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ON ENTIRE SOLUTIONS OF SYSTEM OF q-SHIFT PARTIAL
DIFFERENTIAL EQUATIONS IN C2

GOUTAM HALDAR1, ABHIJIT BANERJEE2, AND ASHALATA ROY3

Abstract. Investigation of entire solutions of system of Fermat-type q-shift partial
differential functional equations remain largely unexplored. In this article we have
discussed the form of entire solutions of three systems of q-shift partial differential
equations in C2, which are new and important in the literature. The results obtained
here could have many applications across various branches of mathematics and
mathematical physics. Also we have justified our results by various examples.

1. Introduction

It is well known that Fermat’s Last Theorem [23,24] is one of the most important
and longstanding conjectures in mathematics. Nowadays, investigation of Fermat-
type functional equations have become an active area of research for the past several
decades. Nevanlinna theory [10] is the most powerful tool to study the entire and
meromorphic solutions of Fermat type functional equations. The works of Gross [6],
Iyer [13] and Montel [18] provided interesting and valuable insights, particularly in
establishing solutions when m = 2 of the Fermat-type functional equation

(1.1) fm(z) + gm(z) = 1

and also to determine the non existence of entire solutions of (1.1) for m > 2. We
recall the famous result of Saleeby [22] regarding meromorphic solutions of (1.1) in
Cn as follows.
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Theorem 1.1 ([22]). For m = 2, the meromorphic solutions of (1.1) are characterized
as follows.

(i) The entire solutions of (1.1) are f(z) = cos(u(z)) and g(z) = sin(u(z)), where
u is an entire function in Cn.

(ii) The meromorphic solutions of (1.1) are of the form f(z) = 2a(z)
1−a2(z) and g(z) =

1−a2(z)
1+a2(z) , where a is a meromorphic function in Cn.

Using difference analogues of Nevanlinna Theory (see [3,7]), many mathematicians
investigated the existence and precise form of entire solutions of some non-linear
difference as well as differential difference equations (see [11, 15, 17]). Regarding q-
shift partial differential equations of Fermat type, Liu and Cao [16], in 2013, obtained
the following result.
Theorem 1.2 ([16]). Any transcendental entire solution of f ′(z)2 + f(qz)2 = 1 must
be of the form f(z) = sin(z + b) when q = 1, whereas f(z) = sin(z + kπ) or f(z) =
− sin(z + kπ + π/2) when q = −1. There are no transcendental entire solutions of
finite order when q ̸= ±1.

The study of partial differential equations, a generalizations of the well-known
eikonal equation in real variable case has a long history. We refer the readers to
go through [4, 5, 19] and the references therein. Recently, investigation of entire
and meromorphic solutions of partial differential equations of Fermat type in several
complex variables has received considerable attention in the literature (see [8,9,14,20,
21,28,29]). Hereinafter, we denote by z +q = (z1 +q1, z2 +q2), qz = (q1z1, q1z2), where
z := (z1, z2), q := (q1, q2) ∈ C2. The q-shift of f is defined as f(qz) := f(q1z1, q2z2).

In 2019 Xu-Cao [27] first considered the following partial differential-difference
equation

(1.2)
(

∂f(z1, z2)
∂z1

)2

+ f(z1 + c1, z2 + c2)2 = 1,

and by utilizing the difference Nevanlinna theory in several complex variables, specially
the difference version of logarithmic derivative lemma (see [1, 2]), they proved the
following result, which opens up a new direction in the field of several complex variable.
Theorem 1.3 ([27]). Let c = (c1, c2) be a constant in C2. Then, any finite order
transcendental entire solution of (1.2) has the form f(z1, z2) = sin(az1 + bz2 + H(z2)),
where a, b are constants in C satisfying a2 = 1, aei(ac1+bc2) = 1 and H(z2) is a
polynomial in z2 such that H(z2 + c2) = H(z2). In particular, whenever c2 ̸= 0,
f(z1, z2) = sin(az1 + bz2 + constant).

In 2020, Xu and his coauthors [25,26] explored the precise form of transcendental
entire solutions of the following system of partial differential difference equations

(1.3)


(

∂f1(z1,z2)
∂z1

)2
+ f2(z1 + c1, z2 + c2)2 = 1,(

∂f2(z1,z2)
∂z1

)2
+ f1(z1 + c1, z2 + c2)2 = 1
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and

(1.4)


(

∂f1(z1,z2)
∂z1

)2
+ 2w ∂f1

∂z1
f2(z1 + c1, z2 + c2) + f2(z1 + c1, z2 + c2)2 = 1,(

∂f2(z1,z2)
∂z1

)2
+ 2w ∂f2

∂z1
f1(z1 + c1, z2 + c2) + f1(z1 + c1, z2 + c2)2 = 1,

where w is a complex constant such that w2 ̸= 0, 1. For detail study we refer the
readers to take a glance at [25,26].

Inspired by the above equations and the corresponding results, in this article we
investigate the existence and exact form of transcendental entire solutions of the
following q-shift analogs of partial differential equations

(1.5)


(

∂f1(z1,z2)
∂z1

)2
+ f2(q1z1, q2z2)2 = 1,(

∂f2(z1,z2)
∂z1

)2
+ f1(q1z1, q2z2)2 = 1,

(1.6)


(

∂f1(z1,z2)
∂z1

)2
+ 2w ∂f1(z1,z2)

∂z1
f2(q1z1, q2z2) + f2(q1z1, q2z2)2 = 1,(

∂f2(z1,z2)
∂z1

)2
+ 2w ∂f2(z1,z2)

∂z1
f1(q1z1, q2z2) + f1(q1z1, q2z2)2 = 1,

(1.7)


(

∂f1
∂z1

)2
+ [f2(q1z1, q2z2) − f1(z1, z2)]2 = 1,(

∂f2
∂z1

)2
+ [f1(q1z1, q2z2) − f2(z1, z2)]2 = 1,

where q = (q1, q2) ∈ C2 with q1 ̸= 0 and w2 ̸= 0, 1. Observe that (1.5) and (1.6)
are the q-shift versions of (1.3) and (1.4), respectively. We state our main results as
follows.

2. Main Results

Theorem 2.1. Let q := (q1, q2) ∈ C2 with q1 ̸= 0. If (f1(z1, z2), f2(z1, z2)) be a
pair of finite order transcendental entire solution of (1.5), then one of the following
conclusions must hold.

(a) q1 = −1 and

f1(z1, z2) = sin
(

eiξ1z1 + p2

(
1
q2

z2

))
, f2(z1, z2) = sin

(
eiξ2z1 + p1

(
1
q2

z2

))
,

where p1(z1, z2), p2(z1, z2) and the value of q2 are obtained from Lemma 3.1, ξ1, ξ2 ∈ C
such that ξ1 = ξ2 = a0 + b0 and eiξ1 = ±1.

(b) q1 = 1 and the form of solution is same as in (a), where p1(z1, z2), p2(z1, z2) and
the value of q2 are obtained from Lemma 3.2, ξ1, ξ2 ∈ C such that ξ1 = −ξ2 = a0 − b0
and eiξ1 = ±1.
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Theorem 2.2. If (f1(z1, z2), f2(z1, z2)) be a pair of finite order transcendental entire
solutions of (1.6), then q1 = −1 and

(2.1)


f1(z1, z2) = 1√

2

(
cos(ieiξ1 z1+p2(z2/q2))√

1+w
− sin(ieiξ1 z1+p2(z2/q2))√

1−w

)
,

f2(z1, z2) = 1√
2

(
cos(ieiξ2 z1+p1(z2/q2))√

1+w
− sin(ieiξ2 z1+p1(z2/q2))√

1−w

)
,

where p1(z1, z2), p2(z1, z2), q2 are found from Lemma 3.1, ξ1, ξ2 ∈ C such that ξ1 =
ξ2 = a0 + b0 with e2iξ1 = −1 and w is a complex constant such that w2 ̸= 0, 1.
Theorem 2.3. Let (q1, q2) ∈ C2 be such that qj ≠ 0, j = 1, 2. If (f1(z1, z2), f2(z1, z2))
be a pair of transcendental entire solutions with finite order of (1.7), then one of the
following conclusions holds.

(A) q1 = ±1, and f1(z1, z2) = z1 cos γ1 +ϕ1(z2), f2(z1, z2) = z1 cos γ2 +ϕ2(z2), where
ϕ1, ϕ2 are entire functions of z2, only satisfying ϕ2(q2z2) − ϕ1(z2) = sin γ1, ϕ1(q2z2) −
ϕ2(z2) = sin γ2, where γ1, γ2 are complex constants such that γ1 ̸= (2t + 1)π/2 and
γ2 = 2nπ ± γ1, if q1 = 1 and γ2 = (2nπ + 1)π ± γ1, if q1 = −1, t, n being two integers.

(B) q1 = ±1, and the form of solutions are given by

f1(z1, z2) = z1 cos γ1 + ϕ1(z2), f2(z1, z2) = 1
q1

cos γ1z1 + ϕ1

(
z2

q2

)
± sin γ1,

where ϕ1 is an entire functions of z2 such that

ϕ1(q2z2) − ϕ1

(
z2

q2

)
= ±

sin γ1 +

√
q2

1 − cos2 γ1

q1

 .

(C)
(2.2) f1(z1, z2) = z1 cos p1(z2) + T1(z2), f2(z1, z2) = z1 cos p2(z2) + T2(z2),
where p1(z2), p2(z2) are polynomials in z2, T1(z2), T2(z2) are entire functions in z2
satisfying one of the following.

(a) q1 = 1, ξ1, ξ2 are complex constant with ξ1 = ξ2 and eiξ1 = 1, q2, p1, p2 are
found from Lemma 3.1 and T1, T2 satisfy

(2.3) T1(q2
2z2) = T1(z2) and T2(q2

2z2) = T2(z2).
(b) q1 = −1, ξ1, ξ2 are complex constant with ξ1 = ξ2 and eiξ1 = −1, q2, p1, p2 are

found from Lemma 3.1 and T1, T2 satisfy
(2.4) T1(q2

2z2) − T1(z2) = 2 sin p1(z2), T2(q2
2z2) − T2(z2) = 2 sin p2(z2).

(c) q1 = 1, eξ1 = 1, eiξ2 = 1, q2, p1, p2 are found from Lemma 3.3 and T1, T2 satisfy
T2(q2

2z2) = T2(z2), T1(q2
2z2) − T1(z2) = 2 sin p1(z2).

(d) q1 = −1, eξ1 = −1, eiξ2 = −1, q2, p1, p2 are found from Lemma 3.3 and T1, T2
satisfy T1(q2

2z2) = T1(z2) and T2(q2
2z2) − T2(z2) = 2 sin p2(z2).

(e) q1 = 1, ξ1, ξ2 ∈ C with ξ2 = −ξ1, eξ1 = 1, q2, p1, p2 are found from Lemma 3.2
and T1, T2 satisfy (2.4).
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(f) q1 = −1, ξ1, ξ2 ∈ C with ξ2 = −ξ1, eξ1 = −1, q2, p1, p2 are found from
Lemma 3.2 and T1, T2 satisfy (2.3).

(D)

(2.5)

f1(z1, z2) = −1
2 sin(−2z1 + p1(z2)) + T1(z2),

f2(z1, z2) = −1
2 sin(−2z1 + p2(z2)) + T2(z2),

satisfying one of the following.
(a) q1 = −1, ξ1, ξ2 ∈ C such that ξ1 = ξ2 with eiξ1 = 1, q2, p1, p2 are found from

Lemma 3.1, and T1, T2 satisfy (2.3).
(b) q1 = 1, ξ1, ξ2 ∈ C such that ξ1 = −ξ2 with eiξ1 = −1, q2, p1, p2 are found from

Lemma 3.2, and T1, T2 satisfy (2.3).
(E) q1 = i, ξ1, ξ2 ∈ C such that eiξ1 = 1, eiξ2 = −1,

(2.6)

f1(z1, z2) = − 1
1+i

sin(−(1 + i)z1 + p1(z2)) + T1(z2),
f2(z1, z2) = − 1

1−i
sin(−(1 − i)z1 + p2(z2)) + T2(z2),

where q2, p1, p2 are found from Lemma 3.3, and T1, T2 are entire functions in z2
satisfying (2.3).

(F) q1 = −i, ξ1, ξ2 ∈ C such that eiξ1 = 1, eiξ2 = −1,

(2.7)

f1(z1, z2) = − 1
1−i

sin(−(1 − i)z1 + p1(z2)) + T1(z2),
f2(z1, z2) = − 1

1+i
sin(−(1 + i)z1 + p2(z2)) + T2(z2),

where q2, p1, p2 are found from Lemma 3.3, and T1, T2 are entire functions in z2
satisfying (2.3).

The following examples show that our theorems are precise.

Example 2.1. Let ξ1 = ξ2 = π, p1(z2) = z15
2 + π

3 , p2(z2) = z15
2 + 2π

3 . Choose q2 ∈ C such
that q15

2 = −1. Then, one can easily see that
(
sin

(
2π
3 − z1 − z15

2

)
, sin

(
π
3 − z1 − z15

2

))
is a solution of (1.5).

Example 2.2. Let ξ1 = ξ2 = π, p1(z2) = z9
2 + z4

2 + z2 + 2π
3 , p2(z2) = z9

2 − z4
2 +

z2 + π
3 , q1 = q2 = −1. Then, in view of Theorem 2.1 (a), we can easily see that(

sin
(

π
3 − z1 − z9

2 − z4
2 − z2

)
, sin

(
2π
3 − z1 − z9

2 + z4
2 − z2

))
is a solution of (1.5).

Example 2.3. Let ξ1 = ξ2 = π, p1(z2) = z10
2 + z2

2 + 2π
3 , p2(z2) = z10

2 + z2
2 + π

3 ,
q1 = −1, q2 = −i. Then, in view of Theorem 2.1 (a), one can easily see that(
sin

(
π
3 − z1 − z2

2 − z10
2

)
, sin

(
2π
3 − z1 − z10

2 − z2
2

))
is a solution of (1.5).

Example 2.4. Let ξ1 = π, ξ2 = −π, p1(z2) = z6
2 + 3π

2 , p2(z2) = z6
2 + π

2 . Choose
q2 ∈ C such that q6

2 = 1. Then, in view of Theorem 2.1 (b), one can easily see that(
sin

(
π
2 − z1 + z6

2

)
, sin

(
3π
2 − z1 + z6

2

))
is a solution of (1.5).
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Example 2.5. Let ξ1 = ξ2 = π, p1(z2) = z20
2 + z2

2 + 2π
3 , p2(z2) = −z20

2 + z2
2 + π

3 , q1 = −1,
q2 = i, w = 3. Then, in view of Theorem 2.2, one can easily see that (f1, f2) is a
solution of (1.6), where

f1(z1, z2) = 1
2
√

2

(
cos

(
π

3 − iz1 − z2
2 − z10

2

)
− i sin

(
π

3 − iz1 − z2
2 − z10

2

))
and

f2(z1, z2) = 1
2
√

2

(
cos

(2π

3 − iz1 − z2
2 + z10

2

)
+ i sin

(
π

3 − iz1 − z2
2 + z10

2

))
.

3. Key Lemmas

To prove our main results, we need the following lemmas.

Lemma 3.1. Let p1(z) = ∑n
l=0 alz

l and p2(z) = ∑n
l=0 blz

l be two non-constant poly-
nomials of degree n in C satisfying
(3.1) p1(qz) + p2(z) = ξ1, p2(qz) + p1(z) = ξ2,

where q ̸= 0, ξ1, ξ2, al, bl ∈ C, l = 0, 1, 2, . . . , n, an ̸= 0, bn ̸= 0. Then, ξ1 = ξ2 = a0+b0,
aj ̸= 0 if and only if bj ̸= 0 with bj = ±aj, where 1 ≤ j < n. Further, p1(z), p2(z)
and q satisfy one of the following.

(A) Let p1(z) = anzn + a0 and p2(z) = bnzn + b0. Then, qn = − bn

an
= −an

bn
.

(B) Let a1 ̸= 0. Then, one of the following cases must occur.
(i) If b1 = a1 and bn = an, then q = −1 and n is an odd integer greater than 1.
(ii) If b1 = a1 and bn = −an, then q = 1 and n is an even integer.
Moreover, in both the cases (i) and (ii), if aj ̸= 0, where 1 < j < n, then j is odd

when bj = aj and j is even when bj = −aj.
(iii) If b1 = −a1, then q = 1 and bn = −an, where n is an integer greater than 1.

Further, if aj ̸= 0, where 1 < j < n, then bj = −aj.
(C) Let a1 = 0 and a2 ̸= 0. Then, one of the following cases must occur.
(i) If b2 = a2, then q = ±i. Further, if bn = an, then n is an odd multiple of 2 and

if bn = −an, then n is an even multiple of 2. Moreover, if aj ̸= 0, where 2 < j < n,
then j is an odd multiple of 2 when bj = aj, and j is an even multiple of 2 when
bj = −aj.

(ii) If b2 = −a2, then q = ±1.
Further, we have.
(a) If bn = an, then q = −1 and n is an odd integer. Moreover, if aj ̸= 0, where

2 < j < n, then j is odd if bj = aj and j is even if bj = −aj.
(b) If bn = −an and q = 1, then n is any integer greater or equal to 3. Moreover,

if aj ̸= 0 for 2 < j < n, then bj = −aj.
(c) If bn = −an and q = −1, then n is an even integer. Moreover, if aj ̸= 0 for

2 < j < n, then j is odd when bj = aj and j is even when bj = −aj.
(D) Let k be the least positive integer such that ak ̸= 0, where 3 ≤ k < n. Then,

one of the following assertions holds.
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(i) If bk = ak, then qk = −1.
Further, it follows.
(a) When bn = an and k is prime, then n is an odd multiple of k. Moreover, if

aj ̸= 0 for k < j < n, then j is odd multiple of k when bj = aj, and j is even multiple
of k when bj = −aj.

(b) When bn = an and k is odd composite, then n = p(p + 2s) when qp + 1 is a
factor of both qk + 1 and qn + 1, p being a prime factor of k and s is a natural number
chosen in such a way that k < n. For the other factor of qk + 1 after dividing by
qp + 1, we must have n = (2m + 1)k, m ∈ N. Moreover, if aj ̸= 0 for k < j < n, then
j = p(p + 2t) when bj = aj and j = 2tk when bj = −aj and qp + 1 is a factor of both
qk + 1 and qn + 1, t ∈ N such that k < n.

(c) If bn = an and k = 4s, s ∈ N, then n is odd multiple of k. Moreover, if aj ̸= 0,
k < j < n, then j is odd multiple of k when bj = aj, and j is even multiple of k when
bj = −aj.

(d) If k = 4s + 2, s ∈ N, then ±i are the roots of qk = −1. Further, one obtain the
following cases.

(d1) If bn = an and q = ±i, then n = 4m + 2, where the integer m is chosen so that
k < n. Moreover, if aj ̸= 0 for k < j < n, then j = 4t + 2 when bj = aj, and j = 4t
when bj = −aj, t being an integer.

(d2) If bn = an and q ≠ ±i, then n = 2mk, where m ∈ N such that k < n. Moreover,
if aj ̸= 0 for k < j < n, then j = (2t + 1)k when bj = aj, and j = 2tk when bj = −aj,
t ∈ N.

(e) If bn = −an and k be odd, then we have the following cases.
(e1) If q = −1, then n is an even integer. Moreover, if aj ̸= 0 for k < j < n, then

j is odd when bj = aj, and j is even when bj = −aj.
(e2) If q ̸= −1, then n is an odd multiple of k. Moreover, if aj ̸= 0, then j is odd

multiple of k when bj = aj, and j is even multiple of k when bj = −aj for k < j < n.
(f) If bn = −an and k is even, then we have the following conclusions.
(f1) if k = 4s, s ∈ N, then n is even multiple of k. Moreover, if aj ̸= 0 for

k < j < n, then j is odd multiple of k when bj = aj, whereas j is even multiple of k
when bj = −aj.

(f2) if k = 4s + 2 and q = ±i, then n = 4m, m ∈ N. Moreover, if aj ̸= 0 for
k < j < n, the j = 4t + 2 when bj = aj, and j = 4t when bj = −aj, t ∈ N.

(f3) if k = 4s + 2 and q ̸= ±i, then n is an even multiple of k. Moreover, if aj ̸= 0,
then j is odd multiple of k when bj = aj, whereas j is an even multiple of k when
bj = −aj.

(ii) If bk = −ak, then qk = 1.
Further, we obtain the following cases.
(a) When bn = an, then k must be an even integer. Moreover, if q = −1, then n

must be an odd integer. If ajz
j, k < j < n be present in p1(z), then j is odd when

bj = aj, and j is even when bj = −aj. If q ̸= −1, then k = 4s, q = ±i and n = 4m+2,
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where s, m ∈ N. In this case if ajz
j, k < j < n is present in p1(z), then j = 4t + 2

when bj = aj, whereas j = 4t when bj = −aj.
(b) When bn = −an, then one of the following must occur.
(b1) If q = 1, then n can be any integer greater than k. Moreover, if ajz

j, k < j < n
is present in p1(z), then bj = −aj and j is any integer.

(b2) If q ̸= 1 and k is odd, or q ≠ ±1 and k is even, then n is a multiple of k.
Moreover, if aj ̸= 0, k < j < n, then bj = −aj and j is a multiple of k.

(b3) If q = −1, then k and n both are even. Moreover, if aj ̸= 0, k < j < n, then j
is odd when bj = aj, whereas j is even when bj = −aj.
Proof. In view of the form of p1(z) and p2(z), from (3.1), we have a0 + b0 = ξ1 = ξ2
and as an, bn are non zero complex constants, we obtain

(3.2) qn = − bn

an

= −an

bn

.

Further, we have

(3.3)



a1q + b1 = 0, a1 + b1q = 0, a2q
2 + b2 = 0, a2 + b2q

2 = 0,
...
arq

r + br = 0, ar + brq
r = 0,

...
an−1q

n−1 + bn−1 = 0, an−1 + bn−1q
n−1 = 0,

anqn + bn = 0, an + bnqn = 0.

From (3.3), we observe that br ̸= 0 if and only if ar ̸= 0 and

(3.4) qr = − br

ar

= −ar

br

,

where 1 ≤ r ≤ n − 1 and in this case br = ±ar.
Now we discuss the following three possible cases.
Case 1. Let aj = 0 for all j = 1, 2, . . . , n − 1. Then, equations stated in (3.3) are

consistent and we get (3.2).
Case 2. Let aj ̸= 0 for at least one j, j = 1, 2, . . . , n − 1.
Subcase 2.1. Let a1 ̸= 0. Then, from (3.4), we get b1 = ±a1.
Subcase 2.1.1. Let b1 = a1. Then, by (3.4), it follows that q = −1.
Subcase 2.1.1.1. Let bn = an. Then, by (3.2), we have qn = −1. As q = −1, we

must have n = 2m+1, where m = 1, 2, 3, . . .. Let arz
r be present in p1(z), i.e., ar ̸= 0.

Then, brz
r is present in p2(z), i.e., br ̸= 0, 1 < r < n. If br = ar, then qr = −1. As

q = −1, we conclude that r must be an odd integer. If br = −ar, then qr = 1. Since
q = −1, it follows that r must be an even integer.

Subcase 2.1.1.2. Let bn = −an. Then, by (3.2), we see that qn = 1. As q = −1,
we have n an even integer. Further, if br = ar ̸= 0, then in view of (3.4), we get
qr = −1, and hence r is an odd integer. If br = −ar ̸= 0, then by (3.4), we get qr = 1,
which is a contradiction as q = −1, where 1 < r < n.
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Subcase 2.1.2. Let b1 = −a1. Then, from (3.4), we get q = 1. Note that bn ̸= an.
Otherwise, from (3.2), we see that qn = −1, which is not possible for any values of n.
Hence bn = −an. Therefore, by (3.2), it follows that qn = 1, which implies that n can
be any integer greater than or equal to 2. Further, if ar ̸= 0 for 1 < r < n, then from
(3.4), we must have br = −ar and r can be any integer satisfying 1 < r < n.

Subcase 2.2. Let a1 = 0 and a2 ̸= 0. Then, by (3.4), we obtain that b2 = ±a2.
Subcase 2.2.1. Let b2 = a2. Then, from (3.4), we get q = ±i.
Subcase 2.2.1.1. Let bn = an. Then, (3.2) yields that qn = −1. As q = ±i, we

see that n = 4m + 2, where m ∈ N. Moreover, if arz
r, 2 < r < n is present in p1(z),

then brz
r is also present in p2(z). If br = ar, then from (3.4), we get qr = −1. Since

q = ±i, it follows that r must be the odd multiple of 2. If br = −ar, then by (3.4),
we get qr = 1, and as q = ±i, we see that r is an even multiple of 2.

Subcase 2.2.1.2. Let bn = −an. Then, from (3.2), we get qn = 1. As q = ±i, we
must have n = 4m, where m ∈ N. Also, in view of (3.4), we see that if br = ar ̸= 0,
then r must be an odd multiple of 2, and if br = −ar ̸= 0 , then r is an even multiple
of 2, where 2 < r < n.

Subcase 2.2.2. Let b2 = −a2. Then, in view of (3.4), we obtain q = ±1.
Subcase 2.2.2.1. Let bn = an. Then, by (3.2), we obtain qn = −1. Then clearly

q ̸= 1. Hence q = −1 and n is an odd integer. Further, by similar argument as
previous if br = ar ̸= 0, then r is odd and if br = −ar ̸= 0, then r is even, where
2 < r < n.

Subcase 2.2.2.2. Let bn = −an. Then, by (3.2), we obtain qn = 1. Now if q = 1,
then n can be any integer greater than or equal to 3. Also, if arz

r is present in p1(z),
then brz

r is present in p2(z) and br = −ar, and in this case r can be any integer,
2 < r < n. If q = −1, then n must be an even integer. Moreover, if br = ar, then r is
odd and if br = −ar, then r is even, where 2 < r < n.

Subcase 2.3. Let k be the least positive integer such that ak ̸= 0, where 3 ≤ k < n.
Then, in view of (3.4), we see that bk = ±ak.

Subcase 2.3.1. Let bk = ak. Then, from (3.4), we get qk = −1.
Subcase 2.3.1.1. Let k be odd. Then, −1 is a solution of qk = −1.
Subcase 2.3.1.1.1. Let q = −1. If bn = an, then in view of (3.2), we get qn = −1,

which yields that n is an odd multiple. Similarly, we easily deduce that n is even,
when bn = −an. Further, in view of (3.4), we conclude that r is odd when br = ar ̸= 0,
and even when br = −ar ̸= 0, where k < r < n.

Subcase 2.3.1.1.2. Let q ̸= −1.
Subcase 2.3.1.1.2.1. Let k be prime. If bn = an, then in view of (3.2), we

conclude that n is an odd multiple of k. If bn = −an, then n is even multiple of k.
Moreover, using (3.4), we see that r is odd multiple of k when br = ar ̸= 0, and even
multiple of k when br = −ar for k < r < n.

Subcase 2.3.1.1.2.2. Suppose k is odd composite. Note that qp + 1 is a factor of
qk + 1 for each prime factor p of k.
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Subcase 2.3.1.1.2.2.1. Suppose bn = an. Then, by (3.2) it follows that qn = −1.
If qp + 1 is a factor of qn + 1, then for the zeros of qp + 1, we have n = p(p + 2m),
where m is an integer chosen in such a way that k < n. Moreover, if br = ar ̸= 0,
k < r < n, then r = p(p + 2t) and if br = −ar, then r = 2tk, where the integer t is so
chosen that k < r < n. For the zeros of qk + 1 other than that of qp + 1, it must be
that n is odd multiple of k. Also observe from (3.4) that if br = ar ̸= 0, k < r < n,
then r is odd multiple of k, whereas if br = −ar, then r is even multiple of k.

Subcase 2.3.1.1.2.2.2. Suppose bn = −an. Then, by (3.2) it follows that qn = 1.
This implies that n is an even multiple of k. Further, if br = ar ̸= 0, then r is odd
multiple of k, whereas if br = −ar ̸= 0, then r is even multiple of k, where k < r < n.
Subcase 2.3.1.2. Let k be an even integer. Note that for k = 4s + 2, i and −i are
the solutions of qk = −1, where s ∈ N.

Subcase 2.3.1.2.1. Suppose bn = an. Then, by (3.2), we see that qn = −1. Now
for k = 4s + 2 and q = ±i, we have n = 4m + 2, where m is an integer chosen in such
a way that k < n. Further, if arz

r, k < r < n is present in p1(z), then r = 4t + 2
when br = ar ̸= 0, whereas r = 4t when br = −ar ̸= 0, t being an integer chosen in
such a way that k < r < n. Next, suppose k = 4s or k = 4s + 2 and q ̸= ±i, where
s ∈ N. Then n must be an odd multiple of k. Furthermore, if br = ar ̸= 0, by (3.4),
we get qr = −1, which implies that r is an odd multiple of k, whereas if br = −ar ̸= 0,
then by (3.4), we have qr = 1, which implies that r is even multiple of k.

Subcase 2.3.1.2.2. Let bn = −an. Now for k = 4s + 2 and q = ±i, we have
n = 4m, where m is an integer chosen in such a way that k < n. Further, if arz

r,
k < r < n is present in p1(z), then r = 4t + 2 when br = ar ̸= 0, whereas r = 4t
when br = −ar ≠ 0, where t ∈ N chosen in such a way that k < r < n. Next, suppose
k = 4s or k = 4s + 2 and q ̸= ±i, where s ∈ N. Then n must be an even multiple
of k. Furthermore, if br = ar ̸= 0, by (3.4), we get qr = −1, which implies that r is
an odd multiple of k, whereas if br = −ar ̸= 0, then by (3.4), we have qr = 1, which
implies that r is even multiple of k.

Subcase 2.3.2. Let bk = −ak. Then, from (3.4), we get qk = 1. This implies that
1 is a solution of qk = 1.

Subcase 2.3.2.1. Let q = 1. If bn = an, then by (3.2), we get qn = −1, a
contradiction since q = 1. Thus, bn = −an and hence in view of (3.2), we obtain
qn = 1. This implies that n is any integer greater than k. Further, if ar ̸= 0 for
k < r < n, then by similar argument as above we deduce that br = −ar. Therefore,
from (3.4), we conclude that r is any integer satisfying k < r < n.

Subcase 2.3.2.2. Let q ̸= 1. We discuss this case as follows.
Subcase 2.3.2.2.1. Let k be an odd integer. Note that bn ̸= an. Otherwise, from

(3.2), it follows that qn = −1, which is not possible as n > k and k is odd. Hence
bn = −an, and therefore, by (3.2), we have

(3.5) qn = 1.

Further, if arz
r is present in p1(z) for k < r < n, then by similar argument we get
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br = −ar, and hence from (3.4), we get
(3.6) qr = 1.

If k is odd composite, then note that qp − 1 is a factor of qk − 1, where p is a prime
factor of k. If qp − 1 is also a factor of qn − 1, then for the zeros of qp − 1 and in view
of (3.5), we have n = p(p + 2m), where the integer m is to be chosen so that n > k.
Moreover, if ar ≠ 0 for k < r < n, then in view of (3.6), it follows that r = p(p + 2t),
where integer t is chosen so that k < r < n. For the zeros of qk − 1 other than those
of qp − 1, or if k is prime , then in view of (3.5), we get that n must be a multiple of
k. Furthermore, if ar ≠ 0, k < r < n, the by (3.6), we obtain that r is a multiple of k.

Subcase 2.3.2.2.2. Let k be an even integer. Observe that −1 is a solution of
qk = 1.

Subcase 2.3.2.2.2.1. Let q = −1. If bn = an, then by (3.2), we see that qn = −1.
This implies that n is an odd integer. If bn = −an, then from (3.2), we get qn = 1,
which implies n is even. Further, if arz

r, k < r < n, is present in p1(z), then in view
of (3.4), we conclude that r is odd when br = ar, and r is even when br = −ar.

Subcase 2.3.2.2.2.2. Let q ̸= −1. Since k is an even integer, k = 4s or k = 4s + 2,
where s ∈ N.

Subcase 2.3.2.2.2.2.1. Let k = 4s, where s ∈ N. Then, ±i are the solutions of
qk = 1.

Subcase 2.3.2.2.2.2.1.1. Let q = ±i. Now if bn = an, then in view of (3.2), we
get qn = −1, and hence n must be the odd multiple of 2. If bn = −an, then by (3.2),
we see that qn = 1, which imply that n is an even multiple of 2. Further, if arz

r,
k < r < n be present in p1(z), then in view of (3.4), we have r = 4t + 2, if br = ar

and r = 4t, if br = −ar, where t is an integer.
Subcase 2.3.2.2.2.2.1.2. Let q ̸= ±i. We observe that bn ̸= an. Otherwise,

in view of (3.2), we obtain qn = −1. This is not possible as qn = −1, qk = 1 is
inconsistent system. Hence, bn = −an, and therefore by (3.2), we get qn = 1. This
implies that n is a multiple of k. Further, if arz

r is present in p1(z), where k < r < n,
then by similar argument we conclude that br = −ar. Hence by (3.4), it follows that
qr = 1. This implies that r is a multiple of k.

Subcase 2.3.2.2.2.2.2. Let k = 4s + 2, where s ∈ N. Then the same conclusion
can be obtain as in Subcase 2.3.2.2.2.2.1.2. □

Using the similar arguments as in Lemma 3.1, we obtain the following results.
Lemma 3.2. Let p1(z), p2(z) be two non-constant n-th degree polynomials defined as
in Lemma 3.1 satisfying
(3.7) p1(qz) − p2(z) = ξ1, p2(qz) − p1(z) = ξ2,

where q ̸= 0, ξ1, ξ2 ∈ C. Then, ξ1 = −ξ2 = a0 − b0, aj ̸= 0 if and only if bj ̸= 0 with
bj = ±aj, where 1 ≤ j < n. Further, p1(z), p2(z) and q satisfy one of the following.

(A) Let p1(z) = anzn + a0 and p2(z) = bnzn + b0, then qn = bn

an
= an

bn
.

(B) Let a1 ̸= 0, then one of the following cases must occur.
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(i) If b1 = a1, then q = 1 and bn = an, where n is any integer greater than 1.
Moreover if aj ̸= 0, where 1 < j < n, then bj = aj.

(ii) If b1 = −a1, then q = −1. Further, if bn = −an, where n is an integer > 1, and
if bn = −an, then n is an odd integer> 1. Moreover, if aj ̸= 0, where 1 < j < n, then
j is even when bj = aj and j is odd when bj = −aj.

(C) Let a1 = 0 and a2 ̸= 0, then one of the following cases must occur.
(i) If b2 = a2, then q = ±1. Further, if q = 1, then bn = an, where n is an an

integer greater than 2. Moreover if ajz
j is present in p1(z) for 2 < j < n, then bjz

j

is present in p2(z) with bj = aj. If q = −1 and bn = an, then n is an even integer
greater than 2, whereas if q = −1 and bn = −an, then n is an odd integer greater
than 2. Moreover, if ajz

j, 2 < j < n is present in p1(z), then j is even when bj = aj

and j is odd when bj = −aj.
(ii) If b2 = −a2, then q = ±i. Further, if bn = an, then n is an even multiple of 2,

whereas if bn = −an, then n is an odd multiple of 2. Moreover, if aj ̸= 0, 2 < j < n,
then j is an even multiple of 2 when q = i ans bj = aj, whereas j is an odd multiple
of 2 when q = −i and bj = −aj.

(D)] Let ak ̸= 0, where k be the least integer such that 3 ≤ k < n. Then, one of
the following assertions holds.

(i) If bk = ak, then qk = 1. Further, we have the following cases.
(a) When q = 1, then bn = an and n is any integer greater than 3. Moreover, if

aj ̸= 0, k < j < n, then bj = aj.
(b) When q ̸= 1 and bn = an, then one of the following must occur.
(b1) When k is prime, n is a multiple of k. Moreover, if aj ̸= 0, k < j < n, then

bj = aj and j is a multiple of k.
(b2) When k is an odd composite number, then n = p(p + 2m), where p is a prime

number greater than or equal to 3 and m is an integer. Moreover, if aj ̸= 0, k < j < n,
then bj = aj, where j = p(p + 2t), where p is prime number greater than or equal to
3 and t, an integer.

(b3) When q = −1, then n is even. Moreover, if aj ̸= 0, k < j < n, then j is even
when bj = aj, whereas j is odd when bj = −aj.

(b4) When q ̸= −1 and k is even, n must be a multiple of k. Moreover, if aj ̸= 0,
then bj = aj, where j is a multiple of k.

(c) When q ̸= 1 and bn = −an, then one of the following holds.
(c1) When q = −1, then n is an odd integer. Moreover, for k < j < n, if bj = aj ̸= 0,

then j is even and if bj = −aj ̸= 0, then j is odd.
(c2) When q = ±i, then n must be an odd multiple of 2. Moreover, for k < j < n,

if bj = aj ≠ 0, then j is an even multiple of 2 and if bj = −aj ̸= 0, then j is odd
multiple of 2.

(ii) If bk = −ak, then qk = −1. Further, we obtain the following.
(a) When k is odd, we have the following conclusions.
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(a1) For the case q = −1, n is even when bn = an, whereas n is odd when bn = −an.
Moreover, for k < j < n, if bj = aj ̸= 0, then j is an even, and if bj = −aj ̸= 0, then
j is odd.

(a2) For the case q ̸= −1, n must be an even multiple of k when bn = an, whereas
n is odd multiple of k when bn = −an. Moreover, for k < j < n, if bj = aj ̸= 0, then
j is an even multiple of k and if bj = −aj ̸= 0, then j is odd multiple of k.

(b) When k is even, the we have the following conclusions.
(b1) For k = 4s, s ∈ N, n must be an even multiple of k if bn = an, whereas n is

odd multiple of k if bn = −an.
(b2) For k = 4s + 2 and q = ±i, n must be an even multiple of 2 when bn = an,

whereas n is odd multiple of 2 when bn = −an. Moreover, for k < j < n, if bj = aj ̸= 0,
then j is even multiple of 2, whereas, if bj = −aj ̸= 0, then j is odd multiple of 2.

(b3) For k = 4s + 2 and q ̸= ±i, n is an even multiple of k when bn = an, whereas
n is an odd multiple of k when bn = −an. Moreover, for k < j < n, if bj = aj ̸= 0,
then j is an even multiple of k. On the other hand if bj = −aj ̸= 0, then j is an odd
multiple of k.

Lemma 3.3. Let p1(z), p2(z) be two non-constant n-th degree polynomials defined as
in Lemma 3.1 such that

(3.8) p1(qz) + p2(z) = ξ1, p2(qz) − p1(z) = ξ2,

where q ̸= 0, ξ1, ξ2 ∈ C. Then, ξ1 = a0 + b0, ξ2 = b0 − a0 and aj ̸= 0 if and only if
bj ̸= 0 with bj = ±iaj, where 1 ≤ j < n. Further p1(z), p2(z) and q satisfy one of the
following.

(A) If p1(z) = anzn + a0 and p2(z) = bnzn + b0, then qn = − bn

an
= an

bn
.

(B) When bk = iak for 1 ≤ k < n, then we get n = (4m + 1)k, if bn = ian and
n = (4m − 1)k, if bn = −ian, where m ∈ N. Further, if ajz

j, 1 < j < n is present in
p1(z), then bjz

j is also present in p2(z) and the form of j is as follows: j = (4t + 1)k,
if bj = iaj and j = (4t − 1)k, if bj = −iaj, where t ∈ N.

(C) When bk = −iak for 1 ≤ k < n, then we have n = (4m − 1)k, if bn = ian and
n = (4m + 1)k, if bn = −ian, where m ∈ N. Further if ajz

j, 1 < j < n is present in
p1(z), then bjz

j is also present in p2(z) and the form of j is as follows: j = (4t − 1)k,
if bj = iaj and j = (4t + 1)k, if bj = −iaj, where t ∈ N.

Lemma 3.4 ([12]). Let fj ̸≡ 0 (j = 1, 2, 3) be meromorphic functions on Cn such
that f1 is not constant, f1 + f2 + f3 = 1, and such that

3∑
j=1

{
N2

(
r,

1
fj

)
+ 2N(r, fj)

}
< λT (r, fj) + O(log+ T (r, fj))

holds for all r outside possibly a set with finite logarithmic measure, where λ < 1 is a
positive number. Then, either f2 = 1 or f3 = 1.
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Let us define

(3.9) A1 = 1
2
√

1 + w
+ 1

2i
√

1 − w
, A2 = 1

2
√

1 + w
− 1

2i
√

1 − w
,

where w ∈ C with w2 ̸= 0, 1.

4. Proof of the Theorems

Proof of Theorem 2.1. Let (f1(z1, z2), f2(z1, z2)) be a pair of transcendental entire
solutions with finite order of (1.5). Then, by Theorem 1.1, we obtain

(4.1)


∂f1
∂z1

= cos h1(z1, z2), f2(q1z1, q2z2) = sin h1(z1, z2),
∂f2
∂z1

= cos h2(z1, z2), f1(q1z1, q2z2) = sin h2(z1, z2),

where h1(z1, z2) and h2(z1, z2) are entire functions in C2. Since f1(z1, z2), f2(z1, z2) are
finite order transcendental entire functions, h1(z1, z2) and h2(z1, z2) are non constant
polynomials in C2.

Differentiating fourth equation of (4.1) partially with respect to z1 and using first
equation of (4.1), we easily obtain

(4.2) q1e
ih1(q1z1,q2z2)+ih2(z1,z2) + q1e

−ih1(q1z1,q2z2)+ih2(z1,z2) − ∂h2

∂z1
e2ih2(z1,z2) = ∂h2

∂z1
.

Similarly, from second and third equations of (4.1), we get

(4.3) q1e
ih2(q1z1,q2z2)+ih1(z1,z2) + q1e

−ih2(q1z1,q2z2)+ih1(z1,z2) − ∂h1

∂z1
e2ih1(z1,z2) = ∂h1

∂z1
.

Observe that ∂h1
∂z1

̸≡ 0. Otherwise, from (4.3), we have e2ih2(q1z1,q2z2) = −1. As
q1 ̸= 0, q2 ̸= 0, and h2(z1, z2) is non constant, we get a contradiction. By sim-
ilar reason, we get ∂h2

∂z1
̸≡ 0. Therefore, using Lemma 3.4 on (4.2) and (4.3), we

have either q1e
ih1(q1z1,q2z2)+ih2(z1,z2) = ∂h2

∂z1
or q1e

−ih1(q1z1,q2z2)+ih2(z1,z2) = ∂h2
∂z1

and either
q1e

ih2(q1z1,q2z2)+ih1(z1,z2) = ∂h1
∂z1

or q1e
−ih2(q1z1,q2z2)+ih1(z1,z2) = ∂h1

∂z1
. Thus, we can discuss

the following four possible cases.
Case 1. Let

(4.4) q1e
ih1(q1z1,q2z2)+ih2(z1,z2) = ∂h2

∂z1
, q1e

ih2(q1z1,q2z2)+ih1(z1,z2) = ∂h1

∂z1
.

Now from (4.2), (4.3) and (4.4), we deduce that

(4.5) q1e
−ih1(q1z1,q2z2)−ih2(z1,z2) = ∂h2

∂z1
, q1e

−ih2(q1z1,q2z2)−ih1(z1,z2) = ∂h1

∂z1
.

Since h1(z1, z2) and h2(z1, z2) are two non constant polynomials in C2, from (4.4), we
conclude that

(4.6) h1(q1z1, q2z2) + h2(z1, z2) = ξ1, h2(q1z1, q2z2) + h1(z1, z2) = ξ2,
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where ξ1, ξ2 are two constants in C. From (4.4), (4.5) and (4.6), we get

q1e
iξ1 = ∂h2

∂z1
= q1e

−iξ1 and q1e
iξ2 = ∂h1

∂z1
= q1e

−iξ2 ,

from which we easily deduce

(4.7) e2iξ1 = 1, e2iξ2 = 1,
∂h2

∂z1
= q1e

iξ1 ,
∂h1

∂z1
= q1e

iξ2 .

From the last two equations of (4.7), we easily obtain
(4.8) h1(z1, z2) = q1e

iξ2z1 + p1(z2) and h2(z1, z2) = q1e
iξ1z1 + p2(z2),

where p1(z2) and p2(z2) are polynomials in z2, only. In view of (4.6) and (4.8), we
obtain q1

(
q1e

iξ2 + eiξ1
)

z1 + p1(q2z2) + p2(z2) = ξ1,

q1
(
q1e

iξ1 + eiξ2
)

z1 + p2(q2z2) + p1(z2) = ξ2,

which yield
(4.9) q1e

iξ2 + eiξ1 = 0, q1e
iξ1 + eiξ2 = 0

and (3.1). Now, from Lemma 3.1, we see that ξ1 = ξ2 = a0 + b0. Therefore, from
(4.9), it follows that q1 = −1. From the first two equations of (4.7), we obtain that
eiξ1 = eiξ2 = ei(a0+b0) = ±1. Also from Lemma 3.1, we get precise form of p1(z1, z2),
p2(z1, z2) and the value of q2. Thus, from (4.1) and (4.8), we obtain

(4.10) f1(z1, z2) = sin
(

eiξ1z1 + p2

(
z2

q2

))
, f2(z1, z2) = sin

(
eiξ2z1 + p1

(
z2

q2

))
.

Case 2. Let

(4.11) q1e
ih1(q1z1,q2z2)+ih2(z1,z2) = ∂h2

∂z1
, q1e

−ih2(q1z1,q2z2)+ih1(z1,z2) = ∂h1

∂z1
.

From (4.2), (4.11) and (4.4), we get

(4.12) q1e
−ih1(q1z1,q2z2)−ih2(z1,z2) = ∂h2

∂z1
, q1e

ih2(q1z1,q2z2)−ih1(z1,z2) = ∂h1

∂z1
.

As h1(z1, z2) and h2(z1, z2) are non constant polynomials in C2, from (4.11), we
conclude that
(4.13) h1(q1z1, q2z2) + h2(z1, z2) = ξ1, h2(q1z1, q2z2) − h1(z1, z2) = ξ2,

where ξ1, ξ2 ∈ C. From (4.11), (4.12) and (4.13), we get (4.7) and (4.8). Therefore, in
view of (4.8) and (4.13), we obtainq1

(
q1e

iξ2 + eiξ1
)

z1 + p1(q2z2) + p2(z2) = ξ1,

q1
(
q1e

iξ1 − eiξ2
)

z1 + p2(q2z2) − p1(z2) = ξ2,

from which it follows that q1e
iξ2 + eiξ1 = 0, q1e

iξ1 − eiξ2 = 0 and (3.8). This implies
that ei(ξ2−ξ1) = ±i. But this is not possible as we have (4.7).
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Case 3. Let

q1e
−ih1(q1z1,q2z2)+ih2(z1,z2) = ∂h2

∂z1
, q1e

ih2(q1z1,q2z2)+ih1(z1,z2) = ∂h1

∂z1
.

Then, by similar arguments as used in Case 2, we get a contradiction.
Case 4. Let

(4.14) q1e
−ih1(q1z1,q2z2)+ih2(z1,z2) = ∂h2

∂z1
, q1e

−ih2(q1z1,q2z2)+ih1(z1,z2) = ∂h1

∂z1
.

Now from (4.2), (4.3) and (4.14), we obtain

(4.15) q1e
ih1(q1z1,q2z2)−ih2(z1,z2) = ∂h2

∂z1
, q1e

ih2(q1z1,q2z2)−ih1(z1,z2) = ∂h1

∂z1
.

Note that h1(z1, z2) and h2(z1, z2) are non constant polynomials in C2. Then, from
(4.15), we get
(4.16) h1(q1z1, q2z2) − h2(z1, z2) = ξ1, h2(q1z1, q2z2) − h1(z1, z2) = ξ2,

where ξ1, ξ2 are two complex constants. Therefore, by similar arguments as in Case 1,
we obtain (4.7), (3.7) and

q1e
iξ2 = eiξ1 , q1e

iξ2 = eiξ2 .

By Lemma 3.2, we see that ξ1 = −ξ2 = a0 − b0. Then, by the above equations and
(4.7), we get q1 = 1. Hence, the form of solutions is given by (4.10), where q2, p1(z1, z2)
and p2(z1, z2) can be found from Lemma 3.2. □

Proof of Theorem 2.2. Suppose (f1(z1, z2), f2(z1, z2)) be a pair of transcendental entire
solution of finite order of (1.6). Using simple concept of transformation in geometry,
we assume

(4.17) ∂f1

∂z1
= 1√

2
(α + β), f2(q1z1, q2z2) = 1√

2
(α − β),

where α, β are entire functions in C2. Therefore, first equation of (1.6) reduces to
(
√

1 + wα)2 + (
√

1 − wβ)2 = 1.

Therefore, in view of Theorem 1.1, we can have

(4.18) α = cos u(z1, z2)√
1 + w

, β = sin u(z1, z2)√
1 − w

,

where u(z1, z2) is a non-constant entire function. As f1, f2 are of finite order, u must
be a polynomial in C2. Hence, by (4.17) and (4.18), we get

(4.19) ∂f1

∂z1
= 1

2

(
cos u√
1 + w

+ sin u√
1 − w

)
, f2(q1z1, q2z2) = 1

2

(
cos u√
1 + w

− sin u√
1 − w

)
.

In a similar arguments, from the second equation of (1.6), we get

(4.20) ∂f2

∂z1
= 1

2

(
cos v√
1 + w

+ sin v√
1 − w

)
, f1(q1z1, q2z2) = 1

2

(
cos v√
1 + w

− sin v√
1 − w

)
,
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where v is a non-constant polynomial in C2.
Now differentiating second equation of (4.20) partially with respect to z1, and using

first equation of (4.19), and differentiating second equation of (4.19) partially with
respect to z1, and using first equation of (4.20), we get
(4.21)q1A1e

iu(q1z1,q2z2)+iv(z1,z2) + q1A2e
−iu(q1z1,q2z2)+iv(z1,z2) − iA2

∂v
∂z1

e2iv(z1,z2) = −iA1
∂v
∂z1

,

q1A1e
iv(q1z1,q2z2)+iu(z1,z2) + q1A2e

−iv(q1z1,q2z2)+iu(z1,z2) − iA2
∂u
∂z1

e2iu(z1,z2) = −iA1
∂u
∂z1

.

Note that ∂v
∂z1

̸≡ 0. Otherwise, from first equation of (4.21), we obtain

A1e
2iu(q1z1,q2z2) = −A2,

which implies that u is constant, a contradiction. Similarly, ∂u
∂z1

̸≡ 0. Therefore, in
view of Lemma 3.4, from (4.21), we conclude that either

q1A1e
iu(q1z1,q2z2)+iv(z1,z2) = −iA1

∂v

∂z1
or q1A2e

−iu(q1z1,q2z2)+iv(z1,z2) = −iA1
∂v

∂z1

and either

q1A1e
iv(q1z1,q2z2)+iu(z1,z2) = −iA1

∂u

∂z1
or q1A2e

−iv(q1z1,q2z2)+iu(z1,z2) = −iA1
∂u

∂z1
.

Now we discuss by considering four possible cases.
Case 1. Let

(4.22) q1e
iu(q1z1,q2z2)+iv(z1,z2) = −i

∂v

∂z1
, q1e

iv(q1z1,q2z2)+iu(z1,z2) = −i
∂u

∂z1
.

From (4.21) and (4.22), we obtain

(4.23) q1e
−iu(q1z1,q2z2)−iv(z1,z2) = i

∂v

∂z1
, q1e

−iv(q1z1,q2z2)−iu(z1,z2) = i
∂u

∂z1
.

Since u, v are non-zero polynomials in C2, from (4.22), it can be concluded that
(4.24) u(q1z1, q2z2) + v(z1, z2) = ξ1, v(q1z1, q2z2) + u(z1, z2) = ξ2,

where ξ1, ξ2 are constants in C. From (4.22), (4.23) and (4.24), we obtain

q1A1e
iξ1 = − iA1

∂v

∂z1
, q1A1e

iξ2 = −iA1
∂u

∂z1
,

q1A2e
−iξ1 =iA2

∂v

∂z1
, q1A2e

−iξ2 = iA2
∂u

∂z1
.

From the above four equations, we deduce that
∂v

∂z1
= iq1e

iξ1 = −iq1e
−iξ1 ,

∂u

∂z1
= iq1e

iξ2 = −iq1e
−iξ2 ,

which yield

(4.25)

e2iξ1 = −1, e2iξ2 = −1,

u(z1, z2) = iq1e
iξ2z1 + p1(z2), v(z1, z2) = iq1e

iξ1z1 + p2(z2),
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where p1(z2), p2(z2) are polynomials in z2, only. Now in view of the last two equations
of (4.25) and (4.24), we easily get

(4.26)


ei(ξ1−ξ2) = −q1 = ei(ξ2−ξ1),

p1(q2z2) + p2(z2) = ξ1,

p2(q2z2) + p1(z2) = ξ2.

From the last two equation of (4.26) and, by Lemma 3.1, it follows that ξ1 = ξ2.
Therefore, from (4.26), we get q1 = −1. Also, in view of the last two equations of
(4.26), it can be concluded that q2, p1(z1, z2), p2(z1, z2) can be found from Lemma 3.1.
Hence, from second equation of (4.19) and (4.20), we obtain (2.1).

Case 2. Let

(4.27) q1e
iu(q1z1,q2z2)+iv(z1,z2) = −i

∂v

∂z1
, q1A2e

−iv(q1z1,q2z2)+iu(z1,z2) = −iA1
∂u

∂z1
.

Then, from (4.21), (4.22) and (4.27), we obtain

(4.28) q1e
−iu(q1z1,q2z2)−iv(z1,z2) = i

∂v

∂z1
, q1A1e

iv(q1z1,q2z2)−iu(z1,z2) = iA2
∂u

∂z1
.

Since u, v are non constant polynomials in C2, in view of (4.27), we conclude that
(4.29) u(q1z1, q2z2) + v(z1, z2) = ξ1, v(q1z1, q2z2) − u(z1, z2) = ξ2.

From (4.27), (4.28) and (4.29), we get
∂u

∂z1
= iq1

A2

A1
e−iξ2 = −iq1

A1

A2
eiξ2 ,

∂v

∂z1
= iq1e

iξ1 = −iq1e
−iξ1 ,

which yield

(4.30)

e2iξ1 = −1, e2iξ2 = −A2
2

A2
1
,

u(z1, z2) = −iq1
A1
A2

eiξ2z1 + p1(z2), v(z1, z2) = iq1e
iξ1z1 + p2(z2),

where p1(z2), p2(z2) are two polynomials in z2, only. Therefore, from (4.29) and (4.30),
we easily have

(4.31)

−q1
A1
A2

eiξ2 + eiξ1 = 0, q1e
iξ1 + A1

A2
eiξ2 = 0,

p1(q2z2) + p2(z2) = ξ1, p2(q2z2) − p1(z2) = ξ2,

where q2 ̸= 0, ξ1, ξ2 ∈ C. From the first equation of (4.30), we observe that eiξ1 = ±i.
If eiξ1 = i, the from (4.31), we obtain that q1 = ±i and eiξ2 = iA2

q1A1
. But in view of the

second equation of (4.30), we easily get a contradiction. If eiξ1 = −i, then similarly
we can get a contradiction.

Case 3. Let

q1A2e
−iu(q1z1,q2z2)+iv(z1,z2) = −iA1

∂v

∂z1
, q1A1e

iv(q1z1,q2z2)+iu(z1,z2) = −iA1
∂u

∂z1
.

By similar arguments as used in Case 2, we can obtain a contradiction.
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Case 4. Let
(4.32)

q1A2e
−iu(q1z1,q2z2)+iv(z1,z2) = −iA1

∂v

∂z1
, q1A2e

−iv(q1z1,q2z2)+iu(z1,z2) = −iA1
∂u

∂z1
.

Then, by (4.21) and (4.32), we get

(4.33) q1A1e
iu(q1z1,q2z2)−iv(z1,z2) = iA2

∂v

∂z1
, q1A1e

iv(q1z1,q2z2)−iu(z1,z2) = iA2
∂u

∂z1
.

Therefore, by similar arguments as in Case 1, we get

(4.34) u(q1z1, q2z2) − v(z1, z2) = ξ1, v(q1z1, q2z2) − u(z1, z2) = ξ2,

(4.35)


e2iξ1 = −A2

2
A2

1
= e2iξ2 ,

u(z1, z2) = − iq1A1
A2

eiξ2z1 + p1(z2),
v(z1, z2) = − iq1A1

A2
eiξ1z1 + p2(z2),

where ξ1, ξ2 are constants in C. Now from (4.34) and last two equations of (4.35), we
obtain

(4.36)

−q1e
iξ2 + eiξ1 = 0, −q1e

iξ1 + eiξ2 = 0,

p1(q2z2) − p2(z2) = ξ1, p2(q2z2) − p1(z2) = ξ2.

In view of Lemma 3.2 and (4.36), it follows that ξ2 = −ξ1 = b0 − a0. Therefore,
from (4.36), we deduce that e2iξ1 = q1 = 1

q1
. This implies that q1 = ±1, and hence

e2iξ1 = ±1. Thus, from (4.35), we get A2
2

A2
1

= ±1, which is a contradiction. □

Proof of Theorem 2.3. If (f1(z1, z2), f2(z1, z2)) be a pair of finite order transcendental
entire solution of (1.7). Then by Theorem 1.1, we get

(4.37)


∂f1

∂z1
= cos h1(z1, z2), f2(q1z1, q2z2) − f1(z1, z2) = sin h1(z1, z2),

∂f2

∂z1
= cos h2(z1, z2), f1(q1z1, q2z2) − f2(z1, z2) = sin h2(z1, z2),

where h1(z1, z2) and h2(z1, z2) are entire functions in C2.
First suppose that h1(z1, z2) ≡ γ1 and h2(z1, z2) ≡ γ2, where γ1, γ2 are constants in

C. Then from first and third equations of (4.37), we have

(4.38) f1(z1, z2) = z1 cos γ1 + ϕ1(z2) and f2(z1, z2) = z1 cos γ2 + ϕ2(z2),

where ϕ1, ϕ2 are entire functions in z2, only. Therefore, from second and fourth
equations of (4.37) and (4.38), we obtain(q1 cos γ2 − cos γ1)z1 + ϕ2(q2z2) − ϕ1(z2) = sin γ1,

(q1 cos γ1 − cos γ2)z1 + ϕ1(q2z2) − ϕ2(z2) = sin γ2,
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which implies that

(4.39)

q1 cos γ2 − cos γ1 = 0, q1 cos γ1 − cos γ2 = 0,

ϕ2(q2z2) − ϕ1(z2) = sin γ1, ϕ1(q2z2) − ϕ2(z2) = sin γ2.
.

In view of (4.39), we observe that if γ1 = (2m + 1)π/2, then γ2 = (2n + 1)π/2, m, n
being an integer. In this case (1.7) does not contain the partial derivative term. So, to
avoid this situation we assume that γ1 and γ2 are not odd multiple of π/2. Therefore,
from first two equations of (4.42), we have q1 = ±1. When q1 = 1, γ2 = 2nπ ± γ1,
whereas when q1 = −1, γ2 = (2n + 1)π ± γ1, n being an integer.

Next suppose that h1(z1, z2) ≡ γ1, a constant and h2(z1, z2) is non constant. Then
the form of f1(z1, z2) is given by (4.38). Using this in the first equation of (1.7), we
have

(4.40) f2(z1, z2) = z1 cos γ1

q1
+ ϕ1

(
z2

q2

)
± sin γ1.

Using first equation of (4.39) and (4.40) in second equation of (1.7), we get

cos γ1

(
q1 − 1

q1

)
z1 + ϕ1(q2z2) − ϕ1

(
z2

q2

)
∓ sin γ1 = ±

√
q2

1 − cos2 γ1

q1
.

This implies that q1 ± 1 and

ϕ1(q2z2) − ϕ1

(
z2

q2

)
= ±

sin γ1 +

√
q2

1 − cos2 γ1

q1

 .

Finally, suppose that h1, h2 both are nonconstant entire functions in C2. Then by
similar arguments as used in the proof of Theorem 2.1, we can easily deduce that
(4.41)q1e

ih1(q1z1,q2z2)+ih2(z1,z2) + q1e
−ih1(q1z1,q2z2)+ih2(z1,z2) −

(
1 + ∂h2

∂z1

)
e2ih2 = 1 + ∂h2

∂z1
,

q1e
ih2(q1z1,q2z2)+ih1(z1,z2) + q1e

−ih2(q1z1,q2z2)+ih1(z1,z2) −
(
1 + ∂h1

∂z1

)
e2ih1 = 1 + ∂h1

∂z1
.

Note that 1 + ∂h2
∂z1

̸≡ 0. Otherwise, from (4.41), we can easily see that h1(q1z1, q2z2)
is a constant, which is not possible as h1(z1, z2) is a non constant polynomial in C2.
Similarly, we can prove that 1 + ∂h1

∂z1
̸≡ 0. Therefore, by Lemma 3.4, it follows that

either q1e
ih1(q1z1,q2z2)+ih2(z1,z2) = 1+ ∂h2

∂z1
or q1e

−ih1(q1z1,q2z2)+ih2(z1,z2) = 1+ ∂h2
∂z1

and either
q1e

ih2(q1z1,q2z2)+ih1(z1,z2) = 1 + ∂h1
∂z1

or q1e
−ih2(q1z1,q2z2)+ih1(z1,z2) = 1 + ∂h1

∂z1
.

Now, we can discuss by four possible cases.
Case 1. Let

(4.42) q1e
ih1(q1z1,q2z2)+ih2(z1,z2) = 1 + ∂h2

∂z1
, q1e

ih2(q1z1,q2z2)+ih1(z1,z2) = 1 + ∂h1

∂z1
.

From (4.41) and (4.42), we get

(4.43) q1e
−ih1(q1z1,q2z2)−ih2(z1,z2) = 1 + ∂h2

∂z1
, q1e

−ih2(q1z1,q2z2)−ih1 = 1 + ∂h1

∂z1
.
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Therefore, by the same arguments as used in Case 1 in the proof of Theorem 2.1, we
obtain

(4.44)


e2iξ1 = 1, e2iξ2 = 1,

h1(z1, z2) =
(
q1e

iξ2 − 1
)

z1 + p1(z2),
h2(z1, z2) =

(
q1e

iξ1 − 1
)

z1 + p2(z2),

and

(4.45)

q1
(
q1e

iξ1 − 1
)

+
(
q1e

iξ2 − 1
)

= 0, q1
(
q1e

iξ2 − 1
)

+
(
q1e

iξ1 − 1
)

= 0,

p1(q2z2) + p2(z2) = ξ1, p2(q2z2) + p1(z2) = ξ2,

where p1(z2), p2(z2) are polynomials in z2, only. In view of Lemma 3.1 and (4.45), we
see that ξ1 = ξ2 = a0 + b0 and the precise from of q2, p1, p2 are given in Lemma 3.1.
From the first equation of (4.44), it follows that eiξ1 = ±1.

First suppose eiξ1 = 1, then in view of first two equations of (4.45), we see that
q1 = ±1. Therefore, for eiξ1 = 1 and q1 = 1, (4.44) yields h1(z1, z2) = p1(z2) and
h2(z1, z2) = p2(z2). Thus from first and third equations of (4.37), we obtain
(4.46) f1(z1, z2) = z1 cos p1(z2) + T1(z2), f2(z1, z2) = z1 cos p2(z2) + T2(z2),
where T1, T2 are entire functions in z2, only. From (4.46) and second and fourth
equations of (4.37), we easily deduce that
(4.47) T1(q2

2z2) = T1(z2), T2(q2
2z2) = T2(z2).

Next suppose that eiξ1 = 1 and q1 = −1. Then from (4.44), we have h1(z1, z2) =
−2z1 + p1(z2) and h2(z1, z2) = −2z1 + p2(z2), and hence from first and third equations
of (4.37), we obtain

(4.48)

f1(z1, z2) = −1
2 sin(−2z1 + p1(z2)) + T1(z2),

f2(z1, z2) = −1
2 sin(−2z1 + p2(z2)) + T2(z2),

where T1, T2 are entire functions in z2, only. From (4.48) and second and fourth
equations of (4.37), we get (4.47).

Next suppose that eiξ1 = −1. Then from (4.45), we have q1 = −1. Therefore, from
the last two equations of (4.44) and first and third equations of (4.37), we easily get
(4.46). Hence, using (4.46) in second and third equations of (4.37), we deduce that
(4.49) T1(q2

2z2) − T1(z2) = 2 sin p1(z2) and T2(q2
2z2) − T2(z2) = 2 sin p2(z2).

Case 2. Let

(4.50) q1e
−ih2(q1z1,q2z2)+ih1(z1,z2) = 1 + ∂h1

∂z1
, q1e

ih1(q1z1,q2z2)+ih2(z1,z2) = 1 + ∂h2

∂z1
.

From (4.41) and (4.50), we get

(4.51) q1e
ih2(q1z1,q2z2)−ih1(z1,z2) = 1 + ∂h1

∂z1
, q1e

−ih1(q1z1,q2z2)−ih2(z1,z2) = 1 + ∂h2

∂z1
.
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By similar argument as in Case 1, we can obtain (4.44) and

(4.52)

q1
(
q1e

iξ2 − 1
)

+
(
q1e

iξ1 − 1
)

= 0, q1
(
q1e

iξ1 − 1
)

−
(
q1e

iξ2 − 1
)

= 0,

p1(q2z2) + p2(z2) = ξ1, p2(q2z2) − p1(z2) = ξ2,

where p1(z2), p2(z2) are polynomials in z2, only and hence can be found from Lemma 3.3
along with q2. In view of the first two equations of (4.44), let us first assume that
eiξ1 = 1, eiξ2 = 1. Then, by (4.52), we get q1 = 1, and hence by (4.44), we have
h1(z1, z2) = p1(z2) and h2(z1, z2) = p2(z2). Therefore, from first and third equations
of (4.37), we obtain (4.46), where T1, T2 are entire functions in z2, only.

Now, by second and third equations of (4.37) and (4.46), we can easily deduce that

T1(q2
2z2) − T1(z2) = 2 sin p1(z2) and T2(q2

2z2) = T2(z2).

Next suppose that eiξ1 = 1 and eiξ2 = −1. Then, from (4.52), it follows that
q1 = ±i. If q1 = i, then from (4.44), we have h1(z1, z2) = −(1 + i)z1 + p1(z2) and
h2(z1, z2) = −(1 − i) + p2(z2), and hence from first and third equations of (4.37), we
deduce that

(4.53)

f1(z1, z2) = − 1
1+i

sin(−(1 + i)z1 + p1(z2)) + T1(z2),
f2(z1, z2) = − 1

1−i
sin(−(1 − i)z1 + p2(z2)) + T2(z2),

where T1, T2 are entire functions in z2. By second and third equations of (4.37) and
(4.53), we can prove that T1, T2 satisfy (4.47).

If q1 = −i, then similarly we can getf1(z1, z2) = − 1
1−i

sin(−(1 − i)z1 + p1(z2)) + T1(z2),
f2(z1, z2) = − 1

1+i
sin(−(1 + i)z1 + p2(z2)) + T2(z2),

where T1, T2 are entire functions in z2 satisfying (4.47).
If eiξ1 = −1 and eiξ2 = 1, then from the first two equations of (4.52), we easily

reach to a contradiction.
Finally, let eiξ1 = −1 and eiξ2 = −1. Then from (4.52), we have q1 = −1. Therefore,

in view of last two equations of (4.44), first and third equations of (4.37), we obtain
(4.46). Therefore, from second and fourth equations of (4.37), it can be shown that

T1(q2
2z2) = T1(z2) and T2(q2

2z2) − T2(z2) = 2 sin p2(z2).

Case 3. Let

q1e
ih2(q1z1,q2z2)+ih1(z1,z2) = 1 + ∂h1

∂z1
, q1e

−ih1(q1z1,q2z2)+ih2(z1,z2) = 1 + ∂h2

∂z1
.

Then, after interchanging p1(z2) with p2(z2), ξ1 with ξ2 in (3.8) in Lemma 3.3, we can
get the same conclusions as obtained in Case 2. So we omit the details.

Case 4. Let

(4.54) q1e
ih1(z1,z2)−ih2(q1z1,q2z2) = 1 + ∂h1

∂z1
, q1e

ih2(z1,z2)−ih1(q1z1,q2z2) = 1 + ∂h2

∂z1
.
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From (4.41) and (4.54), we get

(4.55) q1e
ih2(q1z1,q2z2)−ih1(z1,z2) = 1 + ∂h1

∂z1
, q1e

ih1(q1z1,q2z2)−ih2(z1,z2) = 1 + ∂h2

∂z1
.

Now, by similar arguments as used in Case 1, we obtain (4.44), (3.7) and

(4.56) q1
(
q1e

iξ2 − 1
)

−
(
q1e

iξ1 − 1
)

= 0, q1
(
q1e

iξ1 − 1
)

−
(
q1e

iξ2 − 1
)

= 0.

In view of Lemma 3.2, we see that ξ1 = a0−b0 = −ξ2. Also the form of the polynomials
p1, p2 and the value of q2 can be found from Lemma 3.2. Hence, by first two equations
of (4.44), it follows that eiξ2 = 1 when eiξ1 = 1, whereas eiξ2 = −1 when eiξ1 = −1.

First suppose that eiξ1 = 1. Then, by (4.56), we get q1 = 1, and hence in view of
(4.44), first and third equation equation of (4.37), we easily have (4.46). Using second
and fourth equations of (4.37) and (4.46), we conclude that

T1(q2
2z2) − T1(z2) = 2 sin p1(z2) and T2(q2

2z2) − T2(z2) = 2 sin p2(z2).

Next suppose eiξ1 = −1. Then, from (4.56), we obtain q1 = ±1. If q1 = 1, by
(4.44), first and third equations of (4.37), we obtain (4.48). Using (4.48) in second
and fourth equations of (4.37), we obtain (4.47). Similarly, if q1 = −1, then we have
(4.46), where T1, T2 satisfy (4.47). □
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