

ON ENTIRE SOLUTIONS OF SYSTEM OF q -SHIFT PARTIAL DIFFERENTIAL EQUATIONS IN \mathbb{C}^2

GOUTAM HALDAR¹, ABHIJIT BANERJEE², AND ASHALATA ROY³

ABSTRACT. Investigation of entire solutions of system of Fermat-type q -shift partial differential functional equations remain largely unexplored. In this article we have discussed the form of entire solutions of three systems of q -shift partial differential equations in \mathbb{C}^2 , which are new and important in the literature. The results obtained here could have many applications across various branches of mathematics and mathematical physics. Also we have justified our results by various examples.

1. INTRODUCTION

It is well known that Fermat's Last Theorem [23, 24] is one of the most important and longstanding conjectures in mathematics. Nowadays, investigation of Fermat-type functional equations have become an active area of research for the past several decades. Nevanlinna theory [10] is the most powerful tool to study the entire and meromorphic solutions of Fermat type functional equations. The works of Gross [6], Iyer [13] and Montel [18] provided interesting and valuable insights, particularly in establishing solutions when $m = 2$ of the Fermat-type functional equation

$$(1.1) \quad f^m(z) + g^m(z) = 1$$

and also to determine the non existence of entire solutions of (1.1) for $m > 2$. We recall the famous result of Saleeby [22] regarding meromorphic solutions of (1.1) in \mathbb{C}^n as follows.

Key words and phrases. Entire solutions, q -shift operator, partial differential equations, Fermat type equations, order.

2020 *Mathematics Subject Classification.* Primary: 39A45, 30D35. Secondary: 32H30, 39A14, 35A20

DOI

Received: May 23, 2025.

Accepted: October 09, 2025.

Theorem 1.1 ([22]). *For $m = 2$, the meromorphic solutions of (1.1) are characterized as follows.*

- (i) *The entire solutions of (1.1) are $f(z) = \cos(u(z))$ and $g(z) = \sin(u(z))$, where u is an entire function in \mathbb{C}^n .*
- (ii) *The meromorphic solutions of (1.1) are of the form $f(z) = \frac{2a(z)}{1-a^2(z)}$ and $g(z) = \frac{1-a^2(z)}{1+a^2(z)}$, where a is a meromorphic function in \mathbb{C}^n .*

Using difference analogues of Nevanlinna Theory (see [3, 7]), many mathematicians investigated the existence and precise form of entire solutions of some non-linear difference as well as differential difference equations (see [11, 15, 17]). Regarding q -shift partial differential equations of Fermat type, Liu and Cao [16], in 2013, obtained the following result.

Theorem 1.2 ([16]). *Any transcendental entire solution of $f'(z)^2 + f(qz)^2 = 1$ must be of the form $f(z) = \sin(z + b)$ when $q = 1$, whereas $f(z) = \sin(z + k\pi)$ or $f(z) = -\sin(z + k\pi + \pi/2)$ when $q = -1$. There are no transcendental entire solutions of finite order when $q \neq \pm 1$.*

The study of partial differential equations, a generalizations of the well-known eikonal equation in real variable case has a long history. We refer the readers to go through [4, 5, 19] and the references therein. Recently, investigation of entire and meromorphic solutions of partial differential equations of Fermat type in several complex variables has received considerable attention in the literature (see [8, 9, 14, 20, 21, 28, 29]). Hereinafter, we denote by $z + q = (z_1 + q_1, z_2 + q_2)$, $qz = (q_1 z_1, q_2 z_2)$, where $z := (z_1, z_2)$, $q := (q_1, q_2) \in \mathbb{C}^2$. The q -shift of f is defined as $f(qz) := f(q_1 z_1, q_2 z_2)$.

In 2019 Xu-Cao [27] first considered the following partial differential-difference equation

$$(1.2) \quad \left(\frac{\partial f(z_1, z_2)}{\partial z_1} \right)^2 + f(z_1 + c_1, z_2 + c_2)^2 = 1,$$

and by utilizing the difference Nevanlinna theory in several complex variables, specially the difference version of logarithmic derivative lemma (see [1, 2]), they proved the following result, which opens up a new direction in the field of several complex variable.

Theorem 1.3 ([27]). *Let $c = (c_1, c_2)$ be a constant in \mathbb{C}^2 . Then, any finite order transcendental entire solution of (1.2) has the form $f(z_1, z_2) = \sin(az_1 + bz_2 + H(z_2))$, where a, b are constants in \mathbb{C} satisfying $a^2 = 1$, $ae^{i(ac_1 + bc_2)} = 1$ and $H(z_2)$ is a polynomial in z_2 such that $H(z_2 + c_2) = H(z_2)$. In particular, whenever $c_2 \neq 0$, $f(z_1, z_2) = \sin(az_1 + bz_2 + \text{constant})$.*

In 2020, Xu and his coauthors [25, 26] explored the precise form of transcendental entire solutions of the following system of partial differential difference equations

$$(1.3) \quad \begin{cases} \left(\frac{\partial f_1(z_1, z_2)}{\partial z_1} \right)^2 + f_2(z_1 + c_1, z_2 + c_2)^2 = 1, \\ \left(\frac{\partial f_2(z_1, z_2)}{\partial z_1} \right)^2 + f_1(z_1 + c_1, z_2 + c_2)^2 = 1 \end{cases}$$

and

$$(1.4) \quad \begin{cases} \left(\frac{\partial f_1(z_1, z_2)}{\partial z_1} \right)^2 + 2w \frac{\partial f_1}{\partial z_1} f_2(z_1 + c_1, z_2 + c_2) + f_2(z_1 + c_1, z_2 + c_2)^2 = 1, \\ \left(\frac{\partial f_2(z_1, z_2)}{\partial z_1} \right)^2 + 2w \frac{\partial f_2}{\partial z_1} f_1(z_1 + c_1, z_2 + c_2) + f_1(z_1 + c_1, z_2 + c_2)^2 = 1, \end{cases}$$

where w is a complex constant such that $w^2 \neq 0, 1$. For detail study we refer the readers to take a glance at [25, 26].

Inspired by the above equations and the corresponding results, in this article we investigate the existence and exact form of transcendental entire solutions of the following q -shift analogs of partial differential equations

$$(1.5) \quad \begin{cases} \left(\frac{\partial f_1(z_1, z_2)}{\partial z_1} \right)^2 + f_2(q_1 z_1, q_2 z_2)^2 = 1, \\ \left(\frac{\partial f_2(z_1, z_2)}{\partial z_1} \right)^2 + f_1(q_1 z_1, q_2 z_2)^2 = 1, \end{cases}$$

$$(1.6) \quad \begin{cases} \left(\frac{\partial f_1(z_1, z_2)}{\partial z_1} \right)^2 + 2w \frac{\partial f_1(z_1, z_2)}{\partial z_1} f_2(q_1 z_1, q_2 z_2) + f_2(q_1 z_1, q_2 z_2)^2 = 1, \\ \left(\frac{\partial f_2(z_1, z_2)}{\partial z_1} \right)^2 + 2w \frac{\partial f_2(z_1, z_2)}{\partial z_1} f_1(q_1 z_1, q_2 z_2) + f_1(q_1 z_1, q_2 z_2)^2 = 1, \end{cases}$$

$$(1.7) \quad \begin{cases} \left(\frac{\partial f_1}{\partial z_1} \right)^2 + [f_2(q_1 z_1, q_2 z_2) - f_1(z_1, z_2)]^2 = 1, \\ \left(\frac{\partial f_2}{\partial z_1} \right)^2 + [f_1(q_1 z_1, q_2 z_2) - f_2(z_1, z_2)]^2 = 1, \end{cases}$$

where $q = (q_1, q_2) \in \mathbb{C}^2$ with $q_1 \neq 0$ and $w^2 \neq 0, 1$. Observe that (1.5) and (1.6) are the q -shift versions of (1.3) and (1.4), respectively. We state our main results as follows.

2. MAIN RESULTS

Theorem 2.1. *Let $q := (q_1, q_2) \in \mathbb{C}^2$ with $q_1 \neq 0$. If $(f_1(z_1, z_2), f_2(z_1, z_2))$ be a pair of finite order transcendental entire solution of (1.5), then one of the following conclusions must hold.*

(a) $q_1 = -1$ and

$$f_1(z_1, z_2) = \sin \left(e^{i\xi_1} z_1 + p_2 \left(\frac{1}{q_2} z_2 \right) \right), \quad f_2(z_1, z_2) = \sin \left(e^{i\xi_2} z_1 + p_1 \left(\frac{1}{q_2} z_2 \right) \right),$$

where $p_1(z_1, z_2)$, $p_2(z_1, z_2)$ and the value of q_2 are obtained from Lemma 3.1, $\xi_1, \xi_2 \in \mathbb{C}$ such that $\xi_1 = \xi_2 = a_0 + b_0$ and $e^{i\xi_1} = \pm 1$.

(b) $q_1 = 1$ and the form of solution is same as in (a), where $p_1(z_1, z_2)$, $p_2(z_1, z_2)$ and the value of q_2 are obtained from Lemma 3.2, $\xi_1, \xi_2 \in \mathbb{C}$ such that $\xi_1 = -\xi_2 = a_0 - b_0$ and $e^{i\xi_1} = \pm 1$.

Theorem 2.2. *If $(f_1(z_1, z_2), f_2(z_1, z_2))$ be a pair of finite order transcendental entire solutions of (1.6), then $q_1 = -1$ and*

$$(2.1) \quad \begin{cases} f_1(z_1, z_2) = \frac{1}{\sqrt{2}} \left(\frac{\cos(i e^{i\xi_1} z_1 + p_2(z_2/q_2))}{\sqrt{1+w}} - \frac{\sin(i e^{i\xi_1} z_1 + p_2(z_2/q_2))}{\sqrt{1-w}} \right), \\ f_2(z_1, z_2) = \frac{1}{\sqrt{2}} \left(\frac{\cos(i e^{i\xi_2} z_1 + p_1(z_2/q_2))}{\sqrt{1+w}} - \frac{\sin(i e^{i\xi_2} z_1 + p_1(z_2/q_2))}{\sqrt{1-w}} \right), \end{cases}$$

where $p_1(z_1, z_2)$, $p_2(z_1, z_2)$, q_2 are found from Lemma 3.1, $\xi_1, \xi_2 \in \mathbb{C}$ such that $\xi_1 = \xi_2 = a_0 + b_0$ with $e^{2i\xi_1} = -1$ and w is a complex constant such that $w^2 \neq 0, 1$.

Theorem 2.3. *Let $(q_1, q_2) \in \mathbb{C}^2$ be such that $q_j \neq 0$, $j = 1, 2$. If $(f_1(z_1, z_2), f_2(z_1, z_2))$ be a pair of transcendental entire solutions with finite order of (1.7), then one of the following conclusions holds.*

(A) $q_1 = \pm 1$, and $f_1(z_1, z_2) = z_1 \cos \gamma_1 + \phi_1(z_2)$, $f_2(z_1, z_2) = z_1 \cos \gamma_2 + \phi_2(z_2)$, where ϕ_1, ϕ_2 are entire functions of z_2 , only satisfying $\phi_2(q_2 z_2) - \phi_1(z_2) = \sin \gamma_1$, $\phi_1(q_2 z_2) - \phi_2(z_2) = \sin \gamma_2$, where γ_1, γ_2 are complex constants such that $\gamma_1 \neq (2t+1)\pi/2$ and $\gamma_2 = 2n\pi \pm \gamma_1$, if $q_1 = 1$ and $\gamma_2 = (2n\pi+1)\pi \pm \gamma_1$, if $q_1 = -1$, t, n being two integers.

(B) $q_1 = \pm 1$, and the form of solutions are given by

$$f_1(z_1, z_2) = z_1 \cos \gamma_1 + \phi_1(z_2), \quad f_2(z_1, z_2) = \frac{1}{q_1} \cos \gamma_1 z_1 + \phi_1 \left(\frac{z_2}{q_2} \right) \pm \sin \gamma_1,$$

where ϕ_1 is an entire functions of z_2 such that

$$\phi_1(q_2 z_2) - \phi_1 \left(\frac{z_2}{q_2} \right) = \pm \left[\sin \gamma_1 + \frac{\sqrt{q_1^2 - \cos^2 \gamma_1}}{q_1} \right].$$

(C)

$$(2.2) \quad f_1(z_1, z_2) = z_1 \cos p_1(z_2) + T_1(z_2), \quad f_2(z_1, z_2) = z_1 \cos p_2(z_2) + T_2(z_2),$$

where $p_1(z_2)$, $p_2(z_2)$ are polynomials in z_2 , $T_1(z_2)$, $T_2(z_2)$ are entire functions in z_2 satisfying one of the following.

(a) $q_1 = 1$, ξ_1, ξ_2 are complex constant with $\xi_1 = \xi_2$ and $e^{i\xi_1} = 1$, q_2 , p_1, p_2 are found from Lemma 3.1 and T_1, T_2 satisfy

$$(2.3) \quad T_1(q_2^2 z_2) = T_1(z_2) \quad \text{and} \quad T_2(q_2^2 z_2) = T_2(z_2).$$

(b) $q_1 = -1$, ξ_1, ξ_2 are complex constant with $\xi_1 = \xi_2$ and $e^{i\xi_1} = -1$, q_2 , p_1, p_2 are found from Lemma 3.1 and T_1, T_2 satisfy

$$(2.4) \quad T_1(q_2^2 z_2) - T_1(z_2) = 2 \sin p_1(z_2), \quad T_2(q_2^2 z_2) - T_2(z_2) = 2 \sin p_2(z_2).$$

(c) $q_1 = 1$, $e^{\xi_1} = 1$, $e^{i\xi_2} = 1$, q_2 , p_1, p_2 are found from Lemma 3.3 and T_1, T_2 satisfy

$$T_2(q_2^2 z_2) = T_2(z_2), \quad T_1(q_2^2 z_2) - T_1(z_2) = 2 \sin p_1(z_2).$$

(d) $q_1 = -1$, $e^{\xi_1} = -1$, $e^{i\xi_2} = -1$, q_2 , p_1, p_2 are found from Lemma 3.3 and T_1, T_2 satisfy $T_1(q_2^2 z_2) = T_1(z_2)$ and $T_2(q_2^2 z_2) - T_2(z_2) = 2 \sin p_2(z_2)$.

(e) $q_1 = 1$, $\xi_1, \xi_2 \in \mathbb{C}$ with $\xi_2 = -\xi_1$, $e^{\xi_1} = 1$, q_2 , p_1, p_2 are found from Lemma 3.2 and T_1, T_2 satisfy (2.4).

(f) $q_1 = -1$, $\xi_1, \xi_2 \in \mathbb{C}$ with $\xi_2 = -\xi_1$, $e^{\xi_1} = -1$, q_2, p_1, p_2 are found from Lemma 3.2 and T_1, T_2 satisfy (2.3).

(D)

$$(2.5) \quad \begin{cases} f_1(z_1, z_2) = -\frac{1}{2} \sin(-2z_1 + p_1(z_2)) + T_1(z_2), \\ f_2(z_1, z_2) = -\frac{1}{2} \sin(-2z_1 + p_2(z_2)) + T_2(z_2), \end{cases}$$

satisfying one of the following.

(a) $q_1 = -1$, $\xi_1, \xi_2 \in \mathbb{C}$ such that $\xi_1 = \xi_2$ with $e^{i\xi_1} = 1$, q_2, p_1, p_2 are found from Lemma 3.1, and T_1, T_2 satisfy (2.3).

(b) $q_1 = 1$, $\xi_1, \xi_2 \in \mathbb{C}$ such that $\xi_1 = -\xi_2$ with $e^{i\xi_1} = -1$, q_2, p_1, p_2 are found from Lemma 3.2, and T_1, T_2 satisfy (2.3).

(E) $q_1 = i$, $\xi_1, \xi_2 \in \mathbb{C}$ such that $e^{i\xi_1} = 1$, $e^{i\xi_2} = -1$,

$$(2.6) \quad \begin{cases} f_1(z_1, z_2) = -\frac{1}{1+i} \sin(-(1+i)z_1 + p_1(z_2)) + T_1(z_2), \\ f_2(z_1, z_2) = -\frac{1}{1-i} \sin(-(1-i)z_1 + p_2(z_2)) + T_2(z_2), \end{cases}$$

where q_2, p_1, p_2 are found from Lemma 3.3, and T_1, T_2 are entire functions in z_2 satisfying (2.3).

(F) $q_1 = -i$, $\xi_1, \xi_2 \in \mathbb{C}$ such that $e^{i\xi_1} = 1$, $e^{i\xi_2} = -1$,

$$(2.7) \quad \begin{cases} f_1(z_1, z_2) = -\frac{1}{1-i} \sin(-(1-i)z_1 + p_1(z_2)) + T_1(z_2), \\ f_2(z_1, z_2) = -\frac{1}{1+i} \sin(-(1+i)z_1 + p_2(z_2)) + T_2(z_2), \end{cases}$$

where q_2, p_1, p_2 are found from Lemma 3.3, and T_1, T_2 are entire functions in z_2 satisfying (2.3).

The following examples show that our theorems are precise.

Example 2.1. Let $\xi_1 = \xi_2 = \pi$, $p_1(z_2) = z_2^{15} + \frac{\pi}{3}$, $p_2(z_2) = z_2^{15} + \frac{2\pi}{3}$. Choose $q_2 \in \mathbb{C}$ such that $q_2^{15} = -1$. Then, one can easily see that $(\sin(\frac{2\pi}{3} - z_1 - z_2^{15}), \sin(\frac{\pi}{3} - z_1 - z_2^{15}))$ is a solution of (1.5).

Example 2.2. Let $\xi_1 = \xi_2 = \pi$, $p_1(z_2) = z_2^9 + z_2^4 + z_2 + \frac{2\pi}{3}$, $p_2(z_2) = z_2^9 - z_2^4 + z_2 + \frac{\pi}{3}$, $q_1 = q_2 = -1$. Then, in view of Theorem 2.1 (a), we can easily see that $(\sin(\frac{\pi}{3} - z_1 - z_2^9 - z_2^4 - z_2), \sin(\frac{2\pi}{3} - z_1 - z_2^9 + z_2^4 - z_2))$ is a solution of (1.5).

Example 2.3. Let $\xi_1 = \xi_2 = \pi$, $p_1(z_2) = z_2^{10} + z_2^2 + \frac{2\pi}{3}$, $p_2(z_2) = z_2^{10} + z_2^2 + \frac{\pi}{3}$, $q_1 = -1$, $q_2 = -i$. Then, in view of Theorem 2.1 (a), one can easily see that $(\sin(\frac{\pi}{3} - z_1 - z_2^2 - z_2^{10}), \sin(\frac{2\pi}{3} - z_1 - z_2^{10} - z_2^2))$ is a solution of (1.5).

Example 2.4. Let $\xi_1 = \pi$, $\xi_2 = -\pi$, $p_1(z_2) = z_2^6 + \frac{3\pi}{2}$, $p_2(z_2) = z_2^6 + \frac{\pi}{2}$. Choose $q_2 \in \mathbb{C}$ such that $q_2^6 = 1$. Then, in view of Theorem 2.1 (b), one can easily see that $(\sin(\frac{\pi}{2} - z_1 + z_2^6), \sin(\frac{3\pi}{2} - z_1 + z_2^6))$ is a solution of (1.5).

Example 2.5. Let $\xi_1 = \xi_2 = \pi$, $p_1(z_2) = z_2^{20} + z_2^2 + \frac{2\pi}{3}$, $p_2(z_2) = -z_2^{20} + z_2^2 + \frac{\pi}{3}$, $q_1 = -1$, $q_2 = i$, $w = 3$. Then, in view of Theorem 2.2, one can easily see that (f_1, f_2) is a solution of (1.6), where

$$f_1(z_1, z_2) = \frac{1}{2\sqrt{2}} \left(\cos \left(\frac{\pi}{3} - iz_1 - z_2^2 - z_2^{10} \right) - i \sin \left(\frac{\pi}{3} - iz_1 - z_2^2 - z_2^{10} \right) \right)$$

and

$$f_2(z_1, z_2) = \frac{1}{2\sqrt{2}} \left(\cos \left(\frac{2\pi}{3} - iz_1 - z_2^2 + z_2^{10} \right) + i \sin \left(\frac{\pi}{3} - iz_1 - z_2^2 + z_2^{10} \right) \right).$$

3. KEY LEMMAS

To prove our main results, we need the following lemmas.

Lemma 3.1. Let $p_1(z) = \sum_{l=0}^n a_l z^l$ and $p_2(z) = \sum_{l=0}^n b_l z^l$ be two non-constant polynomials of degree n in \mathbb{C} satisfying

$$(3.1) \quad p_1(qz) + p_2(z) = \xi_1, \quad p_2(qz) + p_1(z) = \xi_2,$$

where $q \neq 0$, $\xi_1, \xi_2, a_l, b_l \in \mathbb{C}$, $l = 0, 1, 2, \dots, n$, $a_n \neq 0$, $b_n \neq 0$. Then, $\xi_1 = \xi_2 = a_0 + b_0$, $a_j \neq 0$ if and only if $b_j \neq 0$ with $b_j = \pm a_j$, where $1 \leq j < n$. Further, $p_1(z)$, $p_2(z)$ and q satisfy one of the following.

(A) Let $p_1(z) = a_n z^n + a_0$ and $p_2(z) = b_n z^n + b_0$. Then, $q^n = -\frac{b_n}{a_n} = -\frac{a_n}{b_n}$.

(B) Let $a_1 \neq 0$. Then, one of the following cases must occur.

(i) If $b_1 = a_1$ and $b_n = a_n$, then $q = -1$ and n is an odd integer greater than 1.

(ii) If $b_1 = a_1$ and $b_n = -a_n$, then $q = 1$ and n is an even integer.

Moreover, in both the cases (i) and (ii), if $a_j \neq 0$, where $1 < j < n$, then j is odd when $b_j = a_j$ and j is even when $b_j = -a_j$.

(iii) If $b_1 = -a_1$, then $q = 1$ and $b_n = -a_n$, where n is an integer greater than 1. Further, if $a_j \neq 0$, where $1 < j < n$, then $b_j = -a_j$.

(C) Let $a_1 = 0$ and $a_2 \neq 0$. Then, one of the following cases must occur.

(i) If $b_2 = a_2$, then $q = \pm i$. Further, if $b_n = a_n$, then n is an odd multiple of 2 and if $b_n = -a_n$, then n is an even multiple of 2. Moreover, if $a_j \neq 0$, where $2 < j < n$, then j is an odd multiple of 2 when $b_j = a_j$, and j is an even multiple of 2 when $b_j = -a_j$.

(ii) If $b_2 = -a_2$, then $q = \pm 1$.

Further, we have.

(a) If $b_n = a_n$, then $q = -1$ and n is an odd integer. Moreover, if $a_j \neq 0$, where $2 < j < n$, then j is odd if $b_j = a_j$ and j is even if $b_j = -a_j$.

(b) If $b_n = -a_n$ and $q = 1$, then n is any integer greater or equal to 3. Moreover, if $a_j \neq 0$ for $2 < j < n$, then $b_j = -a_j$.

(c) If $b_n = -a_n$ and $q = -1$, then n is an even integer. Moreover, if $a_j \neq 0$ for $2 < j < n$, then j is odd when $b_j = a_j$ and j is even when $b_j = -a_j$.

(D) Let k be the least positive integer such that $a_k \neq 0$, where $3 \leq k < n$. Then, one of the following assertions holds.

(i) If $b_k = a_k$, then $q^k = -1$.

Further, it follows.

(a) When $b_n = a_n$ and k is prime, then n is an odd multiple of k . Moreover, if $a_j \neq 0$ for $k < j < n$, then j is odd multiple of k when $b_j = a_j$, and j is even multiple of k when $b_j = -a_j$.

(b) When $b_n = a_n$ and k is odd composite, then $n = p(p+2s)$ when $q^p + 1$ is a factor of both $q^k + 1$ and $q^n + 1$, p being a prime factor of k and s is a natural number chosen in such a way that $k < n$. For the other factor of $q^k + 1$ after dividing by $q^p + 1$, we must have $n = (2m+1)k$, $m \in \mathbb{N}$. Moreover, if $a_j \neq 0$ for $k < j < n$, then $j = p(p+2t)$ when $b_j = a_j$ and $j = 2tk$ when $b_j = -a_j$ and $q^p + 1$ is a factor of both $q^k + 1$ and $q^n + 1$, $t \in \mathbb{N}$ such that $k < n$.

(c) If $b_n = a_n$ and $k = 4s$, $s \in \mathbb{N}$, then n is odd multiple of k . Moreover, if $a_j \neq 0$, $k < j < n$, then j is odd multiple of k when $b_j = a_j$, and j is even multiple of k when $b_j = -a_j$.

(d) If $k = 4s+2$, $s \in \mathbb{N}$, then $\pm i$ are the roots of $q^k = -1$. Further, one obtain the following cases.

(d₁) If $b_n = a_n$ and $q = \pm i$, then $n = 4m+2$, where the integer m is chosen so that $k < n$. Moreover, if $a_j \neq 0$ for $k < j < n$, then $j = 4t+2$ when $b_j = a_j$, and $j = 4t$ when $b_j = -a_j$, t being an integer.

(d₂) If $b_n = a_n$ and $q \neq \pm i$, then $n = 2mk$, where $m \in \mathbb{N}$ such that $k < n$. Moreover, if $a_j \neq 0$ for $k < j < n$, then $j = (2t+1)k$ when $b_j = a_j$, and $j = 2tk$ when $b_j = -a_j$, $t \in \mathbb{N}$.

(e) If $b_n = -a_n$ and k be odd, then we have the following cases.

(e₁) If $q = -1$, then n is an even integer. Moreover, if $a_j \neq 0$ for $k < j < n$, then j is odd when $b_j = a_j$, and j is even when $b_j = -a_j$.

(e₂) If $q \neq -1$, then n is an odd multiple of k . Moreover, if $a_j \neq 0$, then j is odd multiple of k when $b_j = a_j$, and j is even multiple of k when $b_j = -a_j$ for $k < j < n$.

(f) If $b_n = -a_n$ and k is even, then we have the following conclusions.

(f₁) if $k = 4s$, $s \in \mathbb{N}$, then n is even multiple of k . Moreover, if $a_j \neq 0$ for $k < j < n$, then j is odd multiple of k when $b_j = a_j$, whereas j is even multiple of k when $b_j = -a_j$.

(f₂) if $k = 4s+2$ and $q = \pm i$, then $n = 4m$, $m \in \mathbb{N}$. Moreover, if $a_j \neq 0$ for $k < j < n$, the $j = 4t+2$ when $b_j = a_j$, and $j = 4t$ when $b_j = -a_j$, $t \in \mathbb{N}$.

(f₃) if $k = 4s+2$ and $q \neq \pm i$, then n is an even multiple of k . Moreover, if $a_j \neq 0$, then j is odd multiple of k when $b_j = a_j$, whereas j is an even multiple of k when $b_j = -a_j$.

(ii) If $b_k = -a_k$, then $q^k = 1$.

Further, we obtain the following cases.

(a) When $b_n = a_n$, then k must be an even integer. Moreover, if $q = -1$, then n must be an odd integer. If $a_j z^j$, $k < j < n$ be present in $p_1(z)$, then j is odd when $b_j = a_j$, and j is even when $b_j = -a_j$. If $q \neq -1$, then $k = 4s$, $q = \pm i$ and $n = 4m+2$,

where $s, m \in \mathbb{N}$. In this case if $a_j z^j$, $k < j < n$ is present in $p_1(z)$, then $j = 4t + 2$ when $b_j = a_j$, whereas $j = 4t$ when $b_j = -a_j$.

(b) When $b_n = -a_n$, then one of the following must occur.

(b₁) If $q = 1$, then n can be any integer greater than k . Moreover, if $a_j z^j$, $k < j < n$ is present in $p_1(z)$, then $b_j = -a_j$ and j is any integer.

(b₂) If $q \neq 1$ and k is odd, or $q \neq \pm 1$ and k is even, then n is a multiple of k . Moreover, if $a_j \neq 0$, $k < j < n$, then $b_j = -a_j$ and j is a multiple of k .

(b₃) If $q = -1$, then k and n both are even. Moreover, if $a_j \neq 0$, $k < j < n$, then j is odd when $b_j = a_j$, whereas j is even when $b_j = -a_j$.

Proof. In view of the form of $p_1(z)$ and $p_2(z)$, from (3.1), we have $a_0 + b_0 = \xi_1 = \xi_2$ and as a_n, b_n are non zero complex constants, we obtain

$$(3.2) \quad q^n = -\frac{b_n}{a_n} = -\frac{a_n}{b_n}.$$

Further, we have

$$(3.3) \quad \begin{cases} a_1 q + b_1 = 0, & a_1 + b_1 q = 0, & a_2 q^2 + b_2 = 0, & a_2 + b_2 q^2 = 0, \\ \vdots & \vdots & \vdots & \vdots \\ a_r q^r + b_r = 0, & a_r + b_r q^r = 0, \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1} q^{n-1} + b_{n-1} = 0, & a_{n-1} + b_{n-1} q^{n-1} = 0, \\ a_n q^n + b_n = 0, & a_n + b_n q^n = 0. \end{cases}$$

From (3.3), we observe that $b_r \neq 0$ if and only if $a_r \neq 0$ and

$$(3.4) \quad q^r = -\frac{b_r}{a_r} = -\frac{a_r}{b_r},$$

where $1 \leq r \leq n-1$ and in this case $b_r = \pm a_r$.

Now we discuss the following three possible cases.

Case 1. Let $a_j = 0$ for all $j = 1, 2, \dots, n-1$. Then, equations stated in (3.3) are consistent and we get (3.2).

Case 2. Let $a_j \neq 0$ for at least one j , $j = 1, 2, \dots, n-1$.

Subcase 2.1. Let $a_1 \neq 0$. Then, from (3.4), we get $b_1 = \pm a_1$.

Subcase 2.1.1. Let $b_1 = a_1$. Then, by (3.4), it follows that $q = -1$.

Subcase 2.1.1.1. Let $b_n = a_n$. Then, by (3.2), we have $q^n = -1$. As $q = -1$, we must have $n = 2m+1$, where $m = 1, 2, 3, \dots$. Let $a_r z^r$ be present in $p_1(z)$, i.e., $a_r \neq 0$. Then, $b_r z^r$ is present in $p_2(z)$, i.e., $b_r \neq 0$, $1 < r < n$. If $b_r = a_r$, then $q^r = -1$. As $q = -1$, we conclude that r must be an odd integer. If $b_r = -a_r$, then $q^r = 1$. Since $q = -1$, it follows that r must be an even integer.

Subcase 2.1.1.2. Let $b_n = -a_n$. Then, by (3.2), we see that $q^n = 1$. As $q = -1$, we have n an even integer. Further, if $b_r = a_r \neq 0$, then in view of (3.4), we get $q^r = -1$, and hence r is an odd integer. If $b_r = -a_r \neq 0$, then by (3.4), we get $q^r = 1$, which is a contradiction as $q = -1$, where $1 < r < n$.

Subcase 2.1.2. Let $b_1 = -a_1$. Then, from (3.4), we get $q = 1$. Note that $b_n \neq a_n$. Otherwise, from (3.2), we see that $q^n = -1$, which is not possible for any values of n . Hence $b_n = -a_n$. Therefore, by (3.2), it follows that $q^n = 1$, which implies that n can be any integer greater than or equal to 2. Further, if $a_r \neq 0$ for $1 < r < n$, then from (3.4), we must have $b_r = -a_r$ and r can be any integer satisfying $1 < r < n$.

Subcase 2.2. Let $a_1 = 0$ and $a_2 \neq 0$. Then, by (3.4), we obtain that $b_2 = \pm a_2$.

Subcase 2.2.1. Let $b_2 = a_2$. Then, from (3.4), we get $q = \pm i$.

Subcase 2.2.1.1. Let $b_n = a_n$. Then, (3.2) yields that $q^n = -1$. As $q = \pm i$, we see that $n = 4m + 2$, where $m \in \mathbb{N}$. Moreover, if $a_r z^r$, $2 < r < n$ is present in $p_1(z)$, then $b_r z^r$ is also present in $p_2(z)$. If $b_r = a_r$, then from (3.4), we get $q^r = -1$. Since $q = \pm i$, it follows that r must be the odd multiple of 2. If $b_r = -a_r$, then by (3.4), we get $q^r = 1$, and as $q = \pm i$, we see that r is an even multiple of 2.

Subcase 2.2.1.2. Let $b_n = -a_n$. Then, from (3.2), we get $q^n = 1$. As $q = \pm i$, we must have $n = 4m$, where $m \in \mathbb{N}$. Also, in view of (3.4), we see that if $b_r = a_r \neq 0$, then r must be an odd multiple of 2, and if $b_r = -a_r \neq 0$, then r is an even multiple of 2, where $2 < r < n$.

Subcase 2.2.2. Let $b_2 = -a_2$. Then, in view of (3.4), we obtain $q = \pm 1$.

Subcase 2.2.2.1. Let $b_n = a_n$. Then, by (3.2), we obtain $q^n = -1$. Then clearly $q \neq 1$. Hence $q = -1$ and n is an odd integer. Further, by similar argument as previous if $b_r = a_r \neq 0$, then r is odd and if $b_r = -a_r \neq 0$, then r is even, where $2 < r < n$.

Subcase 2.2.2.2. Let $b_n = -a_n$. Then, by (3.2), we obtain $q^n = 1$. Now if $q = 1$, then n can be any integer greater than or equal to 3. Also, if $a_r z^r$ is present in $p_1(z)$, then $b_r z^r$ is present in $p_2(z)$ and $b_r = -a_r$, and in this case r can be any integer, $2 < r < n$. If $q = -1$, then n must be an even integer. Moreover, if $b_r = a_r$, then r is odd and if $b_r = -a_r$, then r is even, where $2 < r < n$.

Subcase 2.3. Let k be the least positive integer such that $a_k \neq 0$, where $3 \leq k < n$. Then, in view of (3.4), we see that $b_k = \pm a_k$.

Subcase 2.3.1. Let $b_k = a_k$. Then, from (3.4), we get $q^k = -1$.

Subcase 2.3.1.1. Let k be odd. Then, -1 is a solution of $q^k = -1$.

Subcase 2.3.1.1.1. Let $q = -1$. If $b_n = a_n$, then in view of (3.2), we get $q^n = -1$, which yields that n is an odd multiple. Similarly, we easily deduce that n is even, when $b_n = -a_n$. Further, in view of (3.4), we conclude that r is odd when $b_r = a_r \neq 0$, and even when $b_r = -a_r \neq 0$, where $k < r < n$.

Subcase 2.3.1.1.2. Let $q \neq -1$.

Subcase 2.3.1.1.2.1. Let k be prime. If $b_n = a_n$, then in view of (3.2), we conclude that n is an odd multiple of k . If $b_n = -a_n$, then n is even multiple of k . Moreover, using (3.4), we see that r is odd multiple of k when $b_r = a_r \neq 0$, and even multiple of k when $b_r = -a_r$ for $k < r < n$.

Subcase 2.3.1.1.2.2. Suppose k is odd composite. Note that $q^p + 1$ is a factor of $q^k + 1$ for each prime factor p of k .

Subcase 2.3.1.1.2.2.1. Suppose $b_n = a_n$. Then, by (3.2) it follows that $q^n = -1$. If $q^p + 1$ is a factor of $q^n + 1$, then for the zeros of $q^p + 1$, we have $n = p(p + 2m)$, where m is an integer chosen in such a way that $k < n$. Moreover, if $b_r = a_r \neq 0$, $k < r < n$, then $r = p(p + 2t)$ and if $b_r = -a_r$, then $r = 2tk$, where the integer t is so chosen that $k < r < n$. For the zeros of $q^k + 1$ other than that of $q^p + 1$, it must be that n is odd multiple of k . Also observe from (3.4) that if $b_r = a_r \neq 0$, $k < r < n$, then r is odd multiple of k , whereas if $b_r = -a_r$, then r is even multiple of k .

Subcase 2.3.1.1.2.2.2. Suppose $b_n = -a_n$. Then, by (3.2) it follows that $q^n = 1$. This implies that n is an even multiple of k . Further, if $b_r = a_r \neq 0$, then r is odd multiple of k , whereas if $b_r = -a_r \neq 0$, then r is even multiple of k , where $k < r < n$.

Subcase 2.3.1.2. Let k be an even integer. Note that for $k = 4s + 2$, i and $-i$ are the solutions of $q^k = -1$, where $s \in \mathbb{N}$.

Subcase 2.3.1.2.1. Suppose $b_n = a_n$. Then, by (3.2), we see that $q^n = -1$. Now for $k = 4s + 2$ and $q = \pm i$, we have $n = 4m + 2$, where m is an integer chosen in such a way that $k < n$. Further, if $a_r z^r$, $k < r < n$ is present in $p_1(z)$, then $r = 4t + 2$ when $b_r = a_r \neq 0$, whereas $r = 4t$ when $b_r = -a_r \neq 0$, t being an integer chosen in such a way that $k < r < n$. Next, suppose $k = 4s$ or $k = 4s + 2$ and $q \neq \pm i$, where $s \in \mathbb{N}$. Then n must be an odd multiple of k . Furthermore, if $b_r = a_r \neq 0$, by (3.4), we get $q^r = -1$, which implies that r is an odd multiple of k , whereas if $b_r = -a_r \neq 0$, then by (3.4), we have $q^r = 1$, which implies that r is even multiple of k .

Subcase 2.3.1.2.2. Let $b_n = -a_n$. Now for $k = 4s + 2$ and $q = \pm i$, we have $n = 4m$, where m is an integer chosen in such a way that $k < n$. Further, if $a_r z^r$, $k < r < n$ is present in $p_1(z)$, then $r = 4t + 2$ when $b_r = a_r \neq 0$, whereas $r = 4t$ when $b_r = -a_r \neq 0$, where $t \in \mathbb{N}$ chosen in such a way that $k < r < n$. Next, suppose $k = 4s$ or $k = 4s + 2$ and $q \neq \pm i$, where $s \in \mathbb{N}$. Then n must be an even multiple of k . Furthermore, if $b_r = a_r \neq 0$, by (3.4), we get $q^r = -1$, which implies that r is an odd multiple of k , whereas if $b_r = -a_r \neq 0$, then by (3.4), we have $q^r = 1$, which implies that r is even multiple of k .

Subcase 2.3.2. Let $b_k = -a_k$. Then, from (3.4), we get $q^k = 1$. This implies that 1 is a solution of $q^k = 1$.

Subcase 2.3.2.1. Let $q = 1$. If $b_n = a_n$, then by (3.2), we get $q^n = -1$, a contradiction since $q = 1$. Thus, $b_n = -a_n$ and hence in view of (3.2), we obtain $q^n = 1$. This implies that n is any integer greater than k . Further, if $a_r \neq 0$ for $k < r < n$, then by similar argument as above we deduce that $b_r = -a_r$. Therefore, from (3.4), we conclude that r is any integer satisfying $k < r < n$.

Subcase 2.3.2.2. Let $q \neq 1$. We discuss this case as follows.

Subcase 2.3.2.2.1. Let k be an odd integer. Note that $b_n \neq a_n$. Otherwise, from (3.2), it follows that $q^n = -1$, which is not possible as $n > k$ and k is odd. Hence $b_n = -a_n$, and therefore, by (3.2), we have

$$(3.5) \quad q^n = 1.$$

Further, if $a_r z^r$ is present in $p_1(z)$ for $k < r < n$, then by similar argument we get

$b_r = -a_r$, and hence from (3.4), we get

$$(3.6) \quad q^r = 1.$$

If k is odd composite, then note that $q^p - 1$ is a factor of $q^k - 1$, where p is a prime factor of k . If $q^p - 1$ is also a factor of $q^n - 1$, then for the zeros of $q^p - 1$ and in view of (3.5), we have $n = p(p + 2m)$, where the integer m is to be chosen so that $n > k$. Moreover, if $a_r \neq 0$ for $k < r < n$, then in view of (3.6), it follows that $r = p(p + 2t)$, where integer t is chosen so that $k < r < n$. For the zeros of $q^k - 1$ other than those of $q^p - 1$, or if k is prime, then in view of (3.5), we get that n must be a multiple of k . Furthermore, if $a_r \neq 0$, $k < r < n$, the by (3.6), we obtain that r is a multiple of k .

Subcase 2.3.2.2.2.2. Let k be an even integer. Observe that -1 is a solution of $q^k = 1$.

Subcase 2.3.2.2.2.2.1. Let $q = -1$. If $b_n = a_n$, then by (3.2), we see that $q^n = -1$. This implies that n is an odd integer. If $b_n = -a_n$, then from (3.2), we get $q^n = 1$, which implies n is even. Further, if $a_r z^r$, $k < r < n$, is present in $p_1(z)$, then in view of (3.4), we conclude that r is odd when $b_r = a_r$, and r is even when $b_r = -a_r$.

Subcase 2.3.2.2.2.2.2. Let $q \neq -1$. Since k is an even integer, $k = 4s$ or $k = 4s + 2$, where $s \in \mathbb{N}$.

Subcase 2.3.2.2.2.2.2.1. Let $k = 4s$, where $s \in \mathbb{N}$. Then, $\pm i$ are the solutions of $q^k = 1$.

Subcase 2.3.2.2.2.2.2.1.1. Let $q = \pm i$. Now if $b_n = a_n$, then in view of (3.2), we get $q^n = -1$, and hence n must be the odd multiple of 2. If $b_n = -a_n$, then by (3.2), we see that $q^n = 1$, which imply that n is an even multiple of 2. Further, if $a_r z^r$, $k < r < n$ be present in $p_1(z)$, then in view of (3.4), we have $r = 4t + 2$, if $b_r = a_r$ and $r = 4t$, if $b_r = -a_r$, where t is an integer.

Subcase 2.3.2.2.2.2.2.1.2. Let $q \neq \pm i$. We observe that $b_n \neq a_n$. Otherwise, in view of (3.2), we obtain $q^n = -1$. This is not possible as $q^n = -1$, $q^k = 1$ is inconsistent system. Hence, $b_n = -a_n$, and therefore by (3.2), we get $q^n = 1$. This implies that n is a multiple of k . Further, if $a_r z^r$ is present in $p_1(z)$, where $k < r < n$, then by similar argument we conclude that $b_r = -a_r$. Hence by (3.4), it follows that $q^r = 1$. This implies that r is a multiple of k .

Subcase 2.3.2.2.2.2.2.2. Let $k = 4s + 2$, where $s \in \mathbb{N}$. Then the same conclusion can be obtain as in Subcase 2.3.2.2.2.1.2. \square

Using the similar arguments as in Lemma 3.1, we obtain the following results.

Lemma 3.2. Let $p_1(z), p_2(z)$ be two non-constant n -th degree polynomials defined as in Lemma 3.1 satisfying

$$(3.7) \quad p_1(qz) - p_2(z) = \xi_1, \quad p_2(qz) - p_1(z) = \xi_2,$$

where $q \neq 0$, $\xi_1, \xi_2 \in \mathbb{C}$. Then, $\xi_1 = -\xi_2 = a_0 - b_0$, $a_j \neq 0$ if and only if $b_j \neq 0$ with $b_j = \pm a_j$, where $1 \leq j < n$. Further, $p_1(z), p_2(z)$ and q satisfy one of the following.

(A) Let $p_1(z) = a_n z^n + a_0$ and $p_2(z) = b_n z^n + b_0$, then $q^n = \frac{b_n}{a_n} = \frac{a_n}{b_n}$.

(B) Let $a_1 \neq 0$, then one of the following cases must occur.

(i) If $b_1 = a_1$, then $q = 1$ and $b_n = a_n$, where n is any integer greater than 1. Moreover if $a_j \neq 0$, where $1 < j < n$, then $b_j = a_j$.

(ii) If $b_1 = -a_1$, then $q = -1$. Further, if $b_n = -a_n$, where n is an integer > 1 , and if $b_n = -a_n$, then n is an odd integer > 1 . Moreover, if $a_j \neq 0$, where $1 < j < n$, then j is even when $b_j = a_j$ and j is odd when $b_j = -a_j$.

(C) Let $a_1 = 0$ and $a_2 \neq 0$, then one of the following cases must occur.

(i) If $b_2 = a_2$, then $q = \pm 1$. Further, if $q = 1$, then $b_n = a_n$, where n is an integer greater than 2. Moreover if $a_j z^j$ is present in $p_1(z)$ for $2 < j < n$, then $b_j z^j$ is present in $p_2(z)$ with $b_j = a_j$. If $q = -1$ and $b_n = a_n$, then n is an even integer greater than 2, whereas if $q = -1$ and $b_n = -a_n$, then n is an odd integer greater than 2. Moreover, if $a_j z^j$, $2 < j < n$ is present in $p_1(z)$, then j is even when $b_j = a_j$ and j is odd when $b_j = -a_j$.

(ii) If $b_2 = -a_2$, then $q = \pm i$. Further, if $b_n = a_n$, then n is an even multiple of 2, whereas if $b_n = -a_n$, then n is an odd multiple of 2. Moreover, if $a_j \neq 0$, $2 < j < n$, then j is an even multiple of 2 when $q = i$ and $b_j = a_j$, whereas j is an odd multiple of 2 when $q = -i$ and $b_j = -a_j$.

(D)] Let $a_k \neq 0$, where k be the least integer such that $3 \leq k < n$. Then, one of the following assertions holds.

(i) If $b_k = a_k$, then $q^k = 1$. Further, we have the following cases.

(a) When $q = 1$, then $b_n = a_n$ and n is any integer greater than 3. Moreover, if $a_j \neq 0$, $k < j < n$, then $b_j = a_j$.

(b) When $q \neq 1$ and $b_n = a_n$, then one of the following must occur.

(b₁) When k is prime, n is a multiple of k . Moreover, if $a_j \neq 0$, $k < j < n$, then $b_j = a_j$ and j is a multiple of k .

(b₂) When k is an odd composite number, then $n = p(p + 2m)$, where p is a prime number greater than or equal to 3 and m is an integer. Moreover, if $a_j \neq 0$, $k < j < n$, then $b_j = a_j$, where $j = p(p + 2t)$, where p is prime number greater than or equal to 3 and t , an integer.

(b₃) When $q = -1$, then n is even. Moreover, if $a_j \neq 0$, $k < j < n$, then j is even when $b_j = a_j$, whereas j is odd when $b_j = -a_j$.

(b₄) When $q \neq -1$ and k is even, n must be a multiple of k . Moreover, if $a_j \neq 0$, then $b_j = a_j$, where j is a multiple of k .

(c) When $q \neq 1$ and $b_n = -a_n$, then one of the following holds.

(c₁) When $q = -1$, then n is an odd integer. Moreover, for $k < j < n$, if $b_j = a_j \neq 0$, then j is even and if $b_j = -a_j \neq 0$, then j is odd.

(c₂) When $q = \pm i$, then n must be an odd multiple of 2. Moreover, for $k < j < n$, if $b_j = a_j \neq 0$, then j is an even multiple of 2 and if $b_j = -a_j \neq 0$, then j is odd multiple of 2.

(ii) If $b_k = -a_k$, then $q^k = -1$. Further, we obtain the following.

(a) When k is odd, we have the following conclusions.

(a₁) For the case $q = -1$, n is even when $b_n = a_n$, whereas n is odd when $b_n = -a_n$. Moreover, for $k < j < n$, if $b_j = a_j \neq 0$, then j is an even, and if $b_j = -a_j \neq 0$, then j is odd.

(a₂) For the case $q \neq -1$, n must be an even multiple of k when $b_n = a_n$, whereas n is odd multiple of k when $b_n = -a_n$. Moreover, for $k < j < n$, if $b_j = a_j \neq 0$, then j is an even multiple of k and if $b_j = -a_j \neq 0$, then j is odd multiple of k .

(b) When k is even, the we have the following conclusions.

(b₁) For $k = 4s$, $s \in \mathbb{N}$, n must be an even multiple of k if $b_n = a_n$, whereas n is odd multiple of k if $b_n = -a_n$.

(b₂) For $k = 4s + 2$ and $q = \pm i$, n must be an even multiple of 2 when $b_n = a_n$, whereas n is odd multiple of 2 when $b_n = -a_n$. Moreover, for $k < j < n$, if $b_j = a_j \neq 0$, then j is even multiple of 2, whereas, if $b_j = -a_j \neq 0$, then j is odd multiple of 2.

(b₃) For $k = 4s + 2$ and $q \neq \pm i$, n is an even multiple of k when $b_n = a_n$, whereas n is an odd multiple of k when $b_n = -a_n$. Moreover, for $k < j < n$, if $b_j = a_j \neq 0$, then j is an even multiple of k . On the other hand if $b_j = -a_j \neq 0$, then j is an odd multiple of k .

Lemma 3.3. *Let $p_1(z), p_2(z)$ be two non-constant n -th degree polynomials defined as in Lemma 3.1 such that*

$$(3.8) \quad p_1(qz) + p_2(z) = \xi_1, \quad p_2(qz) - p_1(z) = \xi_2,$$

where $q \neq 0, \xi_1, \xi_2 \in \mathbb{C}$. Then, $\xi_1 = a_0 + b_0$, $\xi_2 = b_0 - a_0$ and $a_j \neq 0$ if and only if $b_j \neq 0$ with $b_j = \pm ia_j$, where $1 \leq j < n$. Further $p_1(z), p_2(z)$ and q satisfy one of the following.

(A) If $p_1(z) = a_n z^n + a_0$ and $p_2(z) = b_n z^n + b_0$, then $q^n = -\frac{b_n}{a_n} = \frac{a_n}{b_n}$.

(B) When $b_k = ia_k$ for $1 \leq k < n$, then we get $n = (4m + 1)k$, if $b_n = ia_n$ and $n = (4m - 1)k$, if $b_n = -ia_n$, where $m \in \mathbb{N}$. Further, if $a_j z^j$, $1 < j < n$ is present in $p_1(z)$, then $b_j z^j$ is also present in $p_2(z)$ and the form of j is as follows: $j = (4t + 1)k$, if $b_j = ia_j$ and $j = (4t - 1)k$, if $b_j = -ia_j$, where $t \in \mathbb{N}$.

(C) When $b_k = -ia_k$ for $1 \leq k < n$, then we have $n = (4m - 1)k$, if $b_n = ia_n$ and $n = (4m + 1)k$, if $b_n = -ia_n$, where $m \in \mathbb{N}$. Further if $a_j z^j$, $1 < j < n$ is present in $p_1(z)$, then $b_j z^j$ is also present in $p_2(z)$ and the form of j is as follows: $j = (4t - 1)k$, if $b_j = ia_j$ and $j = (4t + 1)k$, if $b_j = -ia_j$, where $t \in \mathbb{N}$.

Lemma 3.4 ([12]). *Let $f_j \not\equiv 0$ ($j = 1, 2, 3$) be meromorphic functions on \mathbb{C}^n such that f_1 is not constant, $f_1 + f_2 + f_3 = 1$, and such that*

$$\sum_{j=1}^3 \left\{ N_2 \left(r, \frac{1}{f_j} \right) + 2\bar{N}(r, f_j) \right\} < \lambda T(r, f_j) + O(\log^+ T(r, f_j))$$

holds for all r outside possibly a set with finite logarithmic measure, where $\lambda < 1$ is a positive number. Then, either $f_2 = 1$ or $f_3 = 1$.

Let us define

$$(3.9) \quad A_1 = \frac{1}{2\sqrt{1+w}} + \frac{1}{2i\sqrt{1-w}}, \quad A_2 = \frac{1}{2\sqrt{1+w}} - \frac{1}{2i\sqrt{1-w}},$$

where $w \in \mathbb{C}$ with $w^2 \neq 0, 1$.

4. PROOF OF THE THEOREMS

Proof of Theorem 2.1. Let $(f_1(z_1, z_2), f_2(z_1, z_2))$ be a pair of transcendental entire solutions with finite order of (1.5). Then, by Theorem 1.1, we obtain

$$(4.1) \quad \begin{cases} \frac{\partial f_1}{\partial z_1} = \cos h_1(z_1, z_2), & f_2(q_1 z_1, q_2 z_2) = \sin h_1(z_1, z_2), \\ \frac{\partial f_2}{\partial z_1} = \cos h_2(z_1, z_2), & f_1(q_1 z_1, q_2 z_2) = \sin h_2(z_1, z_2), \end{cases}$$

where $h_1(z_1, z_2)$ and $h_2(z_1, z_2)$ are entire functions in \mathbb{C}^2 . Since $f_1(z_1, z_2), f_2(z_1, z_2)$ are finite order transcendental entire functions, $h_1(z_1, z_2)$ and $h_2(z_1, z_2)$ are non constant polynomials in \mathbb{C}^2 .

Differentiating fourth equation of (4.1) partially with respect to z_1 and using first equation of (4.1), we easily obtain

$$(4.2) \quad q_1 e^{ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} + q_1 e^{-ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} - \frac{\partial h_2}{\partial z_1} e^{2ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}.$$

Similarly, from second and third equations of (4.1), we get

$$(4.3) \quad q_1 e^{ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} + q_1 e^{-ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} - \frac{\partial h_1}{\partial z_1} e^{2ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}.$$

Observe that $\frac{\partial h_1}{\partial z_1} \neq 0$. Otherwise, from (4.3), we have $e^{2ih_2(q_1 z_1, q_2 z_2)} = -1$. As $q_1 \neq 0$, $q_2 \neq 0$, and $h_2(z_1, z_2)$ is non constant, we get a contradiction. By similar reason, we get $\frac{\partial h_2}{\partial z_1} \neq 0$. Therefore, using Lemma 3.4 on (4.2) and (4.3), we have either $q_1 e^{ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}$ or $q_1 e^{-ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}$ and either $q_1 e^{ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}$ or $q_1 e^{-ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}$. Thus, we can discuss the following four possible cases.

Case 1. Let

$$(4.4) \quad q_1 e^{ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}, \quad q_1 e^{ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}.$$

Now from (4.2), (4.3) and (4.4), we deduce that

$$(4.5) \quad q_1 e^{-ih_1(q_1 z_1, q_2 z_2) - ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}, \quad q_1 e^{-ih_2(q_1 z_1, q_2 z_2) - ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}.$$

Since $h_1(z_1, z_2)$ and $h_2(z_1, z_2)$ are two non constant polynomials in \mathbb{C}^2 , from (4.4), we conclude that

$$(4.6) \quad h_1(q_1 z_1, q_2 z_2) + h_2(z_1, z_2) = \xi_1, \quad h_2(q_1 z_1, q_2 z_2) + h_1(z_1, z_2) = \xi_2,$$

where ξ_1, ξ_2 are two constants in \mathbb{C} . From (4.4), (4.5) and (4.6), we get

$$q_1 e^{i\xi_1} = \frac{\partial h_2}{\partial z_1} = q_1 e^{-i\xi_1} \quad \text{and} \quad q_1 e^{i\xi_2} = \frac{\partial h_1}{\partial z_1} = q_1 e^{-i\xi_2},$$

from which we easily deduce

$$(4.7) \quad e^{2i\xi_1} = 1, \quad e^{2i\xi_2} = 1, \quad \frac{\partial h_2}{\partial z_1} = q_1 e^{i\xi_1}, \quad \frac{\partial h_1}{\partial z_1} = q_1 e^{i\xi_2}.$$

From the last two equations of (4.7), we easily obtain

$$(4.8) \quad h_1(z_1, z_2) = q_1 e^{i\xi_2} z_1 + p_1(z_2) \quad \text{and} \quad h_2(z_1, z_2) = q_1 e^{i\xi_1} z_1 + p_2(z_2),$$

where $p_1(z_2)$ and $p_2(z_2)$ are polynomials in z_2 , only. In view of (4.6) and (4.8), we obtain

$$\begin{cases} q_1 \left(q_1 e^{i\xi_2} + e^{i\xi_1} \right) z_1 + p_1(q_2 z_2) + p_2(z_2) = \xi_1, \\ q_1 \left(q_1 e^{i\xi_1} + e^{i\xi_2} \right) z_1 + p_2(q_2 z_2) + p_1(z_2) = \xi_2, \end{cases}$$

which yield

$$(4.9) \quad q_1 e^{i\xi_2} + e^{i\xi_1} = 0, \quad q_1 e^{i\xi_1} + e^{i\xi_2} = 0$$

and (3.1). Now, from Lemma 3.1, we see that $\xi_1 = \xi_2 = a_0 + b_0$. Therefore, from (4.9), it follows that $q_1 = -1$. From the first two equations of (4.7), we obtain that $e^{i\xi_1} = e^{i\xi_2} = e^{i(a_0+b_0)} = \pm 1$. Also from Lemma 3.1, we get precise form of $p_1(z_1, z_2)$, $p_2(z_1, z_2)$ and the value of q_2 . Thus, from (4.1) and (4.8), we obtain

$$(4.10) \quad f_1(z_1, z_2) = \sin \left(e^{i\xi_1} z_1 + p_2 \left(\frac{z_2}{q_2} \right) \right), \quad f_2(z_1, z_2) = \sin \left(e^{i\xi_2} z_1 + p_1 \left(\frac{z_2}{q_2} \right) \right).$$

Case 2. Let

$$(4.11) \quad q_1 e^{ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}, \quad q_1 e^{-ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}.$$

From (4.2), (4.11) and (4.4), we get

$$(4.12) \quad q_1 e^{-ih_1(q_1 z_1, q_2 z_2) - ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}, \quad q_1 e^{ih_2(q_1 z_1, q_2 z_2) - ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}.$$

As $h_1(z_1, z_2)$ and $h_2(z_1, z_2)$ are non constant polynomials in \mathbb{C}^2 , from (4.11), we conclude that

$$(4.13) \quad h_1(q_1 z_1, q_2 z_2) + h_2(z_1, z_2) = \xi_1, \quad h_2(q_1 z_1, q_2 z_2) - h_1(z_1, z_2) = \xi_2,$$

where $\xi_1, \xi_2 \in \mathbb{C}$. From (4.11), (4.12) and (4.13), we get (4.7) and (4.8). Therefore, in view of (4.8) and (4.13), we obtain

$$\begin{cases} q_1 \left(q_1 e^{i\xi_2} + e^{i\xi_1} \right) z_1 + p_1(q_2 z_2) + p_2(z_2) = \xi_1, \\ q_1 \left(q_1 e^{i\xi_1} - e^{i\xi_2} \right) z_1 + p_2(q_2 z_2) - p_1(z_2) = \xi_2, \end{cases}$$

from which it follows that $q_1 e^{i\xi_2} + e^{i\xi_1} = 0$, $q_1 e^{i\xi_1} - e^{i\xi_2} = 0$ and (3.8). This implies that $e^{i(\xi_2 - \xi_1)} = \pm i$. But this is not possible as we have (4.7).

Case 3. Let

$$q_1 e^{-ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}, \quad q_1 e^{ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}.$$

Then, by similar arguments as used in Case 2, we get a contradiction.

Case 4. Let

$$(4.14) \quad q_1 e^{-ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}, \quad q_1 e^{-ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}.$$

Now from (4.2), (4.3) and (4.14), we obtain

$$(4.15) \quad q_1 e^{ih_1(q_1 z_1, q_2 z_2) - ih_2(z_1, z_2)} = \frac{\partial h_2}{\partial z_1}, \quad q_1 e^{ih_2(q_1 z_1, q_2 z_2) - ih_1(z_1, z_2)} = \frac{\partial h_1}{\partial z_1}.$$

Note that $h_1(z_1, z_2)$ and $h_2(z_1, z_2)$ are non constant polynomials in \mathbb{C}^2 . Then, from (4.15), we get

$$(4.16) \quad h_1(q_1 z_1, q_2 z_2) - h_2(z_1, z_2) = \xi_1, \quad h_2(q_1 z_1, q_2 z_2) - h_1(z_1, z_2) = \xi_2,$$

where ξ_1, ξ_2 are two complex constants. Therefore, by similar arguments as in Case 1, we obtain (4.7), (3.7) and

$$q_1 e^{i\xi_2} = e^{i\xi_1}, \quad q_1 e^{i\xi_2} = e^{i\xi_2}.$$

By Lemma 3.2, we see that $\xi_1 = -\xi_2 = a_0 - b_0$. Then, by the above equations and (4.7), we get $q_1 = 1$. Hence, the form of solutions is given by (4.10), where $q_2, p_1(z_1, z_2)$ and $p_2(z_1, z_2)$ can be found from Lemma 3.2. \square

Proof of Theorem 2.2. Suppose $(f_1(z_1, z_2), f_2(z_1, z_2))$ be a pair of transcendental entire solution of finite order of (1.6). Using simple concept of transformation in geometry, we assume

$$(4.17) \quad \frac{\partial f_1}{\partial z_1} = \frac{1}{\sqrt{2}}(\alpha + \beta), \quad f_2(q_1 z_1, q_2 z_2) = \frac{1}{\sqrt{2}}(\alpha - \beta),$$

where α, β are entire functions in \mathbb{C}^2 . Therefore, first equation of (1.6) reduces to

$$(\sqrt{1+w}\alpha)^2 + (\sqrt{1-w}\beta)^2 = 1.$$

Therefore, in view of Theorem 1.1, we can have

$$(4.18) \quad \alpha = \frac{\cos u(z_1, z_2)}{\sqrt{1+w}}, \quad \beta = \frac{\sin u(z_1, z_2)}{\sqrt{1-w}},$$

where $u(z_1, z_2)$ is a non-constant entire function. As f_1, f_2 are of finite order, u must be a polynomial in \mathbb{C}^2 . Hence, by (4.17) and (4.18), we get

$$(4.19) \quad \frac{\partial f_1}{\partial z_1} = \frac{1}{2} \left(\frac{\cos u}{\sqrt{1+w}} + \frac{\sin u}{\sqrt{1-w}} \right), \quad f_2(q_1 z_1, q_2 z_2) = \frac{1}{2} \left(\frac{\cos u}{\sqrt{1+w}} - \frac{\sin u}{\sqrt{1-w}} \right).$$

In a similar arguments, from the second equation of (1.6), we get

$$(4.20) \quad \frac{\partial f_2}{\partial z_1} = \frac{1}{2} \left(\frac{\cos v}{\sqrt{1+w}} + \frac{\sin v}{\sqrt{1-w}} \right), \quad f_1(q_1 z_1, q_2 z_2) = \frac{1}{2} \left(\frac{\cos v}{\sqrt{1+w}} - \frac{\sin v}{\sqrt{1-w}} \right),$$

where v is a non-constant polynomial in \mathbb{C}^2 .

Now differentiating second equation of (4.20) partially with respect to z_1 , and using first equation of (4.19), and differentiating second equation of (4.19) partially with respect to z_1 , and using first equation of (4.20), we get

$$(4.21) \quad \begin{cases} q_1 A_1 e^{iu(q_1 z_1, q_2 z_2) + iv(z_1, z_2)} + q_1 A_2 e^{-iu(q_1 z_1, q_2 z_2) + iv(z_1, z_2)} - i A_2 \frac{\partial v}{\partial z_1} e^{2iv(z_1, z_2)} = -i A_1 \frac{\partial v}{\partial z_1}, \\ q_1 A_1 e^{iv(q_1 z_1, q_2 z_2) + iu(z_1, z_2)} + q_1 A_2 e^{-iv(q_1 z_1, q_2 z_2) + iu(z_1, z_2)} - i A_2 \frac{\partial u}{\partial z_1} e^{2iu(z_1, z_2)} = -i A_1 \frac{\partial u}{\partial z_1}. \end{cases}$$

Note that $\frac{\partial v}{\partial z_1} \not\equiv 0$. Otherwise, from first equation of (4.21), we obtain

$$A_1 e^{2iu(q_1 z_1, q_2 z_2)} = -A_2,$$

which implies that u is constant, a contradiction. Similarly, $\frac{\partial u}{\partial z_1} \not\equiv 0$. Therefore, in view of Lemma 3.4, from (4.21), we conclude that either

$$q_1 A_1 e^{iu(q_1 z_1, q_2 z_2) + iv(z_1, z_2)} = -i A_1 \frac{\partial v}{\partial z_1} \quad \text{or} \quad q_1 A_2 e^{-iu(q_1 z_1, q_2 z_2) + iv(z_1, z_2)} = -i A_1 \frac{\partial v}{\partial z_1}$$

and either

$$q_1 A_1 e^{iv(q_1 z_1, q_2 z_2) + iu(z_1, z_2)} = -i A_1 \frac{\partial u}{\partial z_1} \quad \text{or} \quad q_1 A_2 e^{-iv(q_1 z_1, q_2 z_2) + iu(z_1, z_2)} = -i A_1 \frac{\partial u}{\partial z_1}.$$

Now we discuss by considering four possible cases.

Case 1. Let

$$(4.22) \quad q_1 e^{iu(q_1 z_1, q_2 z_2) + iv(z_1, z_2)} = -i \frac{\partial v}{\partial z_1}, \quad q_1 e^{iv(q_1 z_1, q_2 z_2) + iu(z_1, z_2)} = -i \frac{\partial u}{\partial z_1}.$$

From (4.21) and (4.22), we obtain

$$(4.23) \quad q_1 e^{-iu(q_1 z_1, q_2 z_2) - iv(z_1, z_2)} = i \frac{\partial v}{\partial z_1}, \quad q_1 e^{-iv(q_1 z_1, q_2 z_2) - iu(z_1, z_2)} = i \frac{\partial u}{\partial z_1}.$$

Since u, v are non-zero polynomials in \mathbb{C}^2 , from (4.22), it can be concluded that

$$(4.24) \quad u(q_1 z_1, q_2 z_2) + v(z_1, z_2) = \xi_1, \quad v(q_1 z_1, q_2 z_2) + u(z_1, z_2) = \xi_2,$$

where ξ_1, ξ_2 are constants in \mathbb{C} . From (4.22), (4.23) and (4.24), we obtain

$$\begin{aligned} q_1 A_1 e^{i\xi_1} &= -i A_1 \frac{\partial v}{\partial z_1}, & q_1 A_1 e^{i\xi_2} &= -i A_1 \frac{\partial u}{\partial z_1}, \\ q_1 A_2 e^{-i\xi_1} &= i A_2 \frac{\partial v}{\partial z_1}, & q_1 A_2 e^{-i\xi_2} &= i A_2 \frac{\partial u}{\partial z_1}. \end{aligned}$$

From the above four equations, we deduce that

$$\frac{\partial v}{\partial z_1} = i q_1 e^{i\xi_1} = -i q_1 e^{-i\xi_1}, \quad \frac{\partial u}{\partial z_1} = i q_1 e^{i\xi_2} = -i q_1 e^{-i\xi_2},$$

which yield

$$(4.25) \quad \begin{cases} e^{2i\xi_1} = -1, & e^{2i\xi_2} = -1, \\ u(z_1, z_2) = i q_1 e^{i\xi_2} z_1 + p_1(z_2), & v(z_1, z_2) = i q_1 e^{i\xi_1} z_1 + p_2(z_2), \end{cases}$$

where $p_1(z_2), p_2(z_2)$ are polynomials in z_2 , only. Now in view of the last two equations of (4.25) and (4.24), we easily get

$$(4.26) \quad \begin{cases} e^{i(\xi_1 - \xi_2)} = -q_1 = e^{i(\xi_2 - \xi_1)}, \\ p_1(q_2 z_2) + p_2(z_2) = \xi_1, \\ p_2(q_2 z_2) + p_1(z_2) = \xi_2. \end{cases}$$

From the last two equation of (4.26) and, by Lemma 3.1, it follows that $\xi_1 = \xi_2$. Therefore, from (4.26), we get $q_1 = -1$. Also, in view of the last two equations of (4.26), it can be concluded that $q_2, p_1(z_1, z_2), p_2(z_1, z_2)$ can be found from Lemma 3.1. Hence, from second equation of (4.19) and (4.20), we obtain (2.1).

Case 2. Let

$$(4.27) \quad q_1 e^{iu(q_1 z_1, q_2 z_2) + iv(z_1, z_2)} = -i \frac{\partial v}{\partial z_1}, \quad q_1 A_2 e^{-iv(q_1 z_1, q_2 z_2) + iu(z_1, z_2)} = -i A_1 \frac{\partial u}{\partial z_1}.$$

Then, from (4.21), (4.22) and (4.27), we obtain

$$(4.28) \quad q_1 e^{-iu(q_1 z_1, q_2 z_2) - iv(z_1, z_2)} = i \frac{\partial v}{\partial z_1}, \quad q_1 A_1 e^{iv(q_1 z_1, q_2 z_2) - iu(z_1, z_2)} = i A_2 \frac{\partial u}{\partial z_1}.$$

Since u, v are non constant polynomials in \mathbb{C}^2 , in view of (4.27), we conclude that

$$(4.29) \quad u(q_1 z_1, q_2 z_2) + v(z_1, z_2) = \xi_1, \quad v(q_1 z_1, q_2 z_2) - u(z_1, z_2) = \xi_2.$$

From (4.27), (4.28) and (4.29), we get

$$\frac{\partial u}{\partial z_1} = iq_1 \frac{A_2}{A_1} e^{-i\xi_2} = -iq_1 \frac{A_1}{A_2} e^{i\xi_2}, \quad \frac{\partial v}{\partial z_1} = iq_1 e^{i\xi_1} = -iq_1 e^{-i\xi_1},$$

which yield

$$(4.30) \quad \begin{cases} e^{2i\xi_1} = -1, \quad e^{2i\xi_2} = -\frac{A_2^2}{A_1^2}, \\ u(z_1, z_2) = -iq_1 \frac{A_1}{A_2} e^{i\xi_2} z_1 + p_1(z_2), \quad v(z_1, z_2) = iq_1 e^{i\xi_1} z_1 + p_2(z_2), \end{cases}$$

where $p_1(z_2), p_2(z_2)$ are two polynomials in z_2 , only. Therefore, from (4.29) and (4.30), we easily have

$$(4.31) \quad \begin{cases} -q_1 \frac{A_1}{A_2} e^{i\xi_2} + e^{i\xi_1} = 0, \quad q_1 e^{i\xi_1} + \frac{A_1}{A_2} e^{i\xi_2} = 0, \\ p_1(q_2 z_2) + p_2(z_2) = \xi_1, \quad p_2(q_2 z_2) - p_1(z_2) = \xi_2, \end{cases}$$

where $q_2 \neq 0, \xi_1, \xi_2 \in \mathbb{C}$. From the first equation of (4.30), we observe that $e^{i\xi_1} = \pm i$. If $e^{i\xi_1} = i$, the from (4.31), we obtain that $q_1 = \pm i$ and $e^{i\xi_2} = \frac{iA_2}{q_1 A_1}$. But in view of the second equation of (4.30), we easily get a contradiction. If $e^{i\xi_1} = -i$, then similarly we can get a contradiction.

Case 3. Let

$$q_1 A_2 e^{-iu(q_1 z_1, q_2 z_2) + iv(z_1, z_2)} = -i A_1 \frac{\partial v}{\partial z_1}, \quad q_1 A_1 e^{iv(q_1 z_1, q_2 z_2) + iu(z_1, z_2)} = -i A_1 \frac{\partial u}{\partial z_1}.$$

By similar arguments as used in **Case 2**, we can obtain a contradiction.

Case 4. Let

$$(4.32) \quad q_1 A_2 e^{-iu(q_1 z_1, q_2 z_2) + iv(z_1, z_2)} = -i A_1 \frac{\partial v}{\partial z_1}, \quad q_1 A_2 e^{-iv(q_1 z_1, q_2 z_2) + iu(z_1, z_2)} = -i A_1 \frac{\partial u}{\partial z_1}.$$

Then, by (4.21) and (4.32), we get

$$(4.33) \quad q_1 A_1 e^{iu(q_1 z_1, q_2 z_2) - iv(z_1, z_2)} = i A_2 \frac{\partial v}{\partial z_1}, \quad q_1 A_1 e^{iv(q_1 z_1, q_2 z_2) - iu(z_1, z_2)} = i A_2 \frac{\partial u}{\partial z_1}.$$

Therefore, by similar arguments as in Case 1, we get

$$(4.34) \quad u(q_1 z_1, q_2 z_2) - v(z_1, z_2) = \xi_1, \quad v(q_1 z_1, q_2 z_2) - u(z_1, z_2) = \xi_2,$$

$$(4.35) \quad \begin{cases} e^{2i\xi_1} = -\frac{A_2^2}{A_1^2} = e^{2i\xi_2}, \\ u(z_1, z_2) = -\frac{iq_1 A_1}{A_2} e^{i\xi_2} z_1 + p_1(z_2), \\ v(z_1, z_2) = -\frac{iq_1 A_1}{A_2} e^{i\xi_1} z_1 + p_2(z_2), \end{cases}$$

where ξ_1, ξ_2 are constants in \mathbb{C} . Now from (4.34) and last two equations of (4.35), we obtain

$$(4.36) \quad \begin{cases} -q_1 e^{i\xi_2} + e^{i\xi_1} = 0, & -q_1 e^{i\xi_1} + e^{i\xi_2} = 0, \\ p_1(q_2 z_2) - p_2(z_2) = \xi_1, & p_2(q_2 z_2) - p_1(z_2) = \xi_2. \end{cases}$$

In view of Lemma 3.2 and (4.36), it follows that $\xi_2 = -\xi_1 = b_0 - a_0$. Therefore, from (4.36), we deduce that $e^{2i\xi_1} = q_1 = \frac{1}{q_1}$. This implies that $q_1 = \pm 1$, and hence $e^{2i\xi_1} = \pm 1$. Thus, from (4.35), we get $\frac{A_2^2}{A_1^2} = \pm 1$, which is a contradiction. \square

Proof of Theorem 2.3. If $(f_1(z_1, z_2), f_2(z_1, z_2))$ be a pair of finite order transcendental entire solution of (1.7). Then by Theorem 1.1, we get

$$(4.37) \quad \begin{cases} \frac{\partial f_1}{\partial z_1} = \cos h_1(z_1, z_2), & f_2(q_1 z_1, q_2 z_2) - f_1(z_1, z_2) = \sin h_1(z_1, z_2), \\ \frac{\partial f_2}{\partial z_1} = \cos h_2(z_1, z_2), & f_1(q_1 z_1, q_2 z_2) - f_2(z_1, z_2) = \sin h_2(z_1, z_2), \end{cases}$$

where $h_1(z_1, z_2)$ and $h_2(z_1, z_2)$ are entire functions in \mathbb{C}^2 .

First suppose that $h_1(z_1, z_2) \equiv \gamma_1$ and $h_2(z_1, z_2) \equiv \gamma_2$, where γ_1, γ_2 are constants in \mathbb{C} . Then from first and third equations of (4.37), we have

$$(4.38) \quad f_1(z_1, z_2) = z_1 \cos \gamma_1 + \phi_1(z_2) \quad \text{and} \quad f_2(z_1, z_2) = z_1 \cos \gamma_2 + \phi_2(z_2),$$

where ϕ_1, ϕ_2 are entire functions in z_2 , only. Therefore, from second and fourth equations of (4.37) and (4.38), we obtain

$$\begin{cases} (q_1 \cos \gamma_2 - \cos \gamma_1) z_1 + \phi_2(q_2 z_2) - \phi_1(z_2) = \sin \gamma_1, \\ (q_1 \cos \gamma_1 - \cos \gamma_2) z_1 + \phi_1(q_2 z_2) - \phi_2(z_2) = \sin \gamma_2, \end{cases}$$

which implies that

$$(4.39) \quad \begin{cases} q_1 \cos \gamma_2 - \cos \gamma_1 = 0, & q_1 \cos \gamma_1 - \cos \gamma_2 = 0, \\ \phi_2(q_2 z_2) - \phi_1(z_2) = \sin \gamma_1, & \phi_1(q_2 z_2) - \phi_2(z_2) = \sin \gamma_2. \end{cases}$$

In view of (4.39), we observe that if $\gamma_1 = (2m+1)\pi/2$, then $\gamma_2 = (2n+1)\pi/2$, m, n being an integer. In this case (1.7) does not contain the partial derivative term. So, to avoid this situation we assume that γ_1 and γ_2 are not odd multiple of $\pi/2$. Therefore, from first two equations of (4.42), we have $q_1 = \pm 1$. When $q_1 = 1$, $\gamma_2 = 2n\pi \pm \gamma_1$, whereas when $q_1 = -1$, $\gamma_2 = (2n+1)\pi \pm \gamma_1$, n being an integer.

Next suppose that $h_1(z_1, z_2) \equiv \gamma_1$, a constant and $h_2(z_1, z_2)$ is non constant. Then the form of $f_1(z_1, z_2)$ is given by (4.38). Using this in the first equation of (1.7), we have

$$(4.40) \quad f_2(z_1, z_2) = \frac{z_1 \cos \gamma_1}{q_1} + \phi_1\left(\frac{z_2}{q_2}\right) \pm \sin \gamma_1.$$

Using first equation of (4.39) and (4.40) in second equation of (1.7), we get

$$\cos \gamma_1 \left(q_1 - \frac{1}{q_1} \right) z_1 + \phi_1(q_2 z_2) - \phi_1\left(\frac{z_2}{q_2}\right) \mp \sin \gamma_1 = \pm \frac{\sqrt{q_1^2 - \cos^2 \gamma_1}}{q_1}.$$

This implies that $q_1 \pm 1$ and

$$\phi_1(q_2 z_2) - \phi_1\left(\frac{z_2}{q_2}\right) = \pm \left[\sin \gamma_1 + \frac{\sqrt{q_1^2 - \cos^2 \gamma_1}}{q_1} \right].$$

Finally, suppose that h_1, h_2 both are nonconstant entire functions in \mathbb{C}^2 . Then by similar arguments as used in the proof of Theorem 2.1, we can easily deduce that

$$(4.41) \quad \begin{cases} q_1 e^{ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} + q_1 e^{-ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} - \left(1 + \frac{\partial h_2}{\partial z_1}\right) e^{2ih_2} = 1 + \frac{\partial h_2}{\partial z_1}, \\ q_1 e^{ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} + q_1 e^{-ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} - \left(1 + \frac{\partial h_1}{\partial z_1}\right) e^{2ih_1} = 1 + \frac{\partial h_1}{\partial z_1}. \end{cases}$$

Note that $1 + \frac{\partial h_2}{\partial z_1} \neq 0$. Otherwise, from (4.41), we can easily see that $h_1(q_1 z_1, q_2 z_2)$ is a constant, which is not possible as $h_1(z_1, z_2)$ is a non constant polynomial in \mathbb{C}^2 . Similarly, we can prove that $1 + \frac{\partial h_1}{\partial z_1} \neq 0$. Therefore, by Lemma 3.4, it follows that either $q_1 e^{ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = 1 + \frac{\partial h_2}{\partial z_1}$ or $q_1 e^{-ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = 1 + \frac{\partial h_2}{\partial z_1}$ and either $q_1 e^{ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = 1 + \frac{\partial h_1}{\partial z_1}$ or $q_1 e^{-ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = 1 + \frac{\partial h_1}{\partial z_1}$.

Now, we can discuss by four possible cases.

Case 1. Let

$$(4.42) \quad q_1 e^{ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = 1 + \frac{\partial h_2}{\partial z_1}, \quad q_1 e^{ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = 1 + \frac{\partial h_1}{\partial z_1}.$$

From (4.41) and (4.42), we get

$$(4.43) \quad q_1 e^{-ih_1(q_1 z_1, q_2 z_2) - ih_2(z_1, z_2)} = 1 + \frac{\partial h_2}{\partial z_1}, \quad q_1 e^{-ih_2(q_1 z_1, q_2 z_2) - ih_1(z_1, z_2)} = 1 + \frac{\partial h_1}{\partial z_1}.$$

Therefore, by the same arguments as used in Case 1 in the proof of Theorem 2.1, we obtain

$$(4.44) \quad \begin{cases} e^{2i\xi_1} = 1, & e^{2i\xi_2} = 1, \\ h_1(z_1, z_2) = (q_1 e^{i\xi_2} - 1) z_1 + p_1(z_2), \\ h_2(z_1, z_2) = (q_1 e^{i\xi_1} - 1) z_1 + p_2(z_2), \end{cases}$$

and

$$(4.45) \quad \begin{cases} q_1 (q_1 e^{i\xi_1} - 1) + (q_1 e^{i\xi_2} - 1) = 0, & q_1 (q_1 e^{i\xi_2} - 1) + (q_1 e^{i\xi_1} - 1) = 0, \\ p_1(q_2 z_2) + p_2(z_2) = \xi_1, & p_2(q_2 z_2) + p_1(z_2) = \xi_2, \end{cases}$$

where $p_1(z_2), p_2(z_2)$ are polynomials in z_2 , only. In view of Lemma 3.1 and (4.45), we see that $\xi_1 = \xi_2 = a_0 + b_0$ and the precise from of q_2, p_1, p_2 are given in Lemma 3.1. From the first equation of (4.44), it follows that $e^{i\xi_1} = \pm 1$.

First suppose $e^{i\xi_1} = 1$, then in view of first two equations of (4.45), we see that $q_1 = \pm 1$. Therefore, for $e^{i\xi_1} = 1$ and $q_1 = 1$, (4.44) yields $h_1(z_1, z_2) = p_1(z_2)$ and $h_2(z_1, z_2) = p_2(z_2)$. Thus from first and third equations of (4.37), we obtain

$$(4.46) \quad f_1(z_1, z_2) = z_1 \cos p_1(z_2) + T_1(z_2), \quad f_2(z_1, z_2) = z_1 \cos p_2(z_2) + T_2(z_2),$$

where T_1, T_2 are entire functions in z_2 , only. From (4.46) and second and fourth equations of (4.37), we easily deduce that

$$(4.47) \quad T_1(q_2^2 z_2) = T_1(z_2), \quad T_2(q_2^2 z_2) = T_2(z_2).$$

Next suppose that $e^{i\xi_1} = 1$ and $q_1 = -1$. Then from (4.44), we have $h_1(z_1, z_2) = -2z_1 + p_1(z_2)$ and $h_2(z_1, z_2) = -2z_1 + p_2(z_2)$, and hence from first and third equations of (4.37), we obtain

$$(4.48) \quad \begin{cases} f_1(z_1, z_2) = -\frac{1}{2} \sin(-2z_1 + p_1(z_2)) + T_1(z_2), \\ f_2(z_1, z_2) = -\frac{1}{2} \sin(-2z_1 + p_2(z_2)) + T_2(z_2), \end{cases}$$

where T_1, T_2 are entire functions in z_2 , only. From (4.48) and second and fourth equations of (4.37), we get (4.47).

Next suppose that $e^{i\xi_1} = -1$. Then from (4.45), we have $q_1 = -1$. Therefore, from the last two equations of (4.44) and first and third equations of (4.37), we easily get (4.46). Hence, using (4.46) in second and third equations of (4.37), we deduce that

$$(4.49) \quad T_1(q_2^2 z_2) - T_1(z_2) = 2 \sin p_1(z_2) \quad \text{and} \quad T_2(q_2^2 z_2) - T_2(z_2) = 2 \sin p_2(z_2).$$

Case 2. Let

$$(4.50) \quad q_1 e^{-ih_2(q_1 z_1, q_2 z_2) + ih_1(z_1, z_2)} = 1 + \frac{\partial h_1}{\partial z_1}, \quad q_1 e^{ih_1(q_1 z_1, q_2 z_2) + ih_2(z_1, z_2)} = 1 + \frac{\partial h_2}{\partial z_1}.$$

From (4.41) and (4.50), we get

$$(4.51) \quad q_1 e^{ih_2(q_1 z_1, q_2 z_2) - ih_1(z_1, z_2)} = 1 + \frac{\partial h_1}{\partial z_1}, \quad q_1 e^{-ih_1(q_1 z_1, q_2 z_2) - ih_2(z_1, z_2)} = 1 + \frac{\partial h_2}{\partial z_1}.$$

By similar argument as in Case 1, we can obtain (4.44) and

$$(4.52) \quad \begin{cases} q_1 (q_1 e^{i\xi_2} - 1) + (q_1 e^{i\xi_1} - 1) = 0, & q_1 (q_1 e^{i\xi_1} - 1) - (q_1 e^{i\xi_2} - 1) = 0, \\ p_1(q_2 z_2) + p_2(z_2) = \xi_1, & p_2(q_2 z_2) - p_1(z_2) = \xi_2, \end{cases}$$

where $p_1(z_2), p_2(z_2)$ are polynomials in z_2 , only and hence can be found from Lemma 3.3 along with q_2 . In view of the first two equations of (4.44), let us first assume that $e^{i\xi_1} = 1, e^{i\xi_2} = 1$. Then, by (4.52), we get $q_1 = 1$, and hence by (4.44), we have $h_1(z_1, z_2) = p_1(z_2)$ and $h_2(z_1, z_2) = p_2(z_2)$. Therefore, from first and third equations of (4.37), we obtain (4.46), where T_1, T_2 are entire functions in z_2 , only.

Now, by second and third equations of (4.37) and (4.46), we can easily deduce that

$$T_1(q_2^2 z_2) - T_1(z_2) = 2 \sin p_1(z_2) \quad \text{and} \quad T_2(q_2^2 z_2) = T_2(z_2).$$

Next suppose that $e^{i\xi_1} = 1$ and $e^{i\xi_2} = -1$. Then, from (4.52), it follows that $q_1 = \pm i$. If $q_1 = i$, then from (4.44), we have $h_1(z_1, z_2) = -(1+i)z_1 + p_1(z_2)$ and $h_2(z_1, z_2) = -(1-i)z_1 + p_2(z_2)$, and hence from first and third equations of (4.37), we deduce that

$$(4.53) \quad \begin{cases} f_1(z_1, z_2) = -\frac{1}{1+i} \sin(-(1+i)z_1 + p_1(z_2)) + T_1(z_2), \\ f_2(z_1, z_2) = -\frac{1}{1-i} \sin(-(1-i)z_1 + p_2(z_2)) + T_2(z_2), \end{cases}$$

where T_1, T_2 are entire functions in z_2 . By second and third equations of (4.37) and (4.53), we can prove that T_1, T_2 satisfy (4.47).

If $q_1 = -i$, then similarly we can get

$$\begin{cases} f_1(z_1, z_2) = -\frac{1}{1-i} \sin(-(1-i)z_1 + p_1(z_2)) + T_1(z_2), \\ f_2(z_1, z_2) = -\frac{1}{1+i} \sin(-(1+i)z_1 + p_2(z_2)) + T_2(z_2), \end{cases}$$

where T_1, T_2 are entire functions in z_2 satisfying (4.47).

If $e^{i\xi_1} = -1$ and $e^{i\xi_2} = 1$, then from the first two equations of (4.52), we easily reach to a contradiction.

Finally, let $e^{i\xi_1} = -1$ and $e^{i\xi_2} = -1$. Then from (4.52), we have $q_1 = -1$. Therefore, in view of last two equations of (4.44), first and third equations of (4.37), we obtain (4.46). Therefore, from second and fourth equations of (4.37), it can be shown that

$$T_1(q_2^2 z_2) = T_1(z_2) \quad \text{and} \quad T_2(q_2^2 z_2) - T_2(z_2) = 2 \sin p_2(z_2).$$

Case 3. Let

$$q_1 e^{i h_2(q_1 z_1, q_2 z_2) + i h_1(z_1, z_2)} = 1 + \frac{\partial h_1}{\partial z_1}, \quad q_1 e^{-i h_1(q_1 z_1, q_2 z_2) + i h_2(z_1, z_2)} = 1 + \frac{\partial h_2}{\partial z_1}.$$

Then, after interchanging $p_1(z_2)$ with $p_2(z_2)$, ξ_1 with ξ_2 in (3.8) in Lemma 3.3, we can get the same conclusions as obtained in Case 2. So we omit the details.

Case 4. Let

$$(4.54) \quad q_1 e^{i h_1(z_1, z_2) - i h_2(q_1 z_1, q_2 z_2)} = 1 + \frac{\partial h_1}{\partial z_1}, \quad q_1 e^{i h_2(z_1, z_2) - i h_1(q_1 z_1, q_2 z_2)} = 1 + \frac{\partial h_2}{\partial z_1}.$$

From (4.41) and (4.54), we get

$$(4.55) \quad q_1 e^{ih_2(q_1 z_1, q_2 z_2) - ih_1(z_1, z_2)} = 1 + \frac{\partial h_1}{\partial z_1}, \quad q_1 e^{ih_1(q_1 z_1, q_2 z_2) - ih_2(z_1, z_2)} = 1 + \frac{\partial h_2}{\partial z_1}.$$

Now, by similar arguments as used in Case 1, we obtain (4.44), (3.7) and

$$(4.56) \quad q_1 (q_1 e^{i\xi_2} - 1) - (q_1 e^{i\xi_1} - 1) = 0, \quad q_1 (q_1 e^{i\xi_1} - 1) - (q_1 e^{i\xi_2} - 1) = 0.$$

In view of Lemma 3.2, we see that $\xi_1 = a_0 - b_0 = -\xi_2$. Also the form of the polynomials p_1, p_2 and the value of q_2 can be found from Lemma 3.2. Hence, by first two equations of (4.44), it follows that $e^{i\xi_2} = 1$ when $e^{i\xi_1} = 1$, whereas $e^{i\xi_2} = -1$ when $e^{i\xi_1} = -1$.

First suppose that $e^{i\xi_1} = 1$. Then, by (4.56), we get $q_1 = 1$, and hence in view of (4.44), first and third equation equation of (4.37), we easily have (4.46). Using second and fourth equations of (4.37) and (4.46), we conclude that

$$T_1(q_2^2 z_2) - T_1(z_2) = 2 \sin p_1(z_2) \quad \text{and} \quad T_2(q_2^2 z_2) - T_2(z_2) = 2 \sin p_2(z_2).$$

Next suppose $e^{i\xi_1} = -1$. Then, from (4.56), we obtain $q_1 = \pm 1$. If $q_1 = 1$, by (4.44), first and third equations of (4.37), we obtain (4.48). Using (4.48) in second and fourth equations of (4.37), we obtain (4.47). Similarly, if $q_1 = -1$, then we have (4.46), where T_1, T_2 satisfy (4.47). \square

REFERENCES

- [1] A. Biancofiore and W. Stoll, *Another proof of the lemma of the logarithmic derivative in several complex variables*, in: *Recent Developments in Several Complex Variables*, Princeton University Press, Princeton, 29–45, 1981.
- [2] T. B. Cao and R. J. Korhonen, *A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables*, J. Math. Anal. Appl. **444**(2) (2016), 1114–1132. <https://doi.org/10.1016/j.jmaa.2016.06.050>
- [3] Y. M. Chiang and S. J. Feng, *On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane*, Ramanujan J. **16**(1) (2008), 105–129. <https://doi.org/10.1007/s11139-007-9101-1>
- [4] R. Courant and D. Hilbert, *Methods of Mathematical Physics, Vol. II: Partial Differential Equations*, Interscience, New York, 1962.
- [5] P. R. Garabedian, *Partial Differential Equations*, Wiley, New York, 1964.
- [6] F. Gross, *On the equation $f^n(z) + g^n(z) = 1$* , Bull. Amer. Math. Soc. **72** (1966) 86–88.
- [7] R. G. Halburd and R. J. Korhonen, *Difference analogue of the lemma on the logarithmic derivative with applications to difference equations*, J. Math. Anal. Appl. **314** (2006), 477–487. <https://doi.org/10.1016/j.jmaa.2005.04.010>
- [8] G. Haldar, *Solutions of Fermat-type partial differential difference equations in \mathbb{C}^2* , *Mediterr. J. Math.* **20** (2023), Article No. 50. <https://doi.org/10.1007/s00009-022-02180-6>
- [9] G. Haldar and M. B. Ahamed, *Entire solutions of several quadratic binomial and trinomial partial differential-difference equations in \mathbb{C}^2* , *Anal. Math. Phys.* **12** (2022), Article No. 113. <https://doi.org/10.1007/s13324-022-00722-5>
- [10] W. K. Hayman, *Meromorphic Functions*, The Clarendon Press, Oxford, 1964.
- [11] Q. Han and F. Lü, *On the functional equation $f^n + g^n = e^{\alpha z + \beta}$* , *J. Contemp. Math. Anal.* **54** (2019), 98–102. <https://doi.org/10.3103/S1068362319020067>

- [12] P. C. Hu, P. Li and C. C. Yang, *Unicity of Meromorphic Mappings, Advances in Complex Analysis and Its Applications*, Vol. 1, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.
- [13] G. Iyer, *On certain functional equations*, J. Indian. Math. Soc. **3** (1939), 312–315.
- [14] B. Q. Li, *On reduction of functional-differential equations*, Complex Var. **31** (1996), 311–324. <https://doi.org/10.1080/17476939608814970>
- [15] K. Liu and L. Z. Yang, *On entire solutions of some differential-difference equations*, Comput. Methods Funct. Theory **13** (2012), 433–447. <https://doi.org/10.1007/s40315-013-0030-2>
- [16] K. Liu and T. B. Cao, *Entire solutions of Fermat type q -difference-differential equations*, Electron. J. Diff. Equ. **59** (2013), 1–10. <http://ejde.math.txstate.eduorhttp://ejde.math.unt.eduftpejde.math.txstate.edu>
- [17] K. Liu and X. Dong, *Fermat-type differential and difference equations*, Electron. J. Differ. Equ. **2015** (2015), 1–10. <http://ejde.math.txstate.eduorhttp://ejde.math.unt.eduftpejde.math.txstate.edu>
- [18] P. Montel, *Lecons sur les familles de nomales fonctions analytiques et leurs applications*, Gauthier-Viua Paris (1927), 135–136.
- [19] J. Rauch, *Partial Differential Equations*, Springer-Verlag, New York, 1991.
- [20] E. G. Saleeby, *Entire and meromorphic solutions of Fermat-type partial differential equations*, Analysis (Munich) **19** (1999), 369–376. <https://doi.org/10.1524/analy.1999.19.4.369>
- [21] E. G. Saleeby, *On entire and meromorphic solutions of $\lambda u^k + \sum_{i=1}^n u_{z_i}^m = 1$* , Complex Var. Theory Appl. **49** (2004), 101–107. <https://doi.org/10.1080/02781070310001658056>
- [22] E. G. Saleeby, *On complex analytic solutions of certain trinomial functional and partial differential equations*, Aequationes Math. **85** (2013), 553–562. <https://doi.org/10.1007/s00010-012-0154-x>
- [23] R. Taylor and A. Wiles, *Ring-theoretic properties of certain Hecke algebra*, Ann. Math. **141** (1995), 553–572.
- [24] A. Wiles, *Modular elliptic curves and Fermat's last theorem*, Ann. Math. **141** (1995), 443–551.
- [25] H. Y. Xu, S. Y. Liu and Q. P. Li, *Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type*, J. Math. Anal. Appl. **483** (2020), 123–641. <https://doi.org/10.1016/j.jmaa.2019.123641>
- [26] H. Y. Xu and Y. Y. Jiang, *Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables*, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM **116**(8) (2022). <https://doi.org/10.1007/s13398-021-01154-9>
- [27] L. Xu and T. B. Cao, *Correction to: Solutions of complex Fermat-type partial difference and differential-difference equations*, *Mediterr. J. Math.* **17** (2020), 1–4. <https://doi.org/10.1007/s00009-019-1438-3>
- [28] H. Y. Xu and G. Haladar, *Solutions of complex nonlinear functional equations including second order partial differential and difference equations in \mathbb{C}^2* , Electron. J. Differ. Equ. **43** (2023), 1–18. <https://doi.org/10.58997/ejde.2023.43>
- [29] H. Y. Xu and G. Haladar, *Entire solutions to Fermat-type difference and partial differential-difference equations in \mathbb{C}^n* , Electron. J. Differ. Equ. **2024**(26) (2024), 1–21. <https://doi.org/10.58997/ejde.2024.2>

¹DEPARTMENT OF MATHEMATICS,
GHANI KHAN CHOUDHURY INSTITUTE OF ENGINEERING AND TECHNOLOGY,
NARAYANPUR, MALDA, WEST BENGAL - 732141, INDIA
Email address: goutamit1986@gmail.com
ORCID iD: <https://orcid.org/0000-0001-8169-6190>

²DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF KALYANI,
NADIA, WEST BENGAL - 741235, INDIA
Email address: abanerjee_kal@yahoo.co.in

³DEPARTMENT MATHEMATICS,
SUKANTA MAHAVIDYALAYA,
SUKANTA NAGAR, DHUPGURI, JALPAIGURI- 735210, W.B., INDIA.

³DEPARTMENT MATHEMATICS,
UNIVERSITY OF NORTH BENGAL,
RAJA RAMMOHUNPUR, DARJEELING, WEST BENGAL 734013, INDIA
Email address: royashalata1992@gmail.com