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PSEUDO-BCK ALGEBRAS DERIVED FROM DIRECTOIDS

AKBAR REZAEI1

Abstract. The aim of this paper is to derive pseudo-BCK algebras from directoids
and vice versa. We generalize some results proved by Ivan Chajda et al. in the case
of BCK-algebras. We assign to an arbitrary pseudo-BCK algebra a semilattice-like
structure and observe that this is the point where directoids are different from the
semilattice-like structures. Finally, the relation between commutative deductive
systems and derive directoids from a bounded pseudo-BCK(pDN) algebras and a
characterization of commutative deductive systems of a bounded pseudo-BCK(pDN)
algebra in terms of directoids is discussed.

1. Introduction

BCK-algebras were introduced by Y. Imai and K. Iséki in 1966 ([15, 19]) as al-
gebras with a binary operation ∗ modeling the set-theoretical difference and with
a constant element 0 that is a least element. S. Tanaka defined a special class of
BCK-algebras called commutative BCK-algebras in 1975 (see [31]). In BCK-algebras,
some lattices, as bounded commutative BCK-algebras, involutive BCK-lattices and
bounded implicative BCK-algebras were defined and among the relationship between
them were discussed [23]. Some recent researchers led to generalizations of the notion
of pseudo structure on some types of algebras. G. Georgescu et al. [10] and indepen-
dently J. Rachůnek [24], introduced pseudo-MV algebra which is a non-commutative
generalization of MV-algebra. After a pseudo-MV algebra, the pseudo-BL algebra
[11], the pseudo-BCK algebra [12] and as a generalization of BCI-algebra, the notion
of pseudo-BCI algebra is introduced by W. A. Dudek et al. in [9]. A. Walendziak
[32] introduced pseudo-BCH algebras as an extension of BCH-algebras. Further, he
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proved that every branchwise commutative pseudo-BCH algebra is a pseudo-BCI alge-
bra [33]. Commutative pseudo-BCK algebras were originally defined by G. Georgescu
et al. in [12] under the name of semilattice-ordered pseudo-BCK algebras and some
properties of these structures were investigated by J. Kühr in [21,22]. R. A. Borzooei
et al. introduced in [1] (see also [2, 26, 27]) a pseudo-BE algebra as generalization
of BE-algebra, and the commutative pseudo-BE algebra have recently been inves-
tigated by L. C. Ciungu. It was proved that the class of commutative pseudo-BE
algebras is equivalent to the class of commutative pseudo-BCK algebras. Based on
this result, all results holding for commutative pseudo-BCK algebras also hold for com-
mutative pseudo-BE algebras [5]. Then she gave a characterization of commutative
pseudo-BCK algebras and defined the commutative deductive systems of pseudo-BCK
algebras and proved that a pseudo-BCK algebra X is commutative if and only if all
the deductive systems of X are commutative. Also, she showed that the class of
commutative pseudo-BCK algebras is a variety [6] (see also, [14]). A. Rezaei et al.
introduced the notion of pseudo-CI algebras as an extension of pseudo-BE algebras
and proved that the class of commutative pseudo-CI algebras coincide with the class
of commutative pseudo-BCK algebras [28]. G. Georgescu et al. proved that every
Wajsberg pseudo-hoop is a basic pseudo-hoop and every simple basic pseudo-hoop is
a linearly ordered Wajsberg pseudo-hoop [13]. L. C. Ciungu in [7] showed that every
pseudo-hoop is a pseudo-BCK-meet semilattice. The relation between FLw-algebras,
bounded pseudo-BCK(pP) algebras, pseudo-MTL algebras, pseudo-BL algebras and
pseudo-MV algebras proved in [16]. Also, in [29, 30], the interrelationships between
dual pseudo-Q/QC algebras and other pseudo algebras are visualized with a diagram
and then they introduced the concepts of branchwise commutative pseudo-CI algebras
and pointed pseudo-CI algebras and investigated some of properties. A. Iorgulescu
for the first time introduced the notation of quasi-pseudo-M algebras as generaliza-
tions of pseudo-M algebras and (involutive) quasi-implicative-groups and the (strong
involutive) (super) quasi-implicative-hoops, as generalizations of implicative-groups
and implicative-hoops, respectively in [18]. I. Chajda et al. showed that one can be
assign to an arbitrary BCK-algebra a semilattice-like structure every section of which
possesses a certain antitone mappings [3], it arises a natural question of generaliza-
tion of these concepts also for pseudo-BCK algebras. Since lattice theory has many
applications in computer science and has an important and vital role in investigat-
ing the structure of a logical system, this motivated our investigations on directoids
and pseudo-BCK-algebras to characterized several of its important properties. The
main result of this paper establishes a bijective correspondence between pseudo-BCK
algebras and some algebraic structures defined by two directoids. A characterization
of commutative deductive systems of a bounded pseudo-BCK(pDN) algebra in terms
of directoids is discussed and various results obtained mentioned in this paper can
be transferred to the pseudo-BCK algebras. The core of the paper is based on by
presenting a survey of some results of logic in the non-commutative case (see [3] for
the commutative case) and extension of [25] (see also [4]).
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2. Preliminaries

In this section we recall some basic notions and results regarding (commutative)
pseudo-BCK algebras.

Definition 2.1 ([9, 17]). An algebra X = (X;→, , 1) of type (2, 2, 0) is called a
pseudo-BCI algebra if it satisfies the following axioms for all x, y, z ∈ X:

(psBCI1) (x→ y) ((y → z) (x→ z)) = 1 and
(x y)→ ((y  z)→ (x z)) = 1;

(psBCI2) x→ ((x→ y) y) = 1 and x ((x y)→ y) = 1;
(psBCI3) x→ x = x x = 1;
(psBCI4) x→ y = y  x = 1⇒ x = y;
(psBCI5) x � y if and only if x→ y = 1 if and only if x y = 1.

A pseudo-BCK algebra [20] is a pseudo-BCI algebra X = (X;→, , 1) satisfying
the condition (psBCK), for all x ∈ X:

(psBCK) x→ 1 = 1.
I. Chajda et al. proved that for every pseudo-BCI algebra x→ y = 1 if and only if

x y = 1 (see [4, Lemma 2.1]).

Remark 2.1. If X = (X;→, , 1) is a pseudo-BCI algebra satisfying x→ y = x y,
for all x, y ∈ X, then X = (X;→, 1) is a BCI-algebra. Hence, every BCI-algebra is a
pseudo-BCI algebra in a natural way.

Remark 2.2. By definition (psBCI1)-(psBCI5), pseudo-BCK algebras are contained in
the class of pseudo-BCI algebras. A pseudo-BCI algebra which is not a pseudo-BCK
algebra will be called proper.

From now on, X is a pseudo-BCK algebra, unless it is stated.

Proposition 2.1 ([12, 17]). In any pseudo-BCK algebra X the following conditions
hold for all x, y, z ∈ X:

(1) x � y implies z → x � z → y and z  x � z  y;
(2) x � y implies y → z � x→ z and y  z � x z;
(3) x→ y � (z → x) (z → y) and x y � (z  x)→ (z  y);
(4) x→ (y  z) = y  (x→ z) and x (y → z) = y → (x z);
(5) x � y → x and x � y  x;
(6) ((x→ y) y)→ y = x→ y and ((x y)→ y) y = x y.

Theorem 2.1 ([6]). Let X be a pseudo-BCK algebra. The following statements are
equivalent for all x, y ∈ X:

(1) X is commutative;
(2) x→ y = ((y → x) x)→ y and x y = ((y  x)→ x) y;
(3) (x→ y) y = (((x→ y) y)→ x) x and

(x y)→ y = (((x y)→ y) x)→ x;
(4) x � y implies y = (y → x) x = (y  x)→ x.
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Definition 2.2 ([16]). If there is an element 0 of a pseudo-BCK algebra X, such
that 0 � x (i.e., 0 → x = 0  x = 1), for all x ∈ X, then 0 is called the zero of
X. A pseudo-BCK algebra with zero is called bounded pseudo-BCK algebra and it is
denoted by X = (X;→, , 0, 1).

Definition 2.3 ([16]). A pseudo-BCK(pP) algebra is a pseudo-BCK algebra X satis-
fying (pP) condition:

(pP) There exists x � y = min{z : x � y → z} = min{z : y � x  z} for all
x, y ∈ X.

Definition 2.4 ([16,20]).
(1) A pseudo-BCK lattice is a pseudo-BCK algebra X such that (X;�) is a lattice.
(2) A pseudo-BCK join-semilattice is a pseudo-BCK algebra X such that (X;∨) is

a join-semilattice, and x→ y = 1 if and only if x ∨ y = y.
(3) A pseudo-BCK meet-semilattice is a pseudo-BCK algebra X such that (X;∧) is

a meet-semilattice, and x→ y = 1 if and only if x ∧ y = x.

Definition 2.5 ([16]). A pseudo-BCK algebra(pDN) is a bounded pseudo-BCK alge-
bra X = (X;�,→, , 0, 1) satisfying the condition:

(pDN) (x→) = (x )→ = x, where x→ = x→ 0 and x = x 0 for all x ∈ X.

Definition 2.6 ([12]). A pseudo-BCK algebra X is called commutative if for all
x, y, z ∈ X, it satisfies the following identities:
(C1) (x→ y) y = (y → x) x;
(C2) (x y)→ y = (y  x)→ x.

Proposition 2.2 ([6]). Any commutative pseudo-BCK algebra is a join-semilattice
with respect to � .

Theorem 2.2 ([8]). Let X be a pseudo-BCK(pDN) algebra. The following statements
are equivalent:

(1) (X;�) is a meet-semilattice;
(2) (X;�) is a join-semilattice;
(3) (X;�) is a lattice.

Definition 2.7 ([6]). A subset D of a pseudo-BCK algebra X is called a deductive
system of X if it satisfies the following conditions:

(DS1) 1 ∈ D;
(DS2) x ∈ D and x→ y ∈ D imply y ∈ D.
A subset D of X is a deductive system if and only if it satisfies (DS1) and the

condition:
(DS3) x ∈ D and x y ∈ D imply y ∈ D.
We will denote by DS(X) the set of all deductive systems of X.

Definition 2.8 ([6]). A deductive system D of a pseudo-BCK algebra X is called
commutative if it satisfies the following conditions for all x, y ∈ X:
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(CDS1) y → x ∈ D implies ((x→ y) y)→ x ∈ D;
(CDS2) y  x ∈ D implies ((x y)→ y) x ∈ D.
We will denote by DSc(X) the set of all commutative deductive systems of a

pseudo-BCK algebra X.

Definition 2.9 ([3]). A directoid is a groupoid G = (G;∨) satisfying the following
identities for all x, y, z ∈ G:
(D1) x ∨ x = x;
(D2) (x ∨ y) ∨ x = x ∨ y;
(D3) y ∨ (x ∨ y) = x ∨ y;
(D4) x ∨ ((x ∨ y) ∨ z) = (x ∨ y) ∨ z.

The relation ≤ given by x ≤ y if and only if x∨y = y is a partial order. The binary
operation ∨ assigns to a pair {x, y} is a common upper bound of them.

3. Pseudo-BCK Algebras Derived from Directoids

Following the idea used by I. Chajda and J. Kühr [3] for BCK-algebras in what
follows we give a generalization of this results for pseudo-BCK algebras. In this
section, we assign a semilattice-like structure the sections of which have certain
antitone mappings, and also conversely. We have the following results.

Let X be a pseudo-BCK algebra. Define binary operations ∨1 and ∨2 by:
(A) x ∨1 y := (x→ y) y and x ∨2 y := (x y)→ y for all x, y ∈ X.
The following examples shows that these operations ∨1 and ∨2 need not coincide

in general.

Example 3.1 ([8]). Consider the set X = {0, a, b, c, 1}, where 0 < a, b < c < 1, a, b
inomparable and the operations → and  given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

,

 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

.

Then X = (X;→, , 0, 1) is a bounded pseudo-BCK algebra, but
a ∨1 0 = (a→ 0) 0 = 0 0 = 1 6= a ∨2 0 = (a 0)→ 0 = b→ 0 = a.

Theorem 3.1. Let X be a pseudo-BCK algebra. For every a ∈ X, define unary
operations →a and  a by x→a = x→ a and x a = x a. Then the algebraic structure
S(X) = (X;∨1,∨2, (→a)a∈X , ( a)a∈X , 1) satisfies the following quasi-identities:

(1) x ∨1 1 = 1 and x ∨2 1 = 1;
(2) x→x = 1 and x x = 1;
(3) 1→x = x and 1 x = x;
(4) x ∨1 x = x and x ∨2 x = x;
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(5) (x ∨1 y)→y = x→ y and (x ∨2 y) y = x y;
(6) x � y if and only if x ∨1 y = y and x ∨2 y = y;
(7) x ∨1 y = y and y ∨1 x = x imply x = y and

x ∨2 y = y and y ∨2 x = x imply x = y;
(8) x ∨1 y = (x ∨1 y) ∨1 y = x ∨1 (x ∨1 y) = y ∨1 (x ∨1 y) and

x ∨2 y = (x ∨2 y) ∨2 y = x ∨2 (x ∨2 y) = y ∨2 (x ∨2 y);
(9) (x ∨1 z) ∨1 ((x ∨1 y) ∨1 z) = (x ∨1 y) ∨1 z and

(x ∨2 z) ∨2 ((x ∨2 y) ∨2 z) = (x ∨2 y) ∨2 z;
(10) x ∨1 y = (x ∨1 y)→y y = ((x ∨1 y)→y ∨2 y) y and

x ∨2 y = (x ∨2 y) y→y = ((x ∨2 y) y ∨1 y)→y;
(11) (x ∨1 (y ∨2 z) z)→(y∨2z) z = (y ∨2 (x ∨1 z)→z) (x∨1z)→z ;
(12) (x ∨1 y)→y ∨2 ((x ∨1 z) ∨1 (y ∨1 z))→(y∨1z) = ((x ∨1 z) ∨1 (y ∨1 z))→(y∨1z) and

(x ∨2 y) y ∨1 ((x ∨2 z) ∨2 (y ∨2 z)) (y∨2z) = ((x ∨2 z) ∨2 (y ∨2 z)) (y∨2z);
(13) ((x ∨2 z) z ∨1 (y ∨1 z))→(y∨1z) = ((y ∨1 z)→z ∨2 (x ∨2 z)) (x∨2z) and

((x ∨1 z)→z ∨2 (y ∨2 z)) (y∨2z) = ((y ∨2 z) z ∨1 (x ∨1 z))→(x∨1z);
(14) ((x ∨1 y) ∨1 x)→x = (x ∨1 y)→x and ((x ∨2 y) ∨2 x) x = (x ∨2 y) x.

Proof. The proof of (1)-(6) is straightforward by the definition and properties of
pseudo-BCK algebras. (6) Assume that x � y. Then x ∨1 y = (x → y)  y = 1  
y = y. Also,

x ∨2 y = (x y)→ y = 1→ y = y.

Conversely, suppose that x ∨1 y = y and x ∨2 y = y. Since

x→ y = x→ ((x→ y) y) = (x→ y) (x→ y) = 1

and
x y = x ((x y)→ y) = (x y)→ (x y) = 1,

then x � y.
(7) Suppose that (x → y)  y = y and (y → x)  x = x. Then by (psBCI3) we

have
x→ y = x→ ((x→ y) y) = (x→ y) (x→ y) = 1

and
y  x = y  ((y  x)→ x) = (y  x)→ (y  x) = 1.

Now, using (psBCI5) x = y. By a similar argument the second part is valid.
(8) By Proposition 2.1 (6), we have

(x ∨1 y) ∨1 y =((x ∨1 y)→ y) y

=(((x→ y) y)→ y) y

=(x→ y) y

=x ∨1 y.

Similarly, we see that x ∨1 (x ∨1 y) = x ∨1 y and y ∨1 (x ∨1 y) = x ∨1 y.
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(9) According to (psBCI2), x � x ∨1 y. By Proposition 2.1 (1) and (2), we have
x∨1z � (x∨1y)∨1z. Now, using (6) it follows that (x∨1z)∨1((x∨1y)∨1z) = (x∨1y)∨1z.
By a similar argument we can verify x∨2 y = (x∨2 y)∨2 y = x∨2 (x∨2 y) = y∨2 (x∨2 y).

(10) (x ∨1 y)→y y = ((x ∨1 y)→ y) y = x ∨1 y and (x ∨2 y) y→y = ((x ∨2 y) 
y)→ y = x ∨2 y. By Proposition 2.1 (6), we have

((x ∨1 y)→y ∨2 y) y =(((x ∨1 y)→ y) ∨2 y) y

=((((x→ y) y)→ y) ∨2 y) y

=((x→ y) ∨2 y) y

=(((x→ y) y)→ y) y

=(x→ y) y

=(x→ y) y

=x ∨1 y.

Also, the proof of the second part is similar.
(11) From (5) and Proposition 2.1 (4), we conclude

(x ∨1 (y ∨2 z) z)→(y∨2z) z =(x ∨1 (y  z))→(y z)

=x→ (y  z) = y  (x→ z)
=(y ∨2 (x→ z)) (x→z)

=(y ∨2 (x ∨1 z)→z) (x∨1z)→z

.

(12) Using (5), we have

((x ∨1 z) ∨1 (y ∨1 z))→(y∨1z) =(x ∨1 z)→ (y ∨1 z)
=((x→ z) z)→ ((y → z) z)
=(y → z) (((x→ z) z)→ z)
=(y → z) (x→ z).

We have (x → y) ∨2 ((y → z)  (x → z)) = 1 → ((y → z)  (x → z)). From this
and (psBCI1) we conclude

(x ∨1 y)→y ∨2 ((x ∨1 z) ∨1 (y ∨1 z))→(y∨1z) =(x ∨1 y)→y ∨2 ((y → z) (x→ z))
=(x→ y) ∨2 ((y → z) (x→ z))
=1→ ((y → z) (x→ z))
=(y → z) (x→ z)
=((x ∨1 z) ∨1 (y ∨1 z))→(y∨1z).
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(13) Applying (5), we have
((x ∨2 z) z ∨1 (y ∨1 z))→(y∨1z) =(x z)→ (y ∨1 z)

=(x z)→ ((y → z) z)
=(y → z) ((x z)→ z)
=(y → z) (x ∨2 z)
=((y ∨1 z)→z ∨2 (x ∨2 z)) (x∨2z).

By a similar argument we have
((x ∨1 z)→z ∨2 (y ∨2 z)) (y∨2z) = ((y ∨2 z) z ∨1 (x ∨1 z))→(x∨1z).

(14) Using Proposition 2.1 (6), we get
((x ∨1 y) ∨1 x)→x =(((x→ y) y) ∨1 x)→x

=((((x→ y) y)→ x) x)→x

=((x→ y) y)→x

=((x→ y) y)→ x

=(x ∨1 y)→ x

=(x ∨1 y)→x.

Similarly, ((x ∨2 y) ∨2 x) x = (x ∨2 y) x. �

Lemma 3.1. Let X = (X;∨1,∨2) be an algebra of type (2, 2) satisfying the quasi-
identities (4), (7), (8) and (9) of Theorem 3.1. Then the binary relation � defined
by

(B) x � y if and only if x ∨1 y = y and x ∨2 y = y is a partial order on X.

Proof. By (4) and (7), � is reflexive and antisymmetric. For transitivity, assume that
x � y and y � z. Using (8) and (9), we get

x ∨1 z =(x ∨1 z) ∨1 z

=(x ∨1 z) ∨1 (y ∨1 z)
=(x ∨1 z) ∨1 ((x ∨1 y) ∨1 z)
=(x ∨1 y) ∨1 z

=y ∨1 z = z

and if x ∨2 y = y and y ∨2 z = z, then we have
x ∨2 z =(x ∨2 z) ∨2 z

=(x ∨2 z) ∨2 (y ∨2 z)
=(x ∨2 z) ∨2 ((x ∨2 y) ∨2 z)
=(x ∨2 y) ∨2 z

=y ∨2 z = z.
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Thus, � is a partial order on X. �

The following example shows that for every pseudo-BCK algebra X, (X;∨1) and
(X;∨2) are not directoids in general.

Example 3.2. Let X be the algebra given in Example 3.1. Then (X;∨1) and (X;∨2)
are not directoids, since
c∨1 0 = (c→ 0) 0 = 0 0 = 1 6= (c∨1 0)∨1 c = 0∨1 c = (0→ c) c = 1 c = c

and
c∨2 0 = (c 0)→ 0 = 0→ 0 = 1 6= (c∨2 0)∨2 c = 0∨2 c = (0 c)→ c = 1→ c = c.

Theorem 3.2. Let X be a pseudo-BCK algebra, ∨1 and ∨2 be the binary operations
defined by (A). Then the following conditions are equivalent:

(1) (X;∨1) and (X;∨2) are directoids;
(2) X is a commutative pseudo-BCK algebra;
(3) (X;�) is a join-semilattice, where � is defined by (B).

Proof. (1)⇒(2) Assume that (X;∨1) is a directoid. Then x � y implies y ∨1 x = y
and so X satisfies the quasi-identity

x � y ⇒ y = (y → x) x.

Similary, x � y implies y = (y  x)→ x. Therefore, X is a commutative pseudo-BCK
algebra by Theorem 2.1.

(2)⇒(3) It follows from Proposition 2.2.
(3)⇒(1) It is obvious that every join-semilattice is a directoid. �

Corollary 3.1. Let X be a pseudo-BCK(pDN), ∨1 and ∨2 be the binary operations
defined by (A). Then the following conditions are equivalent:

(1) (X;∨1) and (X;∨2) are directoids;
(2) X is a commutative pseudo-BCK algebra;
(3) (X;�) is a join-semilattice;
(4) (X;�) is a meet-semilattice;
(5) (X;�) is a lattice.

Proof. It follows from Theorems 3.2 and 2.2. �

Corollary 3.2. Let X be a pseudo-BCK(pDN), ∨1 and ∨2 be the binary operations
defined by (A). Then the following conditions are equivalent:

(1) (X;∨1) and (X;∨2) are directoids;
(2) X is a commutative pseudo-BCK algebra;
(3) {1} ∈ DSc(X);
(4) DS(X) = DSc(X).

Proof. It follows from Theorem 3.2 and [6, Corollary 4.6, Theorem 4.7 and Corollary
4.8]. �
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In [8], L. C. Ciungu proved that for every pseudo-BCK(pDN) lattice the following
conditions are equivalent (see [8, Proposition 3.5]):

(P1) (x ∧ y)→ z = (x→ z) ∨ (y → z) and (x ∧ y) z = (x z) ∨ (y  z);
(P2) z → (x ∨ y) = (z → x) ∨ (z → y) and z  (x ∨ y) = (z  x) ∨ (z  y).
Also, she showed that the class of pseudo-BCK(pDN) lattices satisfies the conditions

(P1) and (P2) is not empty, since every pseudo-MV algebra satisfies these conditions.
Further, It was proved that if a pseudo-BCK(pDN) lattice X satisfying (P1) or (P2),
then (X;�) is a distributive lattice (see [8, Theorem 3.4, Corollary 3.2]).

Theorem 3.3. Let S = (S;∨1,∨2, (→a)a∈S, ( a)a∈S, 1) be a structure algebraic, where
∨1 and ∨2 are binary operations on S and for each a ∈ S, →a and  a are unary
operations on {x ∈ S : a∨1 x = 1 and a∨2 x = 1} and 1 is a distinguished element of
S, satisfying the quasi-identities (1)-(12) from Theorem 3.1. Define the new binary
operations → and  on S by

(C) x→ y = (x ∨1 y)→y and x y = (x ∨2 y) y.
Then X(S) = (S;→, , 1) is a pseudo-BCK algebra.

Proof. The definition of→ and are well define from Theorem 3.1 (8). Furthermore,
we note that

(D) x ∨1 y = y and x ∨2 y = y if and only if x→ y = 1 and x y = 1.
Indeed, if x ∨1 y = y, then x → y = (x ∨1 y)→y = y→y = 1, by Theorem 3.1 (2).

Similarly, if x ∨2 y = y, then x y = (x ∨2 y) y = y y = 1.
For conversely, 1 = x→ y = (x ∨1 y)→y implies y = 1 y = (x ∨1 y)→y y = x ∨1 y.

Also, 1 = x y = (x ∨2 y) y implies y = 1→y = (x ∨2 y) y→y = x ∨2 y, by Theorem
3.1 (3) and (10). Now, we verify the axioms of pseudo-BCK algebras as follows.

(psBCI1) Using Theorem 3.1 (5) and (12), we obtain

(x→ y) ∨2 ((x ∨1 z)→ (y ∨1 z)) =(x ∨1 y)→y ∨2 ((x ∨1 z) ∨1 (y ∨1 z))→(y∨1z)

=((x ∨1 z) ∨1 (y ∨1 z))→(y∨1z)

=(x ∨1 z)→ (y ∨1 z).

Thus, (x→ y) ((x ∨1 z)→ (y ∨1 z)) = 1.
Also, according to Theorem 3.1 (10) and (11), we get

(x→ y) y = ((x ∨1 y)→y ∨2 y) y = x ∨1 y

and

x→ (y  z) = (x ∨1 (y ∨2 z) z)→(y∨2z) = (y ∨2 (x ∨1 z)→z) (x∨1z) = y  (x→ z).

Then

(x ∨1 z)→ (y ∨1 z) =((x→ z) z)→ ((y → z) z)
=(y → z) (((x→ z) z)→ z)
=(y → z) (x→ z),
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since

((x→ z)→ z) z =(((x ∨1 z)→z ∨2 z)→z ∨1 z)→z

=((x ∨1 z) ∨1 z)→z

=(x ∨1 z)→z

=x→ z.

Altogether, we have

(x→ y) ((y → z) (x→ z)) = (x→ y) ((x ∨1 z)→ (y ∨1 z)) = 1.

The second part of axiom (psBCI1) follows by duality.
(psBCI2) Using Theorem 3.1 (10), we get

(x→ y) y = ((x ∨1 y)→y ∨2 y) y = x ∨1 y.

Hence, x ∨1 ((x → y)  y) = x ∨1 (x ∨1 y) = x ∨1 y = (x → y)  y. Then
x→ ((x→ y) y) = 1.

By a similar argument we have x ((x y)→ y) = 1.
(psBCI3) Applying (D), from x ∨1 x = x ∨2 x = x it follows x→ x = x x = 1.
(psBCI4) If x→ y = 1 and y → x = 1, then by Theorem 3.1 (6), we have x∨1 y = y

and y ∨1 x = x. Now, using Theorem 3.1 (7), it follows x = y.
(psBCI5) This follows from Theorem 3.1 (6) and (D).
(psBCK) By Theorem 3.1 (1), x ∨1 1 = x ∨2 1 = 1. From (D) we see that x→ 1 =

x 1 = 1. �

Theorem 3.4. Let S = (S;∨1,∨2, (→a)a∈S, ( a)a∈S, 1) be an algebra as in Theo-
rem 3.3 satisfying (1)-(12) of Theorem 3.1 and X be a pseudo-BCK algebra. Then
X(S(X)) = X and S(X(S)) = S.

Proof. By Theorem 3.1, S(X) = (X;∨1,∨2, (→a)a∈X , ( a)a∈X , 1) is the structure
satisfying (1)-(12) which is assigned to a given pseudo-BCK algebra X. Then in
X(S(X)) = (X;→1, 1, 1) we have

x→1 y = (x ∨1 y)→y = ((x→ y) y)→ y = x→ y

and
x 2 y = (x ∨2 y) y = ((x y)→ y) y = x y.

Therefore, X(S(X)) = X.
Also, assume that S = (S;∨1,∨2, (→a)a∈S, ( a)a∈S, 1) is a structure that satisfies

(1)-(12) of Theorem 3.1, X(S) = (S;→, , 1) its corresponding pseudo-BCK algebra
(cf. Theorem 3.3) and S(X(S)) = (S;t1,t2, (r1a)a∈S, (r2a)a∈S, 1). Then

x t1 y = (x→ y) y = ((x ∨1 y)→y ∨2 y) y = x ∨1 y

and
x t2 y = (x y)→ y = ((x ∨2 y) y ∨1 y)→y = x ∨2 y.
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Further, for x ∈ [a, 1], we have
r1a(x) = x→ a = (x ∨1 a)→a = ((a ∨1 x) ∨1 a)→a = (a ∨1 x)→a = x→a

and
r2a(x) = x a = (x ∨2 a) a = ((a ∨2 x) ∨2 a) a = (a ∨2 x) a = x a.

Therefore, S(X(S)) = S. �

Corollary 3.3. Let S = (S;∨1,∨2, (→a)a∈S, ( a)a∈S, 1) be an algebraic structure
satisfying (1)-(13) of Theorem 3.1. Then the relation defined by (B) is a partial order
on S, 1 is the greatest element of S and for every x, y ∈ S, x, y � x ∨ y, where
∨ = ∨1 = ∨2. Moreover, for each a ∈ S, →a and  a are antitone mappings on
[a, 1] = {x ∈ S : a � x}.

Conclusion

We consider that this paper could contribute to the study of algebraic structures
and to the development of pseudo-BCK algebras. So, we hope it would be served as
a foundation and another topic of research to define and investigate among algebraic
structures derived from pseudo-BCK algebras. As another direction of research, one
could investigate relationship between commutative pseudo-valuation on pseudo-BCK
algebras with directoids.
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[19] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29.
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