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A NOTE ON DISCRETE CLASSICAL ORTHOGONAL
POLYNOMIALS

BAGHDADI ALOUI1,5, JIHAD SOUISSI2, AND WATHEK CHAMMAM3,4,5,∗

Abstract. We introduce the concept of Dw,p-classical orthogonal polynomials,
where Dw,p is the lowering operator given by Dw,p := τ−w−τ−p

w−p , w, p ∈ C, with
τ−wf(x) := f(x + w). We conclude that these polynomials are the shifted discrete
classical orthogonal polynomials.

1. Introduction

An orthogonal sequence of polynomials {pn}n≥0 is called classical if {p′
n}n≥0 is

also orthogonal. This characterization is essentially the Hahn-Sonine characterization
(see [11, 19]) of the classical orthogonal polynomials. In [12], Hahn proved similar
characterizations for orthogonal sequences of polynomials pn such that Dwpn or Hqpn

(n ≥ 1) are again orthogonal sequences. Here, Dw is the difference operator and Hq

is the q-difference operator given, respectively, by Dwf(x) = f(x+w)−f(x)
w

, w ̸= 0 and
Hqf(x) = f(qx)−f(x)

(q−1)x , q ̸= 1. Note that differentiation, difference, and q-difference are
lowering operators as they reduce the degree of a polynomial by exactly one.

The concept of O-classical orthogonal polynomials, where O is an operator on the
space of polynomials, has been studied by many authors in the literature (see [1–14]).

The aim of the present paper is to pick up orthogonal sequences of polynomials under
a lowering operator denoted by Dw,p, where Dw,pf(x) := f(x+w)−f(x+p)

w−p
, generalizing

the difference operator Dwf(x) := f(x+w)−f(x)
w

(see [1]).
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The structure of this paper is as follows. In Section 2, we present the terminology
and basic definitions that will be used later on. In Section 3, we give some properties
of the Dw,p-classical orthogonal polynomials.

2. Preliminaries

Let P be the linear space of polynomials in one variable with complex coefficients
and P′ its dual space, whose elements are forms. We denote by ⟨u, p⟩ the action of
u ∈ P′ on p ∈ P. In particular, we denote by (u)n := ⟨u, xn⟩, n ≥ 0, the moments of
u.

Let us introduce some useful operations in P′. For any u ∈ P′, g ∈ P, a ∈ C\{0},
and b ∈ C, we let Du = u′, gu, hau and τbu, be the forms defined by duality [15]

⟨u′, f⟩ := − ⟨u, f ′⟩, ⟨gu, f⟩ := ⟨u, gf⟩, f ∈ P

⟨hau, f⟩ :=⟨u, haf⟩ = ⟨u, f(ax)⟩, ⟨τ−bu, f⟩ := ⟨u, τbf⟩ = ⟨u, f(x− b)⟩, f ∈ P.

A form u is called normalized if it satisfies (u)0 = 1. We assume that the forms
used in this paper are normalized.

Let {Pn}n≥0 be a sequence of monic polynomials (MPS) with degPn = n and let
{un}n≥0 be its dual sequence, un ∈ P′, defined by ⟨un, Pm⟩ = δn,m with n, m ≥ 0.
Note that u0 is said to be the canonical functional associated with the MPS {Pn}n≥0.

Let us recall the following result.

Lemma 2.1 ([15,16]). For any u ∈ P′ and any integer m ≥ 1, the following statements
are equivalent:

(i) ⟨u, Pm−1⟩ ≠ 0, ⟨u, Pn⟩ = 0, n ≥ m;

(ii) exist λν ∈ C, 0 ≤ ν ≤ m− 1, λm−1 ̸= 0 such that u =
m−1∑
ν=0

λνuν.

The form u is called regular if we can associate with it a sequence {Pn}n≥0 such
that

⟨u, PnPm⟩ = rnδn,m, rn ̸= 0, n,m ≥ 0.
The sequence {Pn}n≥0 is then called an orthogonal sequence of monic polynomials
(MOPS) with respect to u. Note that u = (u)0u0 = u0. When u is regular, let F be a
polynomial such that if Fu = 0, then F = 0 (see [18]).

Proposition 2.1 ([15,16]). Let {Pn}n≥0 be an MPS with degPn = n, n ≥ 0, and let
{un}n≥0 be its dual sequence. The following statements are equivalent.

(i) {Pn}n≥0 is orthogonal with respect to u0.
(ii) For all n ≥ 0

un = ⟨u0, P
2
n⟩−1Pnu0.

(iii) {Pn}n≥0 satisfies the three-term recurrence relation

(TTRR) :
{
P0(x) = 1, P1(x) = x− β0,
Pn+2(x) = (x− βn+1)Pn+1(x) − γn+1Pn(x), n ≥ 0,
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where βn = ⟨u0, xP
2
n⟩⟨u0, P

2
n⟩−1, n ≥ 0 and γn+1 = ⟨u0, P

2
n+1⟩⟨u0, P

2
n⟩−1 ̸= 0, n ≥ 0.

If {Pn}n≥0 is a MOPS with respect to the regular form u0, then {P̃n}n≥0, where
P̃n(x) = a−nPn(ax), n ≥ 0, a ̸= 0, is a MOPS with respect to the regular form
ũ0 = ha−1u0, and satisfies [16]{

P̃0(x) = 1, P̃1(x) = x− β̃0,
P̃n+2(x) = (x− β̃n+1)P̃n+1(x) − γ̃n+1P̃n(x), n ≥ 0,

where β̃n = a−1βn and γ̃n+1 = a−2γn+1.
Recall the operator

(Dw,pf)(x) := f(x+ w) − f(x+ p)
w − p

, f ∈ P, w, p ∈ C.

The transposition tDw,p of Dw,p is −D−w,−p, with a slight abuse of notation which is
harmless. Thus,

⟨D−w,−pu, f⟩ = −⟨u,Dw,pf⟩, u ∈ P′, f ∈ P, w, p ∈ C.

Note that Dw,0 reduces to the operator Dw where (Dwf)(x) = f(x+w)−f(x)
w

(see [1]).

Lemma 2.2. The following formulas hold
(Dw,pfg)(x) = (τ−pf)(x)(Dw,pg)(x) + (τ−wg)(x)(Dw,pf)(x), f, g ∈ P,(2.1)

(Dw,pf(τwg))(x) = (τ−pf)(x)(Dw,p(τwg))(x) + g(x)(Dw,pf)(x), f, g ∈ P,(2.2)
(τ−wfg)(x) = (τ−wf)(x)(τ−wg)(x), f, g ∈ P,(2.3)

(τ−wgu) = (τ−wg)(τ−wu), g ∈ P, u ∈ P′,(2.4)
D−w,−p(gu) = (τwg)(D−w,−pu) + (D−w,−pg)(τpu), g ∈ P, u ∈ P′,(2.5)

(τb ◦Dw,p)(f) = (Dw,p ◦ τb)(f),
(τb ◦Dw,p)(u) = (Dw,p ◦ τb)(u), f ∈ P, u ∈ P′, b ∈ C,

(2.6)

(ha ◦Dw,p)(u) = (aDaw,ap ◦ ha)(u), u ∈ P′, a ∈ C \ {0},(2.7)
(ha ◦Dw,p)(f) = (a−1Da−1w,a−1p ◦ ha)(f), f ∈ P, a ∈ C \ {0}.(2.8)

The relations (2.1)–(2.4) are evident. Further, we have
⟨D−w,−p(gu), f⟩ = − ⟨u, g(Dw,pf)⟩ = −⟨u,Dw,p(f(τwg)) − (τ−pf)Dw,p(τwg)⟩

(from (2.2))
=⟨(τwg)(D−w,−pu) + τp((Dw,pτwg)u), f⟩,

but
τp

(
(Dw,pτwg)u

)
=

(
τp ◦Dw,p ◦ τwg

)
(τpu) (from(2.3))

=(D−w,−pg)(τpu) (following the definitions.)
Hence, we have (2.5).

The proofs of (2.6)–(2.8) follow easily from the definitions.
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Now, consider {Pn}n≥0 as above in Section 1 and let

(2.9) P̂n(x) = 1
n+ 1(Dw,pPn+1)(x), n ≥ 0.

Denoting by {ûn}n≥0 the dual sequence of {P̂n}n≥0, we have the following result.

Lemma 2.3.
(2.10) D−w,−p(ûn) = −(n+ 1)un+1, n ≥ 0.

Indeed, from the definition ⟨ûn, P̂m⟩ = δn,m, n,m ≥ 0, we have −⟨D−w,−p(ûn), Pm+1⟩
= (m+ 1)δn,m, therefore

⟨D−w,−p(ûn), Pm⟩ =0, m ≥ n+ 2, n ≥ 0,
⟨D−w,−p(ûn), Pn+1⟩ = − (n+ 1), n ≥ 0.

By virtue of Lemma 2.1,

D−w,−p(ûn) =
n+1∑
µ=0

λn,µuµ.

However, ⟨D−w,−p(ûn), Pµ⟩ = λn,µ, 0 ≤ µ ≤ n + 1 and λn,µ = 0, 0 ≤ µ ≤ n,
λn,n+1 = −(n+ 1), n ≥ 0. Hence, we have (2.10).

Let ϕ and ψ be two polynomials with ϕ monic, and deg ϕ = t, degψ = q ≥ 1. We
suppose that the pair (ϕ, ψ) is admissible, i.e., when q = t−1, writing ψ(x) = aqx

q+· · · ,
then aq is not a positive integer.

Definition 2.1. A form u is called Dw,p-semi-classical when it is regular and satisfies
(2.11) D−w,−p(ϕu) + ψu = 0,
where the pair (ϕ, ψ) is admissible. The corresponding orthogonal sequence {Pn}n≥0
is called Dw,p-semi-classical.

Lemma 2.4. Consider the sequence {P̃n}n≥0 obtained by shifting Pn, i.e.,
P̃n(x) = a−nPn(ax+ b) = a−n(ha ◦ τ−bPn)(x), n ≥ 0, a ̸= 0.

If u0 satisfies (2.11), then ũ0 = (ha−1 ◦ τ−b)u0 fulfils the equation
(2.12) D−wa−1,−pa−1(ϕ̃ũ0) + ψ̃ũ0 = 0,
where ϕ̃(x) = a−tϕ(ax+ b) and ψ̃(x) = a1−tψ(ax+ b).

We need the following formulas, which are easy to prove.

(2.13)
{
g(τbu) = τb((τ−bg)u), g ∈ P, u ∈ P′, b ∈ C,
g(hau) = ha((hag)u), g ∈ P, u ∈ P′, a ∈ C\{0}.

Let u0 = (τb ◦ ha)ũ0 and v = haũ0. From (2.13) we have
ψu0 =ψ(τbv) = τb((τ−bψ)v)

=τb((τ−bψ)(haũ0)) = (τb ◦ ha)(ha ◦ τ−bψ)ũ0 = (τb ◦ ha)(ψ(ax+ b)ũ0).
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Further, by using (2.13) and (2.7) we get
D−w,−p(ϕu0) =D−w,−p(ϕ(τbv)) = D−w,−p(τb((τ−bϕ)v))

=τbD−w,−p

(
(τ−bϕ)(haũ0)

)
= τbD−w,−p

(
ha ((ha ◦ τ−bϕ) ũ0)

)
=a−1(τb ◦ ha)D−wa−1,−pa−1

(
ϕ(ax+ b)ũ0

)
.

Equation (2.11) becomes

(τb ◦ ha)
(
D−wa−1,−pa−1

(
ϕ(ax+ b)ũ0

)
+ aψ(ax+ b)ũ0

)
= 0.

Hence, we have the desired result.
Regarding general semi-classical sequences, we have the following statement that

we give for the sake of completeness [17,18].

Proposition 2.2. For any monic polynomial ϕ and any orthogonal sequence {Pn}n≥0,
the following statements are equivalent.

a) There exists an integer s ≥ 0 such that

ϕ(x)P̂n(x) =
n+t∑

ν=n−s

λn,νPν(x), n ≥ s,

λn,n−s ̸=0, n ≥ s+ 1.
b) There exists a polynomial ψ, degψ = q ≥ 1 such that

(2.14) D−w,−p(ϕu0) + ψu0 = 0,
where the pair (ϕ, ψ) is admissible.

Remark 2.1. (a) We also have the following statement: the form u0 is Dw,p-semi-
classical if and only if the sequence {P̂n}n≥0 is quasi-orthogonal of order s with
respect to ϕu0.

(b) When {Pn}n≥0 is orthogonal, it fulfils the standard recurrence relation{
P0(x) = 1, P1(x) = x− β0,
Pn+2(x) = (x− βn+1)Pn+1(x) − γn+1Pn(x), γn+1 ̸= 0, n ≥ 0.

Likewise, when {P̂n}n≥0 is orthogonal (s = 0), it fulfils the recurrence relation{
P̂0(x) = 1, P̂1(x) = x− β̂0,

P̂n+2(x) = (x− β̂n+1)P̂n+1(x) − γ̂n+1P̂n(x), γ̂n+1 ̸= 0, n ≥ 0.

3. The Dw,p-Classical Orthogonal Polynomials

When s = 0, the sequence {Pn}n≥0 is called Dw,p-classical (discrete classical orthog-
onal polynomials), moreover, we have the more accurate following statements.

Proposition 3.1. For any orthogonal sequence {Pn}n≥0, the following statements are
equivalent.

a) The sequence {Pn}n≥0 is Dw,p-classical.
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b) The sequence {P̂n}n≥0 is orthogonal.
c) There are two polynomials, ϕ which is monic with degree at most 2, and ψ with

degree 1, along with a sequence {λn}n≥0, where each λn is nonzero for n ≥ 0,
such that

ϕ(x)(Dw,p ◦D−w,−pPn+1)(x) − ψ(x)(D−w,−pPn+1)(x) + λnPn+1(x) = 0, n ≥ 0.

Proof. a) ⇒ b). From (2.14) and Lemma 2.2, we have

⟨u0, ϕPmP̂n⟩ = 1
n+ 1⟨Pmϕu0, Dw,pPn+1⟩

= − 1
n+ 1⟨D−w,−p(Pmϕu0), Pn+1⟩

= − 1
n+ 1⟨(τwPm)D−w,−p(ϕu0) + (D−w,−pPm)τp(ϕu0), Pn+1⟩

= 1
n+ 1⟨(τwPm)ψu0 − (D−w,−pPm)τp(ϕu0), Pn+1⟩

= 1
n+ 1 ⟨u0, ((τwPm)ψPn+1 − ϕτ−p((D−w,−pPm))Pn+1)⟩ .

Consequently,

⟨ϕu0, PmP̂n⟩ =0, 0 ≤ m ≤ n− 1, n ≥ 1,

⟨ϕu0, (P̂n)2⟩ = 1
n+ 1

(
ψ′(0) − 1

2ϕ
′′(0)n

)
⟨u0, P

2
n+1⟩ ≠ 0, n ≥ 0,

since (ϕ, ψ) is admissible.
b) ⇒ c). From (2.10) and the assumptions,

(3.1) D−w,−p(P̂nû0) = −XnPn+1u0, n ≥ 0,

with

Xn = (n+ 1) ⟨û0, P̂
2
n⟩

⟨u0, P 2
n+1⟩

, n ≥ 0.

For n = 0 in (3.1), we obtain

(3.2) D−w,−p(û0) = −γ−1
1 P1u0.

In accordance with Lemma 2.2, we have

D−w,−p(P̂nû0) = (τwP̂n)(D−w,−pû0) + (D−w,−pP̂n)(τpû0),

therefore, on account of (3.2),

(3.3) −X0P1(τwP̂n)u0 + (D−w,−pP̂n)(τpû0) = −XnPn+1u0, n ≥ 0.

Putting n = 1, we get

(3.4) τp(û0) = γ−1
1 κϕu0,
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where κϕ(x) = P1(x)(τwP̂1)(x) − 2γ̂1γ
−1
2 P2(x) (ϕ monic). So, Equations (3.3), (3.4)

and the regularity of u0 imply
ϕ(x)(D−w,−pP̂n)(x) − ψ(x)(τwP̂n)(x) + γ1κ

−1XnPn+1(x) = 0, n ≥ 0,
with ψ(x) = κ−1P1(x). Comparing the degrees, we obtain

1
2ϕ

′′(0)n− ψ′(0) + γ1κ
−1Xn = 0, n ≥ 0,

which means that the pair (ϕ, ψ) is admissible. Finally, we have the desired second-
order difference equation with λn = γ1κ

−1(n + 1)Xn, n ≥ 0. In fact, we also have
proved that b) ⇒ c).

c) ⇒ a). From the given equation, we get
⟨u0, ϕ(Dw,p ◦D−w,−pPn+1) − ψ(D−w,−pPn+1)⟩ = 0, n ≥ 0.

Hence
⟨Dw,p

(
D−w,−p(ϕu0) + ψu0

)
, Pn+1⟩ = 0, n ≥ 0.

Since
〈
Dw,p

(
D−w,−p(ϕu0) + ψu0

)
, 1

〉
= 0, we get

Dw,p

(
D−w,−p(ϕu0) + ψu0

)
= 0.

Hence, (2.14) where the pair (ϕ, ψ) is admissible on account of λn ̸= 0, n ≥ 0. □

Remark 3.1. (a) In the case s = 0, when the pair (ϕ, ψ) is not admissible, then the
solution u of (2.11) is not regular. In other words, when the solution u of (2.11) is
regular, then the pair (ϕ, ψ) is necessarily admissible.

(b) Necessarily, we have
κϕ(x) =(1 − 2γ̂1γ

−1
2 )x2 + (2γ̂1γ

−1
2 (β0 + β1) − β0 − β̂0 − w)x

+ β0(β̂0 + w) − 2γ̂1γ
−1
2 (β0β1 − γ1),

kψ(x) =P1(x).

Proposition 3.2. If {Pn}n≥0 is Dw,p-classical, the sequence {P̂n}n≥0 is Dw−p,0-
classical and we have
(3.5) Dp−w,0(ϕ1û0) + ψ1û0 = 0,

with ϕ1(x) = (τ−wϕ)(x) and ψ1(x) =
(
κ−1(τ−pP1) − (Dw,pϕ)

)
(x).

Proof. When {Pn}n≥0 is Dw,p-classical, we have (3.2)
D−w,−p(û0) = −γ−1

1 P1u0.

Multiplying this equation by ϕ, we get
ϕD−w,−p(û0) = −γ−1

1 ϕP1u0.

But by (2.5), ϕD−w,−p(û0) = D−w,−p

(
(τ−wϕ)û0

)
−

(
D−w,−p ◦ τ−wϕ

)
τpû0, so we have

D−w,−p

(
(τ−wϕ)û0

)
−

(
D−w,−p ◦ τ−wϕ

)
τpû0 = −γ−1

1 ϕP1u0
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and
τ−p ◦D−w,−p

(
(τ−wϕ)û0

)
− (Dw,pϕ)û0 = −γ−1

1 τ−p(P1)τ−p

(
ϕu0

)
.

By (3.4), we have û0 = γ−1
1 κτ−p

(
ϕu0

)
, and so we now get

D−w+p,0
(
(τ−wϕ)û0

)
+

(
κ−1(τ−pP1) − (Dw,pϕ)

)
û0 = 0.

This completes the proof. □
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