1) = φ∗(1λ). Moreover, φ∗ is an F -quasi-valuation map
of H, φ(1) = 0. Suppose x, y ∈ H such that

φ(x) + φ(x→ y) = φ∗(xλ) + φ∗(xλ � yλ) ≤ φ∗(yλ).

Since φ∗ is an F -quasi-valuation map of H, we have φ(x) + φ(x→ y) ≤ φ(y).
(3) Let xλ ∈ Hλ. Since λ is an F -quasi-valuation map of H, we have

λ∗(xλ) + λ∗(xλ � yλ) = λ(x) + λ(x→ y) ≤ λ(y) = λ∗(yλ). �

Proposition 3.4. Let H and G be two hoops and λ : H → R and γ : G → R be
quasi-valuations. If f : H → G is a homomorphism, then the following statements
are equivalent:

(i) f is a quasi-valuation preserving;
(ii) f is an isometry.

Proof. (i)⇒ (ii) Let f be a quasi-valuation preserving. Then, for any x ∈ H, define
γ(f(x)) = λ(x). For any x, y ∈ H, we have

dγ(f(x), f(y)) = γ(f(x)→ f(y)) + γ(f(y)→ f(x))
= γ(f(x→ y)) + γ(f(y → x))
= γ ◦ f(x→ y) + γ ◦ f(y → x)
= λ(x→ y) + λ(y → x)
= dλ(x, y).

Hence, f is an isometry.
(ii)⇒ (i) Let f be an isometry. Then, for any x ∈ H,

λ(x) =dλ(x, 1) = dγ(f(x), f(1)) = γ(f(x)→ f(1)) + γ(f(1)→ f(x)) = γ(f(x))
=γ ◦ f(x).

Hence, f is a quasi-valuation preserving. �

Proposition 3.5. Let f : H → G be a hoop isomorphism. If λ is a quasi-valuation
on H, then γ : G→ R that, for any y ∈ G, is defined by γ(y) = λ ◦ f−1(y) is a quasi-
valuation. Moreover, if λ is an F -quasi-valuation on H, then γ is an F -quasi-valuation
on G.
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Proof. Let y1, y2 ∈ G. Since f is an isomorphism, there exist x1, x2 ∈ H such that
f(x1) = y1 and f(x2) = y2. Then

γ(y1 → y2) = λ ◦ f−1(y1 → y2) = λ(f−1(y1 → y2))
= λ(f−1(y1)→ f−1(y2)) = λ(x1 → x2)
≥ λ(x1) + λ(x2) = λ(f−1(y1)) + λ(f−1(y2))
= γ(y1) + γ(y2).

By the similar way, we can prove that γ(y1 � y2) ≥ γ(y1) + γ(y2). Hence, γ is a
quasi-valuation.

Since f is a hoop isomorphism, it is clear that f(1H) = 1G. Since λ is an F -
quasi-valuation on H, we have γ(1G) = λ ◦ f−1(1G) = λ(f−1(1G)) = λ(1H) = 0, and
so γ(1G) = 0. Let x, y ∈ H and λ be an F -quasi-valuation on H. Since f is an
isomorphism, there exist a, b ∈ H such that f(a) = x and f(b) = y. Then

γ(y) = λ ◦ f−1(y) = λ(f−1(y)) = λ(b)
≥ λ(a→ b) + λ(a) = λ(f−1(x)) + λ(f−1(x)→ f−1(y))
= λ(f−1(x)) + λ(f−1(x→ y)) = λ ◦ f−1(x) + λ ◦ f−1(x→ y)
= γ(x) + γ(x→ y). �

4. Conclusions and Future Works

In this paper, our aim was making a metric space on hoop algebras, because of
that we introduced the notion of valuation maps from F -quasi-valuation map based
on hoops and related properties of them are investigated. By using these notions, we
introduce a quasi-metric space. The continuity of operations of a hoop was studied
with topology induced by a quasi-valuation. Also, we study hoop homomorphism and
investigate that under which condition these homomorphism is an F -quasi-valuation
map. Moreover, we wanted to find a congruence relation on hoops in a new way and
study about the quotient structure that is made by it. Because of that, we define a
congruence relation by F -quasi-valuation map and prove that the quotient is a hoop.
In our future work, we want to study about the product of finite number of this
quasi-metric space and investigate that the quotient space of hoop has a quasi-metric
or not. Finally we study the completion of this pace.
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