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ON ENTIRE SOLUTIONS OF SYSTEM OF ¢-SHIFT PARTIAL
DIFFERENTIAL EQUATIONS IN C?

GOUTAM HALDAR!, ABHIJIT BANERJEE?, AND ASHALATA ROY?

ABSTRACT. Investigation of entire solutions of system of Fermat-type ¢-shift partial
differential functional equations remain largely unexplored. In this article we have
discussed the form of entire solutions of three systems of g-shift partial differential
equations in C2, which are new and important in the literature. The results obtained
here could have many applications across various branches of mathematics and
mathematical physics. Also we have justified our results by various examples.

1. INTRODUCTION

It is well known that Fermat’s Last Theorem [23,24] is one of the most important
and longstanding conjectures in mathematics. Nowadays, investigation of Fermat-
type functional equations have become an active area of research for the past several
decades. Nevanlinna theory [10] is the most powerful tool to study the entire and
meromorphic solutions of Fermat type functional equations. The works of Gross [6],
Iyer [13] and Montel [18] provided interesting and valuable insights, particularly in
establishing solutions when m = 2 of the Fermat-type functional equation

(L1) () +gm(2) = 1

and also to determine the non existence of entire solutions of (1.1) for m > 2. We
recall the famous result of Saleeby [22] regarding meromorphic solutions of (1.1) in
C" as follows.
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Theorem 1.1 ([22]). For m = 2, the meromorphic solutions of (1.1) are characterized
as follows.

(1) The entire solutions of (1.1) are f(z) = cos(u(z)) and g(z) = sin(u(z)), where
w is an entire function in C".

(17) The meromorphic solutions of (1.1) are of the form f(z) = 13‘;(;(1) and g(z) =

1—a?(z)
1+a2(z)’

where a is a meromorphic function in C".

Using difference analogues of Nevanlinna Theory (see [3,7]), many mathematicians
investigated the existence and precise form of entire solutions of some non-linear
difference as well as differential difference equations (see [11,15,17]). Regarding ¢-
shift partial differential equations of Fermat type, Liu and Cao [16], in 2013, obtained
the following result.

Theorem 1.2 ([16]). Any transcendental entire solution of f'(2)? + f(qz)* = 1 must
be of the form f(z) = sin(z + b) when q = 1, whereas f(z) = sin(z + k7)) or f(z) =
—sin(z + kr + 7/2) when q = —1. There are no transcendental entire solutions of
finite order when q # £1.

The study of partial differential equations, a generalizations of the well-known
eikonal equation in real variable case has a long history. We refer the readers to
go through [4,5,19] and the references therein. Recently, investigation of entire
and meromorphic solutions of partial differential equations of Fermat type in several
complex variables has received considerable attention in the literature (see [8,9, 14,20,
21,28,29]). Hereinafter, we denote by z+q = (21 +q1, 22+ ¢2), ¢z = (q121, q122), where
2= (21, 22), ¢ .= (q1,q2) € C% The g-shift of f is defined as f(qz) := f(q121, G222).

In 2019 Xu-Cao [27] first considered the following partial differential-difference
equation

2
(1.2) (W) + flz1+ e, zm+ o) =1,

and by utilizing the difference Nevanlinna theory in several complex variables, specially
the difference version of logarithmic derivative lemma (see [1,2]), they proved the
following result, which opens up a new direction in the field of several complex variable.

Theorem 1.3 ([27]). Let ¢ = (c1,¢2) be a constant in C*. Then, any finite order
transcendental entire solution of (1.2) has the form f(z1, z2) = sin(azy + bze + H(22)),
where a,b are constants in C satisfying a®> = 1, ae’®1t%2) = 1 and H(z) is a
polynomial in zo such that H(zy + ¢3) = H(z). In particular, whenever ca # 0,
f(z1, 22) = sin(az; + bzy + constant).

In 2020, Xu and his coauthors [25,26] explored the precise form of transcendental
entire solutions of the following system of partial differential difference equations

2
(wﬁ) + folzr + o1, 20+ ) =1,

(1.3) 9
(731%2,@)) +filzr+en,zmt ) =1
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and
2
(1.4) (76]‘1(%2;1@2)) + QW?TQJZ(Z& +e,zm+e)+ fola ozt ) =1,
. 2
(76][252722)) + QW%fl(ﬁ +e,mte)+ filzteo,nt o) =1

where w is a complex constant such that w? # 0,1. For detail study we refer the
readers to take a glance at [25,26].

Inspired by the above equations and the corresponding results, in this article we
investigate the existence and exact form of transcendental entire solutions of the
following g¢-shift analogs of partial differential equations

Af1(21,22) \ 2 )
(1.5) (318;12>2 + folqr21, e22)® = 1,
(%) + fl(Q1zlaq222)2 = 1’
21,2 2 2.2
(1 6) (8f1éz117 2)) + Qw%’;vﬁfg(qlzl,qz@) + fz(CI121,q2z2)2 _ 1’
. 21,2 2 2.2
(8f2<(9z11’ 2)) + Qw%;;ﬁfl(qlzl, Q22’2) —+ fl(q121, Q2Z’2)2 _ 1’
2
(1.7) (%) + [folqr21, ga22) — (21, 20)]° = 1,

(%)2 + [[il@1z1, 022) — folz1,22)]" = 1,

where ¢ = (q1,¢2) € C? with ¢; # 0 and w? # 0,1. Observe that (1.5) and (1.6)
are the ¢-shift versions of (1.3) and (1.4), respectively. We state our main results as
follows.

2. MAIN RESULTS

Theorem 2.1. Let q := (q1,q2) € C? with ¢ # 0. If (f1(21, 22), fo(21,22)) be a
pair of finite order transcendental entire solution of (1.5), then one of the following
conclusions must hold.

(a) ¢ = —1 and

) 1 » 1
f1(z1, 22) = sin (625121 + D2 <q22>> . Ja(z1,22) = sin (625221 + Dm0 <q22>> ;

2 2

where p1(z1, 22), p2(21, 22) and the value of go are obtained from Lemma 3.1, &;,&, € C
such that & = & = ag + by and €t = £1.

(b) ¢1 = 1 and the form of solution is same as in (a), where p1(z1, 22), p2(z1, 22) and
the value of qo are obtained from Lemma 3.2, &1,& € C such that & = —& = ag — by
and e = £1.
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Theorem 2.2. If (fi(z1, 22), f2(21, 22)) be a pair of finite order transcendental entire
solutions of (1.6), then ¢ = —1 and

fl(zl 22) _ 1 (cos(iei51z1+P2(Z2/QQ)) Sin(iei§121+p2(22/q2)))

(2 1) ﬁ V14w o 1—w
’ 1 COS(i6152Z1+p1(22/(12)) Sin(i€i5221+p1(22/42))
fa(21,22) = 2 Vitw - T—w )
where p1(z1, 22), p2(21,22), qo are found from Lemma 3.1, &1,& € C such that & =
& = ag + by with €t = —1 and w is a complex constant such that w? # 0, 1.

Theorem 2.3. Let (q1,q2) € C? be such that ¢; #0, j = 1,2. If (f1(21, 22), f2(21, 22))
be a pair of transcendental entire solutions with finite order of (1.7), then one of the
following conclusions holds.

(A) ¢ = £1, and f1(21722) =% COS%+¢1(Z2); f2(2172’2) =z COS’Y2+¢2(2’2)7 where
@1, o are entire functions of zo, only satisfying ¢2(qaza) — d1(22) = sinyy, ¢1(gaz2) —
¢o(29) = sin-y,, where 1,72 are complex constants such that v, # (2t + 1)7/2 and
Yo =2nw 1, if g =1 and o = 2nm+ )7 £ 71, if ¢t = —1, t,n being two integers.

(B) ¢1 = £1, and the form of solutions are given by

22

1 .
Ji(21,22) = z1cosm + @1(22),  fa(21, 22) = EC037121 + @1 (q) + sin "y,
1 2

where ¢y is an entire functions of zy such that

siny; +

V@i — cos? ’n]

q1

P1(q222) — 1 <22> ==+

q2

(©)
(2.2) fi(z1,22) = z1cospi(22) + Th(22),  fa(21, 22) = 21 cos pa(22) + Ta(22),
where p1(22), p2(z2) are polynomials in zy, T1(29), To(z2) are entire functions in zs
satisfying one of the following.
(a) q1 = 1, &,& are complex constant with & = & and €' = 1, qo, p1,p2 are
found from Lemma 3.1 and T, T5 satisfy

(23) T1<q322) = T1(2’2> and TZ(qSZQ) = TQ(ZQ).
(b) q1 = —1, &, & are complex constant with & = & and €' = —1, qo, p1,po are
found from Lemma 3.1 and T1,Ts satisfy
(24)  Ti(gze) — Ti(z2) = 2sinpi(2),  Ta(g5z2) — Ta(z2) = 2sinpa(z).

(c) =1, e =1,¢€% =1, q, p1, p2 are found from Lemma 3.3 and Ty, Ty satisfy
TQ(Q%ZQ) = TQ(ZQ), T1<q322) — Tl(ZQ) = 2Sinp1(22).
(d) ¢ = —1, €& = —1, € = —1, qo, p1, 2 are found from Lemma 3.3 and T}, T,
satisfy Ty(g320) = T1(22) and Ta(q522) — To(2z) = 2sin py(22).
(e) 1 =1, &,& € C with & = —&;, €' = 1, qo, p1, p2 are found from Lemma 3.2
and Ty, Ty satisfy (2.4).
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() @ = 1, &,&% € Cwith & = —&, e = —1, g, p1,p2 are found from
Lemma 3.2 and Ty, Ty satisfy (2.3).

(D)

fQ(Zl, Zg) = —% SiIl(—QZl —|—p2(22)) + TQ(ZQ),

satisfying one of the following.

(a) q1 = —1, &,& € C such that & = & with ¢ =1, qq, p1,po are found from
Lemma 3.1, and Ty, T satisfy (2.3).

(b) q1 =1, &,& € C such that & = —& with €1 = —1, qq, p1, p2 are found from
Lemma 3.2, and Ty, Ty satisfy (2.3).

(E) 1 =i, &1, & € C such that e =1, ¢ = —1,

fg(Zl, ZQ) = —%_Z, sin(—(l — i)Zl +p2(22)) + TQ(ZQ),

where qo,p1,p2 are found from Lemma 3.3, and T1,T, are entire functions in zy
satisfying (2.3).
(F) q1 = —i, &1,& € C such that e =1, %2 = —1,

fi(z1,20) = — 5= sin(—(1 — i)z + p1(22)) + T1(22),
fg(Zl, 22) = _%-H sin(—(l -+ i)Zl +p2(22)) + TQ(ZQ),

(2.6) {f1(21,z2) = —ﬁ sin(—(1+1)z1 + p1(22)) + T1(22),

(2.7)

where qa,p1,p2 are found from Lemma 3.3, and T1,T, are entire functions in zy
satisfying (2.3).

The following examples show that our theorems are precise.

Ezample 2.1. Let & = & =, p1(22) = 23° + 5, pa(22) = 23°+ 2. Choose ¢; € C such

that ¢35 = —1. Then, one can easily see that (sin (%’T — 21— 255) , sin (% — 21— 255))

is a solution of (1.5).

Example 2.2. Let & = & = m, pi(z) = 25 + 25 + 20 + &, pa(20) = 2§ — 25 +

2+ %, @@ = @@ = —1. Then, in view of Theorem 2.1 (a), we can easily see that
(sin (% — 2 — 2 — 2= 22> ,sin (2% — 2 — 25+ 25— 22)> is a solution of (1.5).

Example 2.3. Let & = & = m, pi(22) = 23° 4+ 25 + &, pao(22) = 2° + 25 + F,

¢¢ = —1, ¢ = —i. Then, in view of Theorem 2.1 (a), one can easily see that
(sin (% — 21 — 25 — Z%O) ,sin (%ﬁ — 21— 230 — z%)) is a solution of (1.5).
Ezample 2.4. Let & = m, & = —m, pi(z2) = 25 + 2, pa(22) = 25 + 5. Choose

¢> € C such that ¢§ = 1. Then, in view of Theorem 2.1 (b), one can easily see that
(sin (g — 21+ zg) ,sin (37” — 21+ zg)) is a solution of (1.5).
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Ezample 2.5. Let & = & =7, pi(22) = 23 + 25 + 5, pa(2) = =23+ 25+ 5, o = — 1,
¢2 = i, w = 3. Then, in view of Theorem 2.2, one can easily see that (f1, f2) is a
solution of (1.6), where

T

1
fi(z1,20) = Wi (cos (3 — iz — 2 — z%0> — isin <§ — iz — 25 — z%o)>

and

1 2
fo(z1,22) = NG (cos (; — iz — 22 + z210> + ¢sin (7; — iz — 25 + 2%0)> .

3. KEY LEMMAS
To prove our main results, we need the following lemmas.

Lemma 3.1. Let p1(2) = Y1 @zt and pa(z2) = )bzt be two non-constant poly-
nomials of degree n in C satisfying

(3.1) pi(gz) +p2(2) =&, pa(gz) +pi(2) = &,
whereq # 0, &1,&,a;,b, € C,1=0,1,2,....n,a, #0, b, #0. Then, & = & = ag+by,
a; # 0 if and only if b; # 0 with b; = xa;, where 1 < j < n. Further, pi(z), p2(2)
and q satisfy one of the following.

(A) Let pi(2) = an2" + ap and pa(2) = by2"™ + by. Then, ¢ = —Z—Z = -

(B) Let a; # 0. Then, one of the following cases must occur.

(2) If by = a1 and b, = a,, then ¢ = —1 and n is an odd integer greater than 1.

(13) If by = a1 and b, = —a,, then ¢ =1 and n is an even integer.

Moreover, in both the cases (i) and (ii), if a; # 0, where 1 < j < n, then j is odd
when b; = a; and j is even when b; = —a,;.

(zi1) If by = —aq, then ¢ = 1 and b, = —a,, where n is an integer greater than 1.

Further, if a; # 0, where 1 < j < n, then b; = —aj.

(C) Let a; =0 and ay # 0. Then, one of the following cases must occur.

(i) If by = aq, then q = Li. Further, if b, = a,, then n is an odd multiple of 2 and
if by, = —ay,, then n is an even multiple of 2. Moreover, if a; # 0, where 2 < j < n,
then j is an odd multiple of 2 when b; = a;, and j is an even multiple of 2 when
bj = —aj.
(ii) If by = —ag, then ¢ = £1.

Further, we have.

(a) If b, = ay, then ¢ = —1 and n is an odd integer. Moreover, if a; # 0, where
2 <j<n, then j is odd if bj = a; and j is even if b; = —a;.

(b) If b, = —a,, and q =1, then n is any integer greater or equal to 3. Moreover,
if a; #0 for 2 < j <n, then b; = —a;.

(c) If b, = —a, and ¢ = —1, then n is an even integer. Moreover, if a; # 0 for
2 < j <mn, then j is odd when b; = a; and j is even when b; = —a;.

(D) Let k be the least positive integer such that ay # 0, where 3 < k < n. Then,
one of the following assertions holds.
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(i) If by = ay, then ¢* = —1.

Further, it follows.

(a) When b, = a,, and k is prime, then n is an odd multiple of k. Moreover, if
a; # 0 for k < j <mn, then j is odd multiple of k when b; = a;, and j is even multiple
of k when b; = —a;.

(b) When b, = a,, and k is odd composite, then n = p(p + 2s) when ¢* + 1 is a
factor of both ¢* +1 and ¢" + 1, p being a prime factor of k and s is a natural number
chosen in such a way that k < n. For the other factor of ¢* + 1 after dividing by
¢’ + 1, we must have n = (2m+ 1)k, m € N. Moreover, if a; # 0 for k < j <n, then
J =p(p+2t) when b; = a; and j = 2tk when b; = —a; and ¢° + 1 is a factor of both
¢"+1 and ¢"+ 1, t € N such that k < n.

(c) If b, = a, and k =4s, s € N, then n is odd multiple of k. Moreover, if a; # 0,
k < j <mn, then j is odd multiple of k when b; = a;, and j is even multiple of k when
bj = —(lj.

(d) If k =4s5+2, s €N, then %i are the roots of ¢* = —1. Further, one obtain the
following cases.

(dy) If b, = a,, and q = +i, then n = 4m + 2, where the integer m is chosen so that
k <n. Moreover, if a; # 0 for k < j <mn, then j = 4t + 2 when b; = a;, and j = 4t
when b; = —ay;, t being an integer.

(dy) If b, = a,, and q # +i, then n = 2mk, where m € N such that k < n. Moreover,
if aj # 0 for k < j <n, then j = (2t + 1)k when b; = a;, and j = 2tk when b; = —a;,
teN.

(e) If b, = —a, and k be odd, then we have the following cases.

(e1) If g = —1, then n is an even integer. Moreover, if a; # 0 for k < j < n, then
J is odd when b; = a;, and j is even when b; = —a;.

(e2) If ¢ # —1, then n is an odd multiple of k. Moreover, if a; # 0, then j is odd
multiple of k when b; = a;, and j is even multiple of k when b; = —a; for k < j <n.

(f) If b, = —a, and k is even, then we have the following conclusions.

(f1) if k = 4s, s € N, then n is even multiple of k. Moreover, if a; # 0 for
k < j <n, then j is odd multiple of k when b; = a;, whereas j is even multiple of k
when b; = —a;.

(f2) if k = 4s 4+ 2 and ¢ = +i, then n = 4m, m € N. Moreover, if a; # 0 for
k<j<mn, the j =4t + 2 when b; = a;, and j = 4t when b; = —a;, t € N.

(fs) tf k =4s+2 and q # +i, then n is an even multiple of k. Moreover, if a; # 0,
then j is odd multiple of k when b; = a;, whereas j is an even multiple of k when
bj = —ay.

(ii) If by = —ag, then ¢* = 1.

Further, we obtain the following cases.

(a) When b, = a,, then k must be an even integer. Moreover, if ¢ = —1, then n
must be an odd integer. If a;j2?, k < j < n be present in p1(z), then j is odd when
b; = aj, and j is even when b; = —a;. If ¢ # —1, then k = 4s, g = i and n = 4m+2,
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where s,m € N. In this case if a;27, k < j < n is present in p1(z), then j = 4t + 2
when b; = a;, whereas j = 4t when b; = —aj;.

(b) When b, = —a,, then one of the following must occur.

(b1) If ¢ = 1, then n can be any integer greater than k. Moreover, if a;z?, k < j <n
is present in p1(z), then b; = —a; and j is any integer.

(b2) If ¢ # 1 and k is odd, or ¢ # +1 and k is even, then n is a multiple of k.
Moreover, if a; # 0, k < j <n, then b; = —a; and j is a multiple of k.

(bs) If g = —1, then k and n both are even. Moreover, if a; # 0, k < j <n, then j
is odd when b; = a;, whereas j is even when b; = —a;.

Proof. In view of the form of p;(z) and ps(2), from (3.1), we have ag + by = & = &
and as a,, b, are non zero complex constants, we obtain

b a
3.2 n_ O _ O
(32) 1 an by,

Further, we have

arq+b1 =0, a1+bg=0, aq®+b=0, ay+bq*=0,

TT br:()a r bTT:O7
(3.3) qu+ a, + 0rq

an—lqnil + bn—l = 07 (p—1 + bn—lqni1 = 07
a,q" +b,=0, a,+b,q" =0.
From (3.3), we observe that b, # 0 if and only if a, # 0 and

. b, a,

(3.4) q = P
where 1 <r <n —1 and in this case b, = =*a,.

Now we discuss the following three possible cases.

Case 1. Let a; =0 for all j =1, 2, ..., n— 1. Then, equations stated in (3.3) are
consistent and we get (3.2).

Case 2. Let a; # 0 for at least one j, 7 =1,2, ..., n— 1.

Subcase 2.1. Let a; # 0. Then, from (3.4), we get by = +a,.

Subcase 2.1.1. Let b; = a;. Then, by (3.4), it follows that ¢ = —1.

Subcase 2.1.1.1. Let b, = a,. Then, by (3.2), we have ¢" = —1. As ¢ = —1, we

must have n = 2m+ 1, where m = 1,2,3,.... Let a,.2" be present in p;(2), i.e., a, # 0.
Then, b,.2" is present in ps(z), i.e., b, #0, 1 <r < n. If b, = a,, then ¢ = —1. As
q = —1, we conclude that » must be an odd integer. If b, = —a,, then ¢" = 1. Since
g = —1, it follows that » must be an even integer.

Subcase 2.1.1.2. Let b, = —a,,. Then, by (3.2), we see that ¢" = 1. As ¢ = —1,
we have n an even integer. Further, if b, = a, # 0, then in view of (3.4), we get
q¢" = —1, and hence r is an odd integer. If b, = —a, # 0, then by (3.4), we get ¢" = 1,
which is a contradiction as ¢ = —1, where 1 < r < n.
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Subcase 2.1.2. Let b; = —a;y. Then, from (3.4), we get ¢ = 1. Note that b, # a,.
Otherwise, from (3.2), we see that ¢" = —1, which is not possible for any values of n.
Hence b, = —a,. Therefore, by (3.2), it follows that ¢™ = 1, which implies that n can
be any integer greater than or equal to 2. Further, if a, # 0 for 1 < r < n, then from
(3.4), we must have b, = —a, and r can be any integer satisfying 1 < r < n.

Subcase 2.2. Let a; = 0 and as # 0. Then, by (3.4), we obtain that by = +ax.

Subcase 2.2.1. Let by = ay. Then, from (3.4), we get ¢ = =+i.

Subcase 2.2.1.1. Let b, = a,. Then, (3.2) yields that ¢" = —1. As ¢ = +i, we
see that n = 4m + 2, where m € N. Moreover, if a,2", 2 < r < n is present in p;(z),
then b,.z" is also present in py(z). If b, = a,, then from (3.4), we get ¢" = —1. Since
q = =+, it follows that r must be the odd multiple of 2. If b, = —a,, then by (3.4),
we get ¢" = 1, and as ¢ = ¢, we see that r is an even multiple of 2.

Subcase 2.2.1.2. Let b, = —a,. Then, from (3.2), we get ¢" = 1. As ¢ = +i, we
must have n = 4m, where m € N. Also, in view of (3.4), we see that if b, = a, # 0,
then r must be an odd multiple of 2, and if b, = —a, # 0 , then r is an even multiple
of 2, where 2 < r < n.

Subcase 2.2.2. Let by = —ay. Then, in view of (3.4), we obtain ¢ = £1.

Subcase 2.2.2.1. Let b, = a,. Then, by (3.2), we obtain ¢" = —1. Then clearly

qg # 1. Hence ¢ = —1 and n is an odd integer. Further, by similar argument as
previous if b, = a, # 0, then r is odd and if b, = —a, # 0, then r is even, where
2<r<n.

Subcase 2.2.2.2. Let b, = —a,. Then, by (3.2), we obtain ¢" = 1. Now if ¢ = 1,
then n can be any integer greater than or equal to 3. Also, if a,2" is present in p;(2),

then b,z" is present in py(z) and b, = —a,, and in this case r can be any integer,
2 <r<n. If g=—1, then n must be an even integer. Moreover, if b, = a,, then r is
odd and if b, = —a,, then r is even, where 2 < r < n.

Subcase 2.3. Let k be the least positive integer such that a; # 0, where 3 < k < n.
Then, in view of (3.4), we see that by, = *ay.

Subcase 2.3.1. Let by = a. Then, from (3.4), we get ¢* = —1.

Subcase 2.3.1.1. Let k be odd. Then, —1 is a solution of ¢* = —1.

Subcase 2.3.1.1.1. Let ¢ = —1. If b, = a,, then in view of (3.2), we get ¢" = —1,
which yields that n is an odd multiple. Similarly, we easily deduce that n is even,
when b,, = —a,,. Further, in view of (3.4), we conclude that r is odd when b, = a, # 0,
and even when b, = —a, # 0, where k < r < n.

Subcase 2.3.1.1.2. Let ¢ # —1.

Subcase 2.3.1.1.2.1. Let k be prime. If b, = a,, then in view of (3.2), we
conclude that n is an odd multiple of k. If b, = —a,, then n is even multiple of k.
Moreover, using (3.4), we see that r is odd multiple of k£ when b, = a, # 0, and even
multiple of k£ when b, = —a, for k <r <n.

Subcase 2.3.1.1.2.2. Suppose k is odd composite. Note that ¢” + 1 is a factor of
q* + 1 for each prime factor p of k.
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Subcase 2.3.1.1.2.2.1. Suppose b, = a,,. Then, by (3.2) it follows that ¢" = —1.
If ¢* + 1 is a factor of ¢" + 1, then for the zeros of ¢ + 1, we have n = p(p + 2m),
where m is an integer chosen in such a way that £ < n. Moreover, if b, = a, # 0,
k <r <n, then r = p(p+ 2t) and if b, = —a,., then r = 2tk, where the integer ¢ is so
chosen that k < r < n. For the zeros of ¢* + 1 other than that of ¢” + 1, it must be
that n is odd multiple of k. Also observe from (3.4) that if b, = a, # 0, k <r < mn,
then r is odd multiple of k, whereas if b, = —a,., then r is even multiple of k.

Subcase 2.3.1.1.2.2.2. Suppose b, = —a,. Then, by (3.2) it follows that ¢" = 1.
This implies that n is an even multiple of k. Further, if b, = a, # 0, then r is odd
multiple of k, whereas if b, = —a, # 0, then r is even multiple of k, where k < r < n.
Subcase 2.3.1.2. Let k£ be an even integer. Note that for k = 4s + 2, i and —i are
the solutions of ¢* = —1, where s € N.

Subcase 2.3.1.2.1. Suppose b, = a,. Then, by (3.2), we see that ¢" = —1. Now
for k = 4s+ 2 and g = %, we have n = 4m + 2, where m is an integer chosen in such
a way that k& < n. Further, if a,2", k < r < n is present in p;(z), then r = 4t + 2
when b, = a, # 0, whereas r = 4t when b, = —a, # 0, t being an integer chosen in
such a way that k < r < n. Next, suppose k = 4s or k = 4s + 2 and ¢ # =+i, where
s € N. Then n must be an odd multiple of k. Furthermore, if b, = a, # 0, by (3.4),
we get ¢" = —1, which implies that r is an odd multiple of k, whereas if b, = —a, # 0,
then by (3.4), we have ¢" = 1, which implies that r is even multiple of k.

Subcase 2.3.1.2.2. Let b, = —a,. Now for £k = 4s + 2 and ¢ = *i, we have
n = 4m, where m is an integer chosen in such a way that & < n. Further, if a,2",
k < r < nis present in pi(z), then r = 4t + 2 when b, = a, # 0, whereas r = 4t
when b, = —a, # 0, where t € N chosen in such a way that k < r < n. Next, suppose
k=4s or k = 4s+ 2 and q # +i, where s € N. Then n must be an even multiple
of k. Furthermore, if b, = a, # 0, by (3.4), we get ¢" = —1, which implies that r is
an odd multiple of k, whereas if b, = —a, # 0, then by (3.4), we have ¢" = 1, which
implies that r is even multiple of k.

Subcase 2.3.2. Let b, = —ay. Then, from (3.4), we get ¢* = 1. This implies that
1 is a solution of ¢* = 1.

Subcase 2.3.2.1. Let ¢ = 1. If b, = a,, then by (3.2), we get ¢" = —1, a
contradiction since ¢ = 1. Thus, b, = —a, and hence in view of (3.2), we obtain
q" = 1. This implies that n is any integer greater than k. Further, if a, # 0 for
k < r < n, then by similar argument as above we deduce that b, = —a,. Therefore,
from (3.4), we conclude that r is any integer satisfying k < r < n.

Subcase 2.3.2.2. Let ¢ # 1. We discuss this case as follows.

Subcase 2.3.2.2.1. Let k£ be an odd integer. Note that b,, # a,,. Otherwise, from
(3.2), it follows that ¢™ = —1, which is not possible as n > k and k is odd. Hence
b, = —ay,, and therefore, by (3.2), we have

(3.5) " =1

Further, if a,2" is present in pi(z) for k& < r < n, then by similar argument we get
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b, = —a,, and hence from (3.4), we get
(3.6) ¢ =1

If k is odd composite, then note that ¢» — 1 is a factor of ¢* — 1, where p is a prime
factor of k. If ¢” — 1 is also a factor of ¢" — 1, then for the zeros of ¢ — 1 and in view
of (3.5), we have n = p(p + 2m), where the integer m is to be chosen so that n > k.
Moreover, if a, # 0 for k < r < n, then in view of (3.6), it follows that r = p(p + 2t),
where integer t is chosen so that & < r < n. For the zeros of ¢ — 1 other than those
of ¢" — 1, or if k is prime , then in view of (3.5), we get that n» must be a multiple of
k. Furthermore, if a, # 0, k < r < n, the by (3.6), we obtain that r is a multiple of k.

Subcase 2.3.2.2.2. Let k£ be an even integer. Observe that —1 is a solution of
" =1.

Subcase 2.3.2.2.2.1. Let ¢ = —1. If b, = a,, then by (3.2), we see that ¢" = —1.
This implies that n is an odd integer. If b, = —a,, then from (3.2), we get ¢" = 1,
which implies n is even. Further, if a,2", k < r < n, is present in p;(z), then in view
of (3.4), we conclude that r is odd when b, = a,, and r is even when b, = —a,.

Subcase 2.3.2.2.2.2. Let ¢ # —1. Since k is an even integer, k = 4s or k = 4s+ 2,
where s € N.

Subcase 2.3.2.2.2.2.1. Let k = 4s, where s € N. Then, +i are the solutions of
" =1.

Subcase 2.3.2.2.2.2.1.1. Let ¢ = +i. Now if b, = a,, then in view of (3.2), we
get ¢ = —1, and hence n must be the odd multiple of 2. If b, = —a,, then by (3.2),
we see that ¢" = 1, which imply that n is an even multiple of 2. Further, if a,2",
k < r < n be present in p;(z), then in view of (3.4), we have r = 4t + 2, if b, = q,
and r = 4t, if b, = —a,, where t is an integer.

Subcase 2.3.2.2.2.2.1.2. Let ¢ # +i. We observe that b, # a,. Otherwise,
in view of (3.2), we obtain ¢" = —1. This is not possible as ¢ = —1, ¢* = 1 is
inconsistent system. Hence, b, = —a,, and therefore by (3.2), we get ¢" = 1. This
implies that n is a multiple of k. Further, if a,z" is present in p;(z), where k < r < n,
then by similar argument we conclude that b, = —a,. Hence by (3.4), it follows that
q" = 1. This implies that r is a multiple of k.

Subcase 2.3.2.2.2.2.2. Let k = 4s 4+ 2, where s € N. Then the same conclusion
can be obtain as in Subcase 2.3.2.2.2.2.1.2. O

Using the similar arguments as in Lemma 3.1, we obtain the following results.

Lemma 3.2. Let p1(z),p2(2) be two non-constant n-th degree polynomials defined as
in Lemma 3.1 satisfying

(3.7) pi(qz) —p2(2) =&, palqz) — pi(2) = &2,

where ¢ # 0, &, € C. Then, & = =& = ag — by, a; # 0 if and only if b; # 0 with

bj = +a;, where 1 < j < n. Further, p;(2), p2(2) and ¢ satisfy one of the following.
(A) Let p1(2) = anz™ + ag and pa(z) = b, 2" + by, then ¢" = 3—: = g
(B) Let a; # 0, then one of the following cases must occur.
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(i) If by = aq, then ¢ = 1 and b, = a,, where n is any integer greater than 1.
Moreover if a; # 0, where 1 < 7 < n, then b; = a;.

(ii) If by = —ay, then ¢ = —1. Further, if b, = —a,,, where n is an integer > 1, and
if b, = —a,,, then n is an odd integer> 1. Moreover, if a; # 0, where 1 < j < n, then
J is even when b; = a; and j is odd when b; = —a;.

(C) Let a; = 0 and ay # 0, then one of the following cases must occur.

(i) If by = ag, then ¢ = +1. Further, if ¢ = 1, then b, = a,, where n is an an
integer greater than 2. Moreover if a;27 is present in p;(z) for 2 < j < n, then b;z7

is present in po(z) with b; = a;. If ¢ = —1 and b, = a,, then n is an even integer
greater than 2, whereas if ¢ = —1 and b, = —a,,, then n is an odd integer greater
than 2. Moreover, if a;27, 2 < j < n is present in p;(z), then j is even when b; = a;
and j is odd when b; = —a;.

(ii) If by = —asg, then ¢ = +i. Further, if b, = a,, then n is an even multiple of 2,
whereas if b, = —a,, then n is an odd multiple of 2. Moreover, if a; # 0, 2 < 7 <n,
then j is an even multiple of 2 when ¢ = 7 ans b; = a;, whereas j is an odd multiple
of 2 when ¢ = —i and b; = —a;.

(D)] Let ay # 0, where k be the least integer such that 3 < k < n. Then, one of
the following assertions holds.

(i) If by = ag, then ¢* = 1. Further, we have the following cases.

(a) When ¢ = 1, then b, = a, and n is any integer greater than 3. Moreover, if
a; #0, k < j <n, then b; = a;.

(b) When ¢ # 1 and b,, = a,,, then one of the following must occur.

(b1) When £ is prime, n is a multiple of k. Moreover, if a; # 0, kK < j < n, then
b; = a; and j is a multiple of k.

(by) When k is an odd composite number, then n = p(p + 2m), where p is a prime
number greater than or equal to 3 and m is an integer. Moreover, if a; # 0, k < j <n,
then b; = a;, where j = p(p + 2t), where p is prime number greater than or equal to
3 and ¢, an integer.

(b3) When g = —1, then n is even. Moreover, if a; # 0, k < j < n, then j is even
when b; = a;, whereas j is odd when b; = —a;.

(by) When ¢ # —1 and k is even, n must be a multiple of k. Moreover, if a; # 0,
then b; = a;, where j is a multiple of k.

(c) When ¢ # 1 and b,, = —ay,, then one of the following holds.

(c1) When ¢ = —1, then n is an odd integer. Moreover, for k < j < n, if b; = a; # 0,
then j is even and if b; = —a; # 0, then j is odd.

(c) When ¢ = =i, then n must be an odd multiple of 2. Moreover, for k < j < n,
if b; = a; # 0, then j is an even multiple of 2 and if b; = —a; # 0, then j is odd
multiple of 2.

(ii) If by = —ay, then ¢® = —1. Further, we obtain the following.

(a) When £ is odd, we have the following conclusions.
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(ay) For the case ¢ = —1, n is even when b, = a,, whereas n is odd when b,, = —ay,.
Moreover, for k < j < n, if b; = a; # 0, then j is an even, and if b; = —a; # 0, then
7 is odd.

(ag) For the case ¢ # —1, n must be an even multiple of & when b,, = a,,, whereas
n is odd multiple of k when b, = —a,. Moreover, for k < j < n, if b; = a; # 0, then
J is an even multiple of k and if b; = —a; # 0, then j is odd multiple of &.

(b) When £ is even, the we have the following conclusions.

(by) For k = 4s, s € N, n must be an even multiple of k if b, = a,, whereas n is
odd multiple of k if b, = —a,,.

(by) For k = 4s 4+ 2 and ¢ = +i, n must be an even multiple of 2 when b, = a,,
whereas n is odd multiple of 2 when b,, = —a,,. Moreover, for k < j < n,ifb; = a; # 0,
then j is even multiple of 2, whereas, if b; = —a; # 0, then j is odd multiple of 2.

(b3) For k = 4s+ 2 and g # %4, n is an even multiple of k& when b,, = a,, whereas
n is an odd multiple of k when b, = —a,. Moreover, for k < j < n, if b; = a; # 0,
then j is an even multiple of k. On the other hand if b; = —a; # 0, then j is an odd
multiple of k.

Lemma 3.3. Let p;(z),p2(2) be two non-constant n-th degree polynomials defined as
in Lemma 3.1 such that

(3.8) pi(qz) +p2(2) =&, pa(gz) — pi(z) = &,

where g # 0,&1,& € C. Then, & = ag + by, & = by — ap and a; # 0 if and only if
b; # 0 with b; = +ia;, where 1 < j < n. Further p;(z), p2(2) and ¢ satisfy one of the
following.

(A) If pi(2) = an2z" + ag and po(z) = b, 2" + bo, then ¢" = —2—: = .

(B) When b, = ia; for 1 < k < n, then we get n = (4dm + 1)k, if b, = ia, and
n = (4m — 1)k, if b, = —ia,, where m € N. Further, if a;27, 1 < j < n is present in
p1(z), then b;27 is also present in ps(2) and the form of j is as follows: j = (4t + 1)k,
if b; =ia; and j = (4t — 1)k, if b; = —ia;, where t € N.

(C) When by = —iay, for 1 < k < n, then we have n = (4m — 1)k, if b, = ia,, and
n = (4m + 1)k, if b, = —ia,, where m € N. Further if a;27, 1 < j < n is present in
p1(z), then b;27 is also present in ps(2) and the form of j is as follows: j = (4t — 1)k,
if b; =ia; and j = (4t + 1)k, if b; = —ia;, where t € N,

Lemma 3.4 ([12]). Let f; # 0 (j = 1,2,3) be meromorphic functions on C" such
that f1 is not constant, f1 + fo + f3 =1, and such that

SN (1 ) + 280 )| < AT 1)+ Ok T )

holds for all r outside possibly a set with finite logarithmic measure, where A < 1 is a
positive number. Then, either fo =1 or f3 = 1.
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Let us define
1 1 1 1

= -+ y A - - )
Witw 2iVi—w 2T o/Tvw %Vi—w

where w € C with w? # 0, 1.

(3.9) A

4. PROOF OF THE THEOREMS

Proof of Theorem 2.1. Let (f1(z1, 22), f2(21,22)) be a pair of transcendental entire
solutions with finite order of (1.5). Then, by Theorem 1.1, we obtain

(4.1) {gﬁ = coshi(z1,22),  fa(qi21, @220) = sin by (21, 22),

9z, — COS ha(z1,22),  fi(q121, qoz2) = sinho(21, 22),

where hy (21, 22) and hy(z1, 29) are entire functions in C2. Since f1(21, 22), fo(21, 20) are
finite order transcendental entire functions, h(z1, z2) and hs(21, 22) are non constant
polynomials in C2.

Differentiating fourth equation of (4.1) partially with respect to z; and using first
equation of (4.1), we easily obtain

(42) qleim(Q1z1,QQ22)+ih2(z1,zz) + qle—ihl(q1z1,<1222)+ih2(zl,22) . %622'112(217@) _ %
82’1 (921

Similarly, from second and third equations of (4.1), we get

(43) qleihg(qlzl,(pzz)+ih1(zl,zz) + qlefihg(qlzl,qQZQ)%»ihl(21,ZQ) _ %627}11(21722) — %
821 aZl
Observe that % # 0. Otherwise, from (4.3), we have e?h2(mz1.@2) — 1 Ag

@1 # 0, ¢ # 0, and hy(z1,22) is non constant, we get a contradiction. By sim-
ilar reason, we get g—’z‘f # 0. Therefore, using Lemma 3.4 on (4.2) and (4.3), we
have either qleih1(4121,Q222)+ih2(21722) = % or qlefihl(61121,(12Z2)+ih2(21722) = % and either
Z1 Z1
qreiha(@zaee)tib(z1,20) — % or qetha@zr,a222) ik (z1,22) — %' Thus, we can discuss

the following four possible cases.

Case 1. Let
(4.4) qleih1(Q1z17QQ22)+ih2(z1,z2) _ %’ qleih2(¢hZ1,qQZQ)+ih1(z1,z2) _ %
821 821
Now from (4.2), (4.3) and (4.4), we deduce that
| | Ohy | | oh,
4.5 e*lhl(Q1217Q222)*1h2(21,22) == —iha(q121,q222) —ih1(21,22) _ -1
( ) q1 02 q1€ 02

Since hy(z1, 22) and hy(z1, 22) are two non constant polynomials in C?, from (4.4), we
conclude that

(4.6) hi(qiz1, g222) + ho(21,22) = &1, ha(qizr, @222) + ha(21, 22) = &,
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where £, & are two constants in C. From (4.4), (4.5) and (4.6), we get

, oh , , oh ~
& _ 202 qle—l& and q1€l§2 — 871 — qle—ZEQ,

Q€
821 21

from which we easily deduce

. . oh , oh ;
(47) 621& = 17 62252 =1, 872:? = (1161&7 87211 = 916@-

From the last two equations of (4.7), we easily obtain
(4.8) hy(z1,22) = ez +pi(22) and  ho(z1, 22) = Qe 2 + pa(22),

where pi(22) and ps(292) are polynomials in 2o, only. In view of (4.6) and (4.8), we
obtain

@ (@e + e
which yield

(4,9) qlei§2 + eifl — O, qlei& + eigg -0

21+ p1(qeza) + pal22) = &1,
21 + p2(qaza) + p1(22) = &,

and (3.1). Now, from Lemma 3.1, we see that & = & = ag + by. Therefore, from
(4.9), it follows that ¢ = —1. From the first two equations of (4.7), we obtain that
et = 2 = ¢il@+h) — 41 Also from Lemma 3.1, we get precise form of p;(z1, z2),
pa(z1, 22) and the value of ¢o. Thus, from (4.1) and (4.8), we obtain

(4.10)  fi(21,29) = sin <6i§121 + Py <Z2>> , fo(z1, 20) = sin (ei&’zl + ('@)) ,

a2 P
Case 2. Let
(4 11) qleiiu(Q1z1,qzz2)+ih2(z1,z2) _ % qle—ihg(qlz1,q2zg)+ih1(zl,z2) _ %
) 821 ’ (921 '
From (4.2), (4.11) and (4.4), we get
(4.12) qle—ihl(‘11217‘1222)—1'712(21722) _ % qleihz(Q1Z1,QQ22)—ih1(z1,22) _ %
821 ’ 82’1

As hy(z1,22) and hy(z1, 22) are non constant polynomials in C?, from (4.11), we
conclude that

(4'13) h1(91217 Q222) + h2(217 22) = &1, h2<Q121, Q222) - hl(lea 22) = &,

where &,& € C. From (4.11), (4.12) and (4.13), we get (4.7) and (4.8). Therefore, in
view of (4.8) and (4.13), we obtain

¢ (q1€i§2 + 6i£1> 21+ pi(qeze) + pa(22) = &1,
@ (@€ = €) 21 + pa(@ez) — pr(22) = &,

from which it follows that qe®? + %1 = 0, g€ — €2 = 0 and (3.8). This implies
that ¢(€27€1) = 44, But this is not possible as we have (4.7).
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Case 3. Let

Ohs Ohy

0z’ 0z

Then, by similar arguments as used in Case 2, we get a contradiction.
Case 4. Let

—ih1(q121,q9222) +iha(z1,22) _ ¢ eth2(a1z1,0222)+ihi(21,22)

g€

. A Oh . , oh
4.14 —ih1(q121,q222)+ih2(21,22) _ Y'1°2 —iha(q121,q222)+ih1 (21,22) _ ZT1
( ) q.e 821 y  q1€ 821
Now from (4.2), (4.3) and (4.14), we obtain

| | O, | | Oh,
4.15 ih1(q121,9222) —iha(z1,22) _ tho(q121,q222)—ih1(21,22) _ )
(4.15) e 9, @° E

Note that hi(21,22) and ho(z1, 22) are non constant polynomials in C2. Then, from
(4.15), we get

(4-16) h1<Q12’1, Q222) - h2(21, 22) = &1, h2(Q1217 Q22’2) - hl(zl, 22) = &,

where &1, & are two complex constants. Therefore, by similar arguments as in Case 1,

we obtain (4.7), (3.7) and
qlei€2 — eiﬁl’ qlei& — %2

By Lemma 3.2, we see that & = —& = ag — bg. Then, by the above equations and
(4.7), we get ¢; = 1. Hence, the form of solutions is given by (4.10), where g2, p1(21, 22)
and po(z1, 29) can be found from Lemma 3.2. O

Proof of Theorem 2.2. Suppose ( f1(z1, z2), fa(21, 22)) be a pair of transcendental entire
solution of finite order of (1.6). Using simple concept of transformation in geometry,
we assume

(4.17) 22 = \}5(04 +08),  folqrz1,qe22) = \}§<04 —5),

where «, 3 are entire functions in C2. Therefore, first equation of (1.6) reduces to

(V1+wa)* + (V1 —wp)?* = 1.
Therefore, in view of Theorem 1.1, we can have
cosu(zy, z9) sinu(z, 22)
Vitw 0T VI—w

where u(z1, 22) is a non-constant entire function. As f, fo are of finite order, u must
be a polynomial in C2. Hence, by (4.17) and (4.18), we get

0 1 i 1
L ( cn " ) . falgiz, oze) = ) (

(419) ofr 1 + COS U sin u
' 0nn 2\Vi+w Vi-w Vitw Vi-w)’

In a similar arguments, from the second equation of (1.6), we get

dfs 1 [ cosv sin v

1 COS v sin v
4.2 = — + - _
(4.20) 0z 2 <\/1+w \/1—w>7 filmz1, ¢22) 2 <\/1—I—w \/1—w>’

(4.18) a=
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where v is a non-constant polynomial in C2.

Now differentiating second equation of (4.20) partially with respect to z1, and using
first equation of (4.19), and differentiating second equation of (4.19) partially with
respect to z;, and using first equation of (4.20), we get

(4.21)
qlAlem q121,9222)+iv(z1,22) 4 Q1A2€ iu(q121,q222)+iv(z1,22) _ ZA Ov sz(zl,z2) — _Z‘Algivy
z z
Q1A1€w (q121,q222)+iu(z1,22) + q1A2e—w(Q1217Q222)+2u(21,Z2) iA, g:i 2iu(21,22) — _Z'Ala%ull‘
Note that %’1 # 0. Otherwise, from first equation of (4.21), we obtain
A €2iu(Q121,tI222) — _AQ’
which implies that u is constant, a contradiction. Slmllarly, §é 0. Therefore, in
view of Lemma 3.4, from (4.21), we conclude that either
Q1A1€ u(q121,q222)+iv(z1,22) —’LA1 v or q1A26 u(g121,9222)+iv(21,22) —ZA1 v
821 821
and either
QIAle v(q121,9222)+iu(z1,22) _ —ZAlal or qlAQG—i’U(Q1Z1,q222)+iu(21722 = —iA— Ou
821 azl
Now we discuss by considering four possible cases.
Case 1. Let
(4.22) qleiU(q1Z17q2Z2)+iU(Z1122) — _Z@ qleiv(Q1Z17q2z2)+iU(21722) — —i%.
82’1 aZl
From (4.21) and (4.22), we obtain
(423) qle*iU(QIZl,q222)*iv(21722) v qlefiv(qlzhcmzz)*iu(zl,22) au )
821 aZl

Since u, v are non-zero polynomials in C?, from (4.22), it can be concluded that

(4.24) u(q121, qaz2) +v(21,22) = &1, v(qu21, Goza) +ul21, 22) = o,
where £, & are constants in C. From (4.22), (4.23) and (4.24), we obtain
0 0
QA = — A — - @A = —iA — =
0z 1 82’1
0 , 0
1 Ase™™ =iAy— - , A = ZA27U
621 aZl
From the above four equations, we deduce that
0 ) ) 0 ) .
v - Z'Q1€l£1 — _Z’qle_lgl’ gu — ’iQ1€Z£2 — _iqle—%z’
8z1 aZl

which yield

21 -1 262 -1
(12s)  § e 4, et
u(z1, 22) = i€z + pi(22),  v(21, 22) = iqre 21 + pa(22),
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where p1(22), p2(22) are polynomials in z3, only. Now in view of the last two equations
of (4.25) and (4.24), we easily get

67;(51_52) — _ql — ei(§2_§l)’
(4.26) p1(qaza) + pa(z2) = &1,

p2(qez2) + p1(22) = &
From the last two equation of (4.26) and, by Lemma 3.1, it follows that & = &.
Therefore, from (4.26), we get ¢ = —1. Also, in view of the last two equations of
(4.26), it can be concluded that g9, p1(21, 22), p2(21, 22) can be found from Lemma 3.1.

Hence, from second equation of (4.19) and (4.20), we obtain (2.1).
Case 2. Let

(427) qleiu(qlzl,qzzg)+iv(z1,22) _ —Z@ lAge—w(q1zl,q2z2)+zu(z1 Z2) —ZAl u
0z’ 0z
Then, from (4.21), (4.22) and (4.27), we obtain
(4.28) qlefiu(fhzl711222)*1'11(21,22) _ Zﬁ qlAleiU(qlzl,q222)*i’u(21722 2A2 ou
8 1’ 821
Since u, v are non constant polynomials in C?, in view of (4.27), we conclude that
(4.29) u(qr21, qaza) +v(21, 22) = &1, v(@121, 222) — u(z1, 22) = .
From (4.27), (4.28) and (4.29), we get
ou Ay A ov , .
—if2 _ 1 152 I € —i&1
821 ZQ1A1 qul42 - tqi€ tqr1€ )
which yield
Q26— ] it — _Aj’
(4.30) B At o
u(z1,22) = —iqi e €2z + pi(2z2),  v(z1,20) = ique™ 2z + pa(22),

where p;(22), p2(22) are two polynomials in zq, only. Therefore, from (4.29) and (4.30),
we easily have

i et €1 13 A1 igs
(4.31) { R e
4!

(Q222) +p2(22) = &1, palqez2) — pi(22) = &,
where ¢, # 0,£1,& € C. From the first equation of (4.30), we observe that e® = +i.

If %1 =4, the from (4.31), we obtain that q; = 4-i and €2 = quAj But in view of the

second equation of (4.30), we easily get a contradiction. If %t = —i, then similarly
we can get a contradiction.
Case 3. Let
q1A26 u(q121,q222)+iv(z1,22) _ —iA— v ’ qlAleiU(Q1z1,tI2z2)+iu(zl722 = —jA;— Ou
8 21 62’1

By similar arguments as used in Case 2, we can obtain a contradiction.
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Case 4. Let
(4.32)
—iu(q121,9222)+iv(z1,22) — @ —iv(q121,9222)+iu(z1,22) — al
q1 Age iAy . qAge 1Ay .
821 aZl
Then, by (4.21) and (4.32), we get
(4.33) qlAleiu(qm,qzzz)fiv(zmz) — 7;142@ qlAleiv(fI1217Q2Z2)*iU(Zl,22) _ Z.AQ%-
(921 ’ 821

Therefore, by similar arguments as in Case 1, we get

(4'34) U(lel, 61222) - U(Zl, 22) = &1, U(Cth, Q2Z2) - U(Zh 22) = &,
Q26 — _ %% — olis,

(4.35) u(z1, 22) = —%6@21 + p1(22),
v(z1, 22) = —%6@21 + pa(22),

where &, &, are constants in C. Now from (4.34) and last two equations of (4.35), we
obtain

(4 36) {_Q16i£2 + 62’61 = 07 _(11€i§1 + €i€2 = 07

]91((]222) - p2(22) = &1, pz(Q222) - Pl(Zz) = &y

In view of Lemma 3.2 and (4.36), it follows that & = —& = by — ag. Therefore,

from (4.36), we deduce that e*¢1 = ¢ = q%' This implies that ¢; = +1, and hence

%1 = +1. Thus, from (4.35), we get ‘3—% = +1, which is a contradiction. O
1

Proof of Theorem 2.3. If (f1(z1, 22), f2(21, 22)) be a pair of finite order transcendental

entire solution of (1.7). Then by Theorem 1.1, we get

0 .
Oh _ coshi(z1,22), folqi121, qo22) — fi(21, 22) = sin hy (21, 22),
437 02
(4.37) dfa )
5 = COS h2(217 2’2)7 fl(ChZh CI2Z2) - f2(217 22) = sin h2(21, 22)7
1

where hy(21, z2) and hy(z1, 29) are entire functions in C2,
First suppose that hy(z1, 22) = 71 and hy(z1, 22) = 72, where 71,72 are constants in
C. Then from first and third equations of (4.37), we have

(4.38) fi(z1,22) = z1cosy + d1(22) and  fa(z1, 20) = 21 cos Y2 + Pa(22),

where ¢1, ¢, are entire functions in z, only. Therefore, from second and fourth
equations of (4.37) and (4.38), we obtain

(g1 cosya — cosy1)z1 + P2(qaze) — ¢1(22) = siny,
(Q1 COS 7y — COS 72)21 + ¢1(Q222) — ¢2(22) = sin 7y,
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which implies that

P2(q222) — P1(22) = siny1,  d1(qe22) — P2(22) = siny,.

In view of (4.39), we observe that if 3 = (2m+ 1)7/2, then 75 = (2n+1)7/2, m,n
being an integer. In this case (1.7) does not contain the partial derivative term. So, to
avoid this situation we assume that v, and -, are not odd multiple of 7/2. Therefore,
from first two equations of (4.42), we have ¢; = +1. When ¢; = 1, 5 = 2nmw £ 7,
whereas when ¢; = —1, 75 = (2n 4+ 1)m £ 71, n being an integer.

Next suppose that hi(z1,22) = 71, a constant and hy(z1, 22) is non constant. Then
the form of fi(z1, 22) is given by (4.38). Using this in the first equation of (1.7), we
have

Z1 COS z
(440) fz(zl, 22) = lq% + ¢1 <q2> + Sil’l’}/l.
1 2

Using first equation of (4.39) and (4.40) in second equation of (1.7), we get

(4.39) {Q1 cosyp —cosy; =0, @qicosy; —cosyp =0,

1 z , Vai — cos?y
Cos 71 (fh — ) 21+ $1(qez2) — d1 <2) Fsiny =f———7—.
q1 q2 q1
This implies that ¢; =1 and
2 2
z . gy — COS™ M
¢1(Q222) — ¢1 <2> =+ SII Y1 + ] .
qz q1

Finally, suppose that h;, hy both are nonconstant entire functions in C2. Then by
similar arguments as used in the proof of Theorem 2.1, we can easily deduce that
(4.41)

{qleih1(qlz1,q222)+ih2(217z2) + qle—ihl(q121,q222)+ih2(2’1,22) _ gl + (g}zlfg e?ihz — 1 _|_ %

021
1+gﬁ 62zh1:1+%
Z1

ih 21,9222)+1ih1 (21,2 —ih 21,q9222)+ih1 (21,2
qie 2(q121,9222)+ih1 (21,22) + qe 2(q121,9222)+ih1(21,22) _ o

Note that 1 + g—};f # 0. Otherwise, from (4.41), we can easily see that hi(q121, g222)
is a constant, which is not possible as h;(z1, 22) is a non constant polynomial in C2.
Similarly, we can prove that 1 + g—zll #% 0. Therefore, by Lemma 3.4, it follows that
either qleim(!11z174222)+ih2(21722) - 1+% or qle—ihl(Q1Z1,qQZ2)+ih2(Z1,22) — 1+% and either

1 1

tha(q121,9222)+ih1(21,22) Ohy —ih2(q121,q222)+ih1(21,22) — Oh1
q.e =1+ 5 orqe =145

Now, we can discuss by four possible cases.

Case 1. Let
(4 42) qleih1((11z17Q222)+ih2(21,z2) =1 + % qleihg(qlzl,quz)Jrihl(zl,zz) -1 %
. 821 ’ 821 .
From (4.41) and (4.42), we get
(4.43) qle—ih1(q1217qzzz)—ih2(21,22) =14+ % qle—ihz(q1Z1,q222)—ih1 =1+ %
621 ’ 821
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Therefore, by the same arguments as used in Case 1 in the proof of Theorem 2.1, we
obtain

26— Q2 —
(444) hl (Zl, 22) = quei& —1

h2(2’1, 22) =

21+ p1(22),
z1 + pQ(ZQ)v

e —1
and

iy [0 005 1)+ (0 ) =0 ) e 1) =
pi(@222) +p2(22) = &1, pa(@e22) + pi(2) = &,

where p1(z2), p2(22) are polynomials in 25, only. In view of Lemma 3.1 and (4.45), we
see that & = & = ag + by and the precise from of ¢s, p1, po are given in Lemma 3.1.
From the first equation of (4.44), it follows that et = 41.

First suppose ¢t = 1, then in view of first two equations of (4.45), we see that
q1 = F1. Therefore, for ¢ = 1 and ¢; = 1, (4.44) yields hy(z1, 20) = p1(22) and
ha(z1, z2) = p2(22). Thus from first and third equations of (4.37), we obtain

(4.46) f1(21, 22) = z1cosp1(22) + Ti(22),  fa(z1, 22) = 21 cos pa(22) + Ta(22),

where T7,T; are entire functions in zp, only. From (4.46) and second and fourth
equations of (4.37), we easily deduce that

(4.47) TG z) = Ti(z), Tygz) = Te(z).

Next suppose that e = 1 and ¢; = —1. Then from (4.44), we have hy(z1, 25) =
—221+p1(29) and ho(z1, 29) = —221 + pa(22), and hence from first and third equations
of (4.37), we obtain

{fl(zl, 29) = —2sin(—221 + pi(22)) + T1(22),

(4.48) fao(z1, 22) = —% sin(—2z1 + pa(22)) + To(22),

where T7,T5 are entire functions in z;, only. From (4.48) and second and fourth
equations of (4.37), we get (4.47).

Next suppose that e = —1. Then from (4.45), we have q; = —1. Therefore, from
the last two equations of (4.44) and first and third equations of (4.37), we easily get
(4.46). Hence, using (4.46) in second and third equations of (4.37), we deduce that

(4.49)  Ti(ga20) — Ti(z0) = 2sinpi(z2) and  Ta(gs22) — To(2a) = 2sin pa(2s).
Case 2. Let

(450) qle—ihQ(le7q2Z2)+ih1(Z1,22) =1+ ghl7 qleifu(Q121,q2z2)+ih2(Z1,Z2) =14 ghz
21 21
From (4.41) and (4.50), we get
(4.51) qleihQ(q1z1,q222)—ih1(21722) =1+ %’ qle—ihl(Q1Z1,QQ22)—ih2(Z1,Zz) =14 %
0z 02
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By similar argument as in Case 1, we can obtain (4.44) and

(4 52) q1 (Q1€i€2 — 1) + <q1€i§1 _ 1> =0, ¢ <q1€i§1 _ 1) _ (qleifg - 1) =0,
' Pi(ge22) + p2(22) = &1, p2(gez2) — pi(22) = &2,

where p;(22), p2(22) are polynomials in 25, only and hence can be found from Lemma 3.3
along with ¢o. In view of the first two equations of (4.44), let us first assume that
e =1, ¢%2 = 1. Then, by (4.52), we get ¢; = 1, and hence by (4.44), we have
hi(z1, z2) = p1(22) and ho(z1, 29) = pa(22). Therefore, from first and third equations
of (4.37), we obtain (4.46), where T7,T5 are entire functions in 29, only.

Now, by second and third equations of (4.37) and (4.46), we can easily deduce that

Ti(g322) — Ti(22) = 2sinpi(22) and Th(gsze) = To(22).

Next suppose that e = 1 and %2 = —1. Then, from (4.52), it follows that
¢ = +i. If g1 = i, then from (4.44), we have hy(z1,22) = —(1 + i)z + p1(22) and
ha(z1, 22) = —(1 — i) + pa(22), and hence from first and third equations of (4.37), we
deduce that

(4.53) a2, 20) = _1%2' sin(—(1 — @)z + pa(22)) + Ta(22),

where T}, Ty are entire functions in z,. By second and third equations of (4.37) and
(4.53), we can prove that 17, T, satisfy (4.47).
If ¢y = —1, then similarly we can get

fi(z1,22) = =5 sin(—=(1 — )21 + pa(22)) + Th(22),
falz1,20) = = sin(—(1 +i)z1 + pa(22)) + To(22),

{fl(zl, 2) = — e sin(— (1 +0)z1 + pi(22)) + Ti(22),

where T}, Ty are entire functions in z, satisfying (4.47).

If ¢ = —1 and €2 = 1, then from the first two equations of (4.52), we easily
reach to a contradiction.

Finally, let e®t = —1 and €2 = —1. Then from (4.52), we have ¢; = —1. Therefore,
in view of last two equations of (4.44), first and third equations of (4.37), we obtain
(4.46). Therefore, from second and fourth equations of (4.37), it can be shown that

Ty (g32) = Ti(2) and Ty(qaze) — To(z) = 2sinpa(2y).
Case 3. Let
Ohs
.
Then, after interchanging p;(29) with pa(z2), & with & in (3.8) in Lemma 3.3, we can

get the same conclusions as obtained in Case 2. So we omit the details.
Case 4. Let

eth2(@z1,q222)+ih (21,22) _ q ohy

¢ =14 1 qle—ihl(q1z1,q2z2)+ih2(z1122) -1
82’1 ’

(4.54) qleihl(Zl’ZQ)_ihQ(qlzlv‘12Z2) =1+ % qleihz(Z1,zz)—ihl(qla,qzzz) =1+

821 ’

ohy
821 )
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From (4.41) and (4.54), we get
Ohy

(455) qleihz(%zl,%zz)fim(zl,zz) =14 = qleihl(q121,qg,22)7ih2(21,22) — 14+ %
821’ 821

Now, by similar arguments as used in Case 1, we obtain (4.44), (3.7) and

(4.56) 0 (qlei& — 1) — (qle’fl — 1) =0, ¢ (qle’fl — 1) — (qlei& — 1) =0.

In view of Lemma 3.2, we see that £, = ag—bg = —&;. Also the form of the polynomials
p1, p2 and the value of ¢ can be found from Lemma 3.2. Hence, by first two equations
of (4.44), it follows that ¢®2 = 1 when €% = 1, whereas € = —1 when €' = —1.

First suppose that €' = 1. Then, by (4.56), we get ¢; = 1, and hence in view of
(4.44), first and third equation equation of (4.37), we easily have (4.46). Using second
and fourth equations of (4.37) and (4.46), we conclude that

Tl(qug) — Ti(z2) = 2sinp;i(z9) and Tg(qg,@) — Ty(2) = 28inpy(29).

Next suppose €' = —1. Then, from (4.56), we obtain ¢ = 1. If ¢, = 1, by
(4.44), first and third equations of (4.37), we obtain (4.48). Using (4.48) in second
and fourth equations of (4.37), we obtain (4.47). Similarly, if ¢; = —1, then we have
(4.46), where T4, T5 satisty (4.47). O
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