ON PERFECT CO-ANNIHILATING-IDEAL GRAPH OF A COMMUTATIVE ARTINIAN RING

S. M. SAADAT MIRGHADIM, M. J. NIKMEHR, AND R. NIKANDISH

Abstract. Let R be a commutative ring with identity. The co-annihilating-ideal graph of R, denoted by A_R, is a graph whose vertex set is the set of all non-zero proper ideals of R and two distinct vertices I and J are adjacent whenever $\text{Ann}(I) \cap \text{Ann}(J) = (0)$. In this paper, we characterize all Artinian rings for which both of the graphs A_R and $\overline{A_R}$ (the complement of A_R), are chordal. Moreover, all Artinian rings whose A_R (and thus $\overline{A_R}$) is perfect are characterized.

1. Introduction

Assigning a graph to a ring gives us the ability to translate algebraic properties of rings into graph-theoretic language and vice versa. It leads to arising interesting algebraic and combinatorics problems. Therefore, the study of graphs associated with rings has attracted many researches. There are a lot of papers which apply combinatorial methods to obtain algebraic results in ring theory; for instance see [2, 3, 5, 6, 10, 11] and [12].

Throughout this paper, all rings are assumed to be commutative with identity. We denote by $Z(R)$, $\text{Max}(R)$, $\text{Nil}(R)$ and $J(R)$ the set of all zero-divisor elements of R, the set of all maximal ideals of R, the set of all nilpotent elements of R and jacobson radical of R, respectively. We call an ideal I of R, an annihilating-ideal if there exists $r \in R \setminus \{0\}$ such that $Ir = (0)$. The set of all annihilating-ideals of R is denote by $A(R)$. Let I be an ideal of R. We denote by $A(I)$ the set of all ideals of R contained in I. The ring R is said to be reduced if it has no non-zero nilpotent element. For every ideal I of R, we denote the annihilator of I by $\text{Ann}(I)$. We let $A^* = A \setminus \{0\}$. For any undefined notation or terminology in ring theory, we refer the reader to [4, 7].

Key words and phrases. Co-annihilating-ideal graph, perfect graph, chordal graph.

2010 Mathematics Subject Classification. Primary: 05C19. Secondary: 05C75, 05C25.

Received: January 03, 2018.
Accepted: September 06, 2018.
We use the standard terminology of graphs following [13]. Let $G = (V, E)$ be a graph, where $V = V(G)$ is the set of vertices and $E = E(G)$ is the set of edges. By \overline{G}, we mean the complement graph of G. We write $u - v$, to denote an edge with ends u, v. A graph $H = (V_0, E_0)$ is called a subgraph of G if $V_0 \subseteq V$ and $E_0 \subseteq E$. Moreover, H is called an induced subgraph by V_0, denoted by $G[V_0]$, if $V_0 \subseteq V$ and $E_0 = \{\{u, v\} \in E \mid u, v \in V_0\}$. Also G is called a null graph if it has no edge. A complete graph of n vertices is denoted by K_n. An n-part graph is one whose vertex set can be partitioned into n subsets, so that no edge has both ends in any one subset.

A complete n-partite graph is an n-part graph such that every pair of graph vertices in the n sets are adjacent. In a graph G, a vertex x is isolated, if no vertices of G is adjacent to x. Let G_1 and G_2 be two disjoint graphs. The join of G_1 and G_2, denoted by $G_1 \vee G_2$, is a graph with the vertex set $V(G_1 \vee G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 \vee G_2) = E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2)\}$. For a graph G, $S \subseteq V(G)$ is called a clique if the subgraph induced on S is complete. The number of vertices in the largest clique of graph G is called the clique number of G and is often denoted by $\omega(G)$. For a graph G, let $\chi(G)$ denote the chromatic number of G, i.e., the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. Clearly, for every graph G, $\omega(G) \leq \chi(G)$. A graph G is said to be weakly perfect if $\omega(G) = \chi(G)$. A perfect graph G is a graph in which every induced subgraph is weakly perfect. A chord of a cycle C is an edge which is not in C but has both its endvertices in C. A graph G is chordal if every cycle of length at least 4 has a chord.

Let R be a commutative ring with identity. The co-annihilating-ideal graph of R, denoted by A_R, is a graph whose vertex set is the set of all non-zero proper ideals of R and two distinct vertices I and J are adjacent whenever $\text{Ann}(I) \cap \text{Ann}(J) = (0)$. This graph was first introduced and studied in [1] and many interesting properties of this graph were explored by the authors. In [1, Theorem 17], it was proved A_R is a weakly perfect graph, if R is an Artinian ring. In this paper, we continue study the perfectness of A_R. Indeed, we characterize all Artinian rings for which both of the graphs A_R and $\overline{A_R}$, are chordal. Moreover, all Artinian rings whose A_R is perfect are given.

2. When A_R and $\overline{A_R}$ are chordal?

In this section, we characterize all Artinian rings R, for which A_R and $\overline{A_R}$ are chordal. We begin with the following lemmas.

Lemma 2.1. Let R be an Artinian ring. Then there exists a positive integer n such that $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian local ring, for every $1 \leq i \leq n$.

Proof. See [4, Theorem 8.7].

Lemma 2.2. Let R be an Artinian ring and I be a non-zero ideal of R. Then I is a nilpotent ideal of R if and only if I is an isolated vertex in A_R.
Proof. Assume that I is a non-zero nilpotent ideal of R. First, we show that $\text{Ann}(I)$ is an essential ideal of R. Suppose to the contrary, there exists an ideal J such that $J \cap \text{Ann}(I) = (0)$. Thus $KI \neq (0)$, for every $K \subseteq J$. Obviously, $KI \subseteq J$ and so $(KI)I = KI^2 \neq (0)$. By continuing this procedure, $KI^n \neq 0$, for every positive integer n, a contradiction. Hence $\text{Ann}(I)$ is an essential ideal of R and so $\text{Ann}(I) \cap \text{Ann}(J) \neq (0)$, for every $J \in A(R)^*$. Therefore, I is an isolated vertex in A_R.

Conversely, suppose that I is an isolated vertex in A_R. If I is not a nilpotent ideal of R, then $I \not\subseteq J(R)$, i.e., there exists $m \in \text{Max}(R)$ such that $I + m = R$, and so I is adjacent to m, a contradiction. Thus I is a nilpotent ideal of R.

Next we need to study the structure of A_R, where R is an Artinian ring with at most two maximal ideals.

Theorem 2.1. Let R be an Artinian ring. Then the following statements are equivalent:

1. $|\text{Max}(R)| = 1$;
2. $A_R = K_n$, where $n = |A(R)^*|$.

Proof. (1) \Rightarrow (2) Since R is an Artinian local ring, every ideal of $A(R)^*$ is a nilpotent ideal of R and thus by Lemma 2.2, A_R is a null graph.

(2) \Rightarrow (1) is obtained by Lemma 2.2. □

Theorem 2.2. Let R be an Artinian ring. Then the following statements are equivalent:

1. $|\text{Max}(R)| = 2$;
2. $A_R = K_{n_1} + K_{n_2,n_3}$, where $n_1 = |A(\text{Nil}(R))^*|$, $n_2 = |A(m_1)^*| - n_1$, $n_3 = |A(m_2)^*| - n_1$ and $m_1, m_2 \in \text{Max}(R)$.

Proof. (1) \Rightarrow (2) Let $\text{Max}(R) = \{m_1, m_2\}$. Since $m_1 \cap m_2 = \text{Nil}(R)$, Lemma 2.2 implies that $A_R[A(\text{Nil}(R))^*]$ is a null graph. Let $A = \{I \in A(m_1) \setminus A(\text{Nil}(R))\}$ and $B = \{I \in A(m_2) \setminus A(\text{Nil}(R))\}$. If $I \in A$ and $J \in B$, then $I + J = R$, and thus I is adjacent to J. Moreover, $A_R[A]$ and $A_R[B]$ are null graphs. This means that $A_R[A \cup B] = K_{|A|,|B|}$. Since $A \cup B \cup A(\text{Nil}(R))^* = A(R)^*$, we deduce that $A_R = K_{n_1} + K_{n_2,n_3}$, where $n_1 = |A(\text{Nil}(R))^*|$, $n_2 = |A(m_1)^*| - n_1$, $n_3 = |A(m_2)^*| - n_1$ and $m_1, m_2 \in \text{Max}(R)$.

(2) \Rightarrow (1) By Theorem 2.1, $|\text{Max}(R)| \geq 2$. If $|\text{Max}(R)| \geq 3$, then A_R has a cycle of length 3, as $A_R[\text{Max}(R)]$ is a complete graph, a contradiction. Thus $|\text{Max}(R)| = 2$. □

We are now in a position to characterize all Artinian rings for which both of the graphs A_R and $\overline{A_R}$ are chordal.

Theorem 2.3. Let R be an Artinian ring. Then

1. A_R is chordal if and only if one of the following statements holds:
 (i) R is local;
 (ii) $R \cong F \times S$, where F is a field and S is local;
(iii) $R \cong F_1 \times F_2 \times F_3$, where F_i is a field for every $1 \leq i \leq 3$;

(2) $\overline{A_R}$ is chordal if and only if $|\text{Max}(R)| \leq 3$.

Proof. (1) Let A_R be chordal. First we show that $|\text{Max}(R)| \leq 3$. If $|\text{Max}(R)| \geq 4$, then Figure 1 is a cycle of length 4,

![Figure 1](image)

where

\[
I_1 = (0) \times R_2 \times R_3 \times (0) \times R_5 \times \cdots \times R_n,
\]
\[
I_2 = R_1 \times (0) \times (0) \times R_4 \times R_5 \times \cdots \times R_n,
\]
\[
I_3 = R_1 \times R_2 \times R_3 \times (0) \times R_5 \times \cdots \times R_n,
\]
\[
I_4 = R_1 \times (0) \times R_3 \times R_4 \times R_5 \times \cdots \times R_n.
\]

Thus $|\text{Max}(R)| \leq 3$. If $|\text{Max}(R)| = 3$, then $R \cong R_1 \times R_2 \times R_3$, where R_i is an Artinian local ring, for every $1 \leq i \leq n$. If R_1 is not field, then consider $I \in A(\text{Nil}(R_1))^*$ and thus Figure 2 is a cycle of length 4,

![Figure 2](image)

where

\[
I_1 = R_1 \times (0) \times (0),
\]
\[
I_2 = (0) \times R_2 \times R_3,
\]
\[
I_3 = R_1 \times R_2 \times (0),
\]
\[
I_4 = I \times R_2 \times R_3.
\]

Hence R_1 is a field. Similarly, R_2 and R_3 are fields. Let $|\text{Max}(R)| = 2$. Then $R \cong R_1 \times R_2$, where R_i is an Artinian local ring, for every $1 \leq i \leq 2$. We show that
one of the rings R_1 and R_2 is a field. If I, J are non-zero proper ideals of R_1 and R_2, respectively, then Figure 3 is a cycle of length 4, where

$$I_1 = I \times R_2,$$
$$I_2 = R_1 \times J,$$
$$I_3 = (0) \times R_2,$$
$$I_4 = R_1 \times (0).$$

\[
\begin{array}{c}
I_1 \quad I_2 \\
I_4 \quad I_3
\end{array}
\]

Figure 3. A cycle of length 4 in A_R

This means that one of the rings R_1 and R_2 is a field. Thus in this case $R \cong F \times S$, where F is a field and S is local. Clearly, if $|\text{Max}(R)| = 1$, R is local.

Conversely, suppose that one of the conditions (i), (ii), (iii) is satisfied. Condition (i) implies that A_R is a null graph by Theorem 2.1, and thus A_R is chordal. If (ii) holds, then by Theorem 2.2, $A_R = \overline{K_n} + K_{1,n+1}$ where $n = |A(\text{Nil}(R))^*|$. This implies that A_R is chordal. If (iii) holds, then Figure 4 shows that A_R is chordal where

\[
\begin{array}{c}
I_1 \quad I_2 \\
I_5 \quad I_3 \quad I_4 \\
I_6
\end{array}
\]

Figure 4. $A_{F_1 \times F_2 \times F_3}$

$$I_1 = (0) \times (0) \times F_3,$$
$$I_2 = F_1 \times F_2 \times (0),$$
$$I_3 = F_1 \times (0) \times F_3,$$
$$I_4 = (0) \times F_2 \times (0),$$
$$I_5 = (0) \times F_2 \times F_3.$$
First suppose that we consider the following cases.

(2) First suppose that $\overline{A_R}$ is chordal. If $|\text{Max}(R)| \geq 4$, then we put

\begin{align*}
I_1 &= (0) \times R_2 \times R_3 \times (0) \times R_5 \times \ldots \times R_n, \\
I_2 &= (0) \times R_2 \times (0) \times R_4 \times R_5 \times \ldots \times R_n, \\
I_3 &= R_1 \times (0) \times (0) \times R_4 \times R_5 \times \ldots \times R_n, \\
I_4 &= R_1 \times (0) \times R_3 \times (0) \times R_5 \times \ldots \times R_n.
\end{align*}

Now, it is not hard to see that $I_1 - I_2 - I_3 - I_4 - I_1$ is a cycle of length 4, a contradiction. Thus $|\text{Max}(R)| \leq 3$.

Conversely, suppose that $|\text{Max}(R)| \leq 3$. We show that $\overline{A_R}$ is chordal. To see this, we consider the following cases.

Case 1. $|\text{Max}(R)| = 1$. In this case, R is local and thus by Theorem 2.1, $\overline{A_R}$ is a complete graph. Hence $\overline{A_R}$ is chordal.

Case 2. $|\text{Max}(R)| = 2$. By Theorem 2.2, $\overline{A_R} = K_{n_1} \lor (K_{n_2} + K_{n_3})$, where $n_1 = |A(\text{Nil}(R))^*|$, $n_2 = |A(m_1)^*| - n_1$, $n_3 = |A(m_2)^*| - n_1$ and $m_2, m_2 \in \text{Max}(R)$. Thus every cycle is a triangle, i.e, $\overline{A_R}$ is chordal.

Case 3. $|\text{Max}(R)| = 3$. In this case, $R \cong R_1 \times R_2 \times R_3$. Let I_i be an ideal of R_i, for every $1 \leq i \leq 3$. Suppose that

\begin{align*}
A_1 &= \{ I_1 \times I_2 \times I_3 \mid I_i \subseteq \text{Nil}(R_i), \text{ for } i = 1, 2, 3 \} \setminus \{(0) \times (0) \times (0)\}, \\
A_2 &= \{ R_1 \times I_2 \times I_3 \mid I_i \subseteq \text{Nil}(R_i), \text{ for } i = 2, 3 \}, \\
A_3 &= \{ I_1 \times R_2 \times I_3 \mid I_i \subseteq \text{Nil}(R_i), \text{ for } i = 1, 3 \}, \\
A_4 &= \{ I_1 \times I_2 \times R_3 \mid I_i \subseteq \text{Nil}(R_i), \text{ for } i = 1, 2 \}, \\
B_1 &= \{ R_1 \times R_2 \times I_3 \mid I_3 \subseteq \text{Nil}(R_3) \}, \\
B_2 &= \{ R_1 \times I_2 \times R_3 \mid I_2 \subseteq \text{Nil}(R_2) \}, \\
B_3 &= \{ I_1 \times R_2 \times R_3 \mid I_1 \subseteq \text{Nil}(R_1) \}.
\end{align*}

Let $A = \bigcup_{i=1}^4 A_i$ and $B = \bigcup_{i=1}^3 B_i$. One may check that $A \cap B = \emptyset$ and $V(\overline{A_R}) = A \cup B$ and so $\{A, B\}$ is a partition of $V(\overline{A_R})$. We claim that $\overline{A_R}$ contains no induced cycle of length at least 4. Assume to the contrary, $a_1 - a_2 - \cdots - a_n - a_1$ is an induced cycle of length at least 4 in $\overline{A_R}$. We show that

\[\{a_1, a_2, \ldots, a_n\} \cap B_1 = \emptyset. \]

Suppose to the contrary (and with no loss of generality), $a_1 \in B_1$. Thus $a_1 = R_1 \times R_2 \times I_3$, where $I_3 \subseteq \text{Nil}(R_3)$. Since a_2 and a_n are adjacent to a_1, we conclude that the third components of a_2 and a_n must be nilpotent ideals of R_3. This implies that a_2 and a_n are adjacent, a contradiction. Hence,

\[\{a_1, a_2, \ldots, a_n\} \cap B_1 = \emptyset. \]

Similarly,

\[\{a_1, a_2, \ldots, a_n\} \cap B_2 = \{a_1, a_2, \ldots, a_n\} \cap B_3 = \emptyset. \]
This means that
\[\{a_1, a_2, \ldots, a_n\} \subseteq A. \]
But this contradicts the fact that $\overline{A_R}[A]$ is a complete graph, and so $\overline{A_R}$ contains no induced cycle of length at least 4. Thus $\overline{A_R}$ is chordal.

\[\square \]

3. When A_R is Perfect?

In this section, we characterize all Artinian rings R whose A_R is Perfect. First, we need two celebrate results.

Theorem 3.1 (The Strong Perfect Graph Theorem [8]). A graph G is perfect if and only if neither G nor \overline{G} contains an induced odd cycle of length at least 5.

In light of Theorem 3.1, we have the following corollary.

Corollary 3.1. Let G be a graph. Then the following statements hold.
1. G is a perfect graph if and only if \overline{G} is a perfect graph.
2. If G is a complete bipartite graph, then G is a perfect graph.

Theorem 3.2. [9] Every chordal graph is perfect.

Lemma 3.1. Let n be a positive integer and $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian ring for every $1 \leq i \leq n$. Let $I = I_1 \times \cdots \times I_n, J = J_1 \times \cdots \times J_n$ be two distinct ideals of R and $n \geq 2$. Then $I - J$ is an edge of A_R if and only if for every $1 \leq i \leq n, I_i \not\in A(\text{Nil}(R_i))$ or $J_i \not\in A(\text{Nil}(R_i))$.

Proof. Let $I - J$ be an edge of A_R. If there exists $1 \leq i \leq n$ such that $I_i, J_i \in A(\text{Nil}(R_i))$, then by Lemma 2.2, $\text{Ann}(I_i) \cap \text{Ann}(J_i) \neq (0)$. So if $0 \neq a_i \in \text{Ann}(I_i) \cap \text{Ann}(J_i)$, then $(0) \times \cdots \times (0) \times R_i a_i \times (0) \times \cdots \times (0) \subseteq \text{Ann}(I) \cap \text{Ann}(J)$ and thus $I - J$ is not an edge of A_R, a contradiction.

Conversely, suppose that $I_i \not\in A(\text{Nil}(R_i))$ or $J_i \not\in A(\text{Nil}(R_i))$, for every $1 \leq i \leq n$. Thus $I_i = R_i$ or $J_i = R_i$, for every $1 \leq i \leq n$. This implies that $\text{Ann}(I) \cap \text{Ann}(J) = (0)$. Hence $I - J$ is an edge of A_R. \[\square \]

We are now in a position to state our main result in this paper.

Theorem 3.3. Let R be an Artinian rings. Then $\overline{A_R}$ is a perfect graph if and only if $|\text{Max}(R)| \leq 4$.

Proof. First suppose $\overline{A_R}$ is perfect. Since R is an Artinian ring, there exists a positive integer $n = |\text{Max}(R)|$ such that $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian local ring, for every $1 \leq i \leq n$, by Lemma 2.1. If $n \geq 5$, then we put
\[
\begin{align*}
I_1 &= (0) \times R_2 \times R_3 \times (0) \times R_5 \times R_6 \times \cdots \times R_n, \\
I_2 &= (0) \times R_2 \times (0) \times R_4 \times R_5 \times R_6 \times \cdots \times R_n, \\
I_3 &= R_1 \times (0) \times R_4 \times R_5 \times R_6 \times \cdots \times R_n, \\
I_4 &= R_1 \times (0) \times R_3 \times R_4 \times (0) \times R_6 \times \cdots \times R_n,
\end{align*}
\]

Thus $\overline{A_R}$ is chordal.
\(I_5 = R_1 \times R_2 \times R_3 \times (0) \times R_6 \times \cdots \times R_n.\)

Then it is easily seen that

\[I_1 - I_2 - I_3 - I_4 - I_5 - I_1\]

is a cycle of length 5 in \(\overline{A_R}\), a contradiction (by Theorem 3.1). So \(n \leq 4\).

Conversely, suppose that \(|\text{Max}(R)| \leq 3\). We show that \(\overline{A_R}\) is a perfect graph. If \(|\text{Max}(R)| \leq 3\), then by part (2) of Theorem 2.3, \(\overline{A_R}\) is chordal and thus by Theorem 3.2, \(\overline{A_R}\) is a perfect graph. Therefore, we need only to check the case \(|\text{Max}(R)| = 4\).

Let \(R \cong R_1 \times R_2 \times R_3 \times R_4\). We have the following claims.

Claim 1. \(\overline{A_R}\) contains no induced odd cycle of length at least 5. We consider the following partition for \(V(\overline{A_R})\):

\[
A = \{I_1 \times I_2 \times I_3 \times I_4 \mid I_i \in A(R_i)\} \text{ for every } 1 \leq i \leq 4 \text{ and } I_4 \in A(\text{Nil}(R_4))
\]

\[
B = \{I_1 \times I_2 \times I_3 \times R_4 \mid I_i \in A(R_i)\} \text{ for every } 1 \leq i \leq 3 \text{ and } I_3 \in A(\text{Nil}(R_3))
\]

\[
C = \{I_1 \times I_2 \times R_3 \times R_4 \mid I_i \in A(R_i)\} \text{ for every } 1 \leq i \leq 2 \text{ and } I_2 \in A(\text{Nil}(R_2))
\]

\[
D = \{R_1 \times I_2 \times R_3 \times R_4, I_1 \times R_2 \times R_3 \times R_4 \mid \text{ for every } 1 \leq i \leq 2 \text{ } I_i \in A(\text{Nil}(R_i))\}
\]

Now, assume to the contrary, \(a_1 - a_2 - \cdots - a_n - a_1\) is an induced odd cycle of length at least 5 in \(\overline{A_R}\). We consider the following cases.

Case 1. \(\{a_1, a_2, \ldots, a_n\} \cap D = \emptyset\). Let \(a_i \in \{a_1, a_2, \ldots, a_n\} \cap D\), for some \(1 \leq i \leq n\). Then we can let \(a_i = I_1 \times R_2 \times R_3 \times R_4\) or \(a_i = R_1 \times I_2 \times R_3 \times R_4\). If \(a_i = I_1 \times R_2 \times R_3 \times R_4\), then the first components of \(a_{i-1}\) and \(a_{i+1}\) must be in \(A(\text{Nil}(R_i))\) and \(A(\text{Nil}(R_i))\), respectively. So by Lemma 3.1, \(a_{i-1}\) is adjacent to \(a_{i+1}\), a contradiction. Thus, \(a_i \neq I_1 \times R_2 \times R_3 \times R_4\). Similarly, \(a_i \neq R_1 \times I_2 \times R_3 \times R_4\). This means that \(\{a_1, a_2, \ldots, a_n\} \cap D = \emptyset\).

Case 2. \(\{a_1, a_2, \ldots, a_n\} \cap C = \emptyset\). First we show that \(|\{a_1, a_2, \ldots, a_n\} \cap C| \leq 1\). Let \(a, b \in \{a_1, a_2, \ldots, a_n\} \cap C\). Then we can easily check that if there exists \(x \in V(\overline{A_R})\) such that \(\text{Ann}(x) \cap \text{Ann}(a) \neq (0)\), then \(\text{Ann}(x) \cap \text{Ann}(b) \neq (0)\). This means that if \(x\) is adjacent to \(a\), then \(x\) is adjacent to \(b\), a contradiction. So \(\{a_1, a_2, \ldots, a_n\} \cap C| \leq 1\). This together with the fact that \(\overline{A_R}[A]\) and \(\overline{A_R}[B]\) are complete subgraphs, imply that \(n = 5\) and \(|\{a_1, a_2, \ldots, a_n\} \cap C| = 2\). Hence \(\{a_1, a_2, \ldots, a_n\} \cap C = 1\), and thus we can let \(a \in \{a_1, a_2, \ldots, a_n\} \cap C\). Since \(a\) is adjacent to all vertices of \(B \setminus \{R_1 \times R_2 \times I_3 \times R_4 \mid I_3 \subseteq \text{Nil}(R_3)\}\) and \(\overline{A_R}[B]\) is a complete subgraph, \(a_i \in \{a_1, a_2, \ldots, a_n\} \cap \{R_1 \times R_2 \times I_3 \times R_4 \mid I_3 \subseteq \text{Nil}(R_3)\}\), for some \(1 \leq i \leq n\). We can let \(a_i = R_1 \times R_2 \times I_3 \times R_4\). Since only one of the components of \(a_i\) is a nilpotent ideal of \(R_i\), by a similar argument to that of case 1, we get a contradiction. Hence, \(\{a_1, a_2, \ldots, a_n\} \cap C = \emptyset\).

By the above cases, \(\{a_1, a_2, \ldots, a_n\} \subseteq A \cup B\), but this contradicts the fact \(\overline{A_R}[A]\) and \(\overline{A_R}[B]\) are complete graphs, and thus \(\overline{A_R}\) contains no induced odd cycle of length at least 5.
Claim 2. \(A_R \) contains no induced odd cycle of length at least 5. We consider the following partition for \(V(A_R) \):

- \(A_1 = \{ I_1 \times R_2 \times R_3 \times R_4 \mid I_1 \in A(\text{Nil}(R_1)) \} \),
- \(A_2 = \{ R_1 \times I_2 \times R_3 \times R_4 \mid I_2 \in A(\text{Nil}(R_2)) \} \),
- \(A_3 = \{ R_1 \times R_2 \times I_3 \times R_4 \mid I_3 \in A(\text{Nil}(R_3)) \} \),
- \(A_4 = \{ R_1 \times R_2 \times R_3 \times I_4 \mid I_4 \in A(\text{Nil}(R_4)) \} \),
- \(B_1 = \{ I_1 \times I_2 \times R_3 \times R_4 \mid I_1 \in A(\text{Nil}(R_1)), I_2 \in A(\text{Nil}(R_2)) \} \),
- \(B_2 = \{ R_1 \times R_2 \times I_3 \times I_4 \mid I_3 \in A(\text{Nil}(R_3)), I_4 \in A(\text{Nil}(R_4)) \} \),
- \(B_3 = \{ I_1 \times R_2 \times I_3 \times R_4 \mid I_1 \in A(\text{Nil}(R_1)), I_3 \in A(\text{Nil}(R_3)) \} \),
- \(B_4 = \{ R_1 \times I_2 \times R_3 \times I_4 \mid I_2 \in A(\text{Nil}(R_2)), I_4 \in A(\text{Nil}(R_4)) \} \),
- \(B_5 = \{ I_1 \times I_2 \times R_3 \times I_4 \mid I_1 \in A(\text{Nil}(R_1)), I_4 \in A(\text{Nil}(R_4)) \} \),
- \(B_6 = \{ R_1 \times I_2 \times I_3 \times R_4 \mid I_2 \in A(\text{Nil}(R_2)), I_3 \in A(\text{Nil}(R_3)) \} \),
- \(C_1 = \{ R_1 \times I_2 \times I_3 \times I_4 \mid I_2 \in A(\text{Nil}(R_2)), I_3 \in A(\text{Nil}(R_3)), I_4 \in A(\text{Nil}(R_4)) \} \),
- \(C_2 = \{ I_1 \times R_2 \times I_3 \times I_4 \mid I_1 \in A(\text{Nil}(R_1)), I_3 \in A(\text{Nil}(R_3)), I_4 \in A(\text{Nil}(R_4)) \} \),
- \(C_3 = \{ I_1 \times I_2 \times R_3 \times I_4 \mid I_1 \in A(\text{Nil}(R_1)), I_2 \in A(\text{Nil}(R_2)), I_4 \in A(\text{Nil}(R_4)) \} \),
- \(C_4 = \{ I_1 \times I_2 \times I_3 \times R_4 \mid I_1 \in A(\text{Nil}(R_1)), I_2 \in A(\text{Nil}(R_2)), I_3 \in A(\text{Nil}(R_3)) \} \),
- \(D = \{ I_1 \times I_2 \times I_3 \times I_4 \mid I_1 \in A(\text{Nil}(R_1)), I_2 \in A(\text{Nil}(R_2)), I_3 \in A(\text{Nil}(R_3)), I_4 \in A(\text{Nil}(R_4)) \} \).

If we put \(A = \bigcup_{i=1}^{4} A_i \), \(B = \bigcup_{i=1}^{6} B_i \), and \(C = \bigcup_{i=1}^{4} C_i \), then one may check that \(\{ A, B, C, D \} \) is a partition of \(V(A_R) \). We show that \(A_R \) contains no induced odd cycle of length at least 5. Assume to the contrary, \(a_1 - a_2 - \cdots - a_n - a_1 \) is a induced odd cycle of length at least 5 in \(A_R \). By Lemma 2.2, every vertex in \(D \) is an isolated vertex in \(A_R \) and thus \(\{ a_1, a_2, \ldots, a_n \} \cap D = \emptyset \). Next, we show that

\[\{ a_1, a_2, \ldots, a_n \} \cap C_1 = \emptyset. \]

To see this, if \(a_i \in \{ a_1, a_2, \ldots, a_n \} \cap C_1 \), for some \(1 \leq i \leq n \), then with no loss of generality, assume that \(a_1 \in C_1 \). Since every vertex of \(C_1 \) is adjacent only to vertices of \(A_1, a_2, a_n \in A_1 \). This is impossible, as every vertex of \(A_R \) is adjacent to \(a_2 \) if and only if it is adjacent to \(a_n \). Therefore

\[\{ a_1, a_2, \ldots, a_n \} \cap C_1 = \emptyset. \]

Similarly,

\[\{ a_1, a_2, \ldots, a_n \} \cap C_2 = \{ a_1, a_2, \ldots, a_n \} \cap C_3 = \{ a_1, a_2, \ldots, a_n \} \cap C_4 = \emptyset. \]

Thus

\[\{ a_1, a_2, \ldots, a_n \} \cap C = \emptyset. \]

Finally, we show that

\[\{ a_1, a_2, \ldots, a_n \} \cap B_1 = \emptyset. \]
Assume to the contrary and with no loss of generality, \(a_1 \in B_1 \). As \(a_1 \) is adjacent only to vertices of \(B_2 \cup A_3 \cup A_4 \), \(\{a_2, a_n\} \subseteq B_2 \cup A_3 \cup A_4 \). If \(a_2 \in B_2 \), then \(a_3 \) is adjacent to \(a_n \) (since if \(a \) is adjacent to \(a_2 \) and \(b \) is adjacent to \(a_1 \), \(a \) is adjacent to \(b \)), a contradiction. Thus \(a_2 \notin B_2 \). Similarly, \(a_n \notin B_2 \) and so \(\{a_2, a_n\} \subseteq A_3 \cup A_4 \). Since \(A_R[A_3 \cup A_4] \) is a complete bipartite graph, we conclude that \(\{a_2, a_n\} \subseteq A_3 \) or \(\{a_2, a_n\} \subseteq A_4 \). With no loss of generality, we may assume that \(\{a_2, a_n\} \subseteq A_3 \). This implies that \(a_3 \) is adjacent to \(a_2 \) and \(a_n \) (since a vertex is adjacent to \(a_2 \) if and only if it is adjacent to \(a_n \)), a contradiction. Hence,
\[
\{a_1, a_2, \ldots, a_n\} \cap B_1 = \emptyset.
\]
Similarly, for every \(2 \leq i \leq 6 \)
\[
\{a_1, a_2, \ldots, a_n\} \cap B_i = \emptyset.
\]
This means that
\[
\{a_1, a_2, \ldots, a_n\} \subseteq A.
\]
But \(A_R[A] \) is a complete 4-partite graph with parts \(A_i \) for \(1 \leq i \leq 4 \), a contradiction. Therefore, \(A_R \) contains no induced odd cycle of length at least 5 and thus by Claim 1, Claim 2 and Theorem 3.1, we have \(A_R \) is a perfect graph. \(\square \)

Acknowledgements. The authors thank to the referees for their careful reading and their excellent suggestions.

References

1Department of Mathematics,
Karaj Branch, Islamic Azad University,
Karaj, Iran.
Email address: m.saadat82m@yahoo.com

2Faculty of Mathematics,
K. N. Toosi University of Technology,
Tehran, Iran.
Email address: nikmehr@kntu.ac.ir

3Department of Basic Sciences,
Jundi-Shapur University of Technology,
Dezful, Iran.
Email address: r.nikandish@jsu.ac.ir