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A COMPARISON OF CONSERVATION LAWS OF THE
BOUSSINESQ SYSTEM

ELAHEH SABERI1 AND S. REZA HEJAZI2

Abstract. In this work we study the Boussinesq system, which is a natural model
for the propagation of long waves on the surface of water with a small amplitude and
is used to compute a complete set of local conservation laws of the model through
the direct method. In this method, some local multipliers are found to construct the
fluxes of the conservation law. These multipliers are used to find new conservation
laws via another method such as Noether’s theorem, Boyer’s formulation, Homotopy
operator method and Ibragimov’s theorem. It is noteworthy that this paper reviews
these methods to compare all obtained fluxes and local conservation laws.

1. Introduction

Russell’s discovery of solitary waves in 1840 [6], raised a challenge: to devise a
mathematical theory for water waves that would admit a wave solution that did not
disperse with time. In 1870, the French hydrodynamicist Joseph Boussinesq proposed
what he believed was a suitable model by assuming that the wave amplitude was
small compared to the canal depth; he arrived at the Boussinesq equation,

(1.1) utt =
(
u− u2 + uxx

)
xx
,

posed for x ∈ R and t ≥ 0. This equation plays a vital part in fluid mechanics [34],
and is completely integrable and admits multiple soliton solutions. It also arises in
one-dimensional lattice waves (Zabusky [35]) and ion-acoustic solitons (Kako and
Yajima [21]). In recent years, considerable attention has been given to new forms of
Boussinesq equations (Madsen et al. [26]) dealing with water wave propagation and to
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modified Boussinesq equations [10,31] in terms of a velocity potential on an arbitrary
elevation and free surface displacement of water.

The (2 + 1)-dimensional Boussinesq equation

(1.2) utt =
(
u− u2 + uxx

)
xx

+ uyy,

which describes the propagation of gravity waves on the surface of water, has been
extensively studied by several authors [12,20,25,33].

The (3 + 1)-dimensional Boussinesq equation given by

(1.3) utt =
(
u− u2 + uxx

)
xx

+ uyy + uzz,

has been extensively studied by several authors [7,8,13,29]. Also in [27,28] the authors
obtained conservation laws for (1.2) and (1.3) respectively.

In this paper, we study the system of evolutionary equations{
ut = vxx,
vt = uxx − u− u2,

(1.4)

which obviously is covering the Boussinesq equation (1.1).
The goal of this paper is to review and illustrate available methods of flux construc-

tion for equation (1.4). For this purpose five different methods are applied includ-
ing Direct method, Noether’s theorem, Boyer’s generalization of Noether’s theorem,
Herman-Poole method and Ibragimov’s theorem.

The paper is outlined as follows. Section 2 discusses the Lie symmetry analysis of
the Boussinesq system (SNLB). Then in Section 3, the similarity method is applied to
reduce the Boussinesq system into two ordinary differential equations. In Section 4.1,
we present the direct construction method to find conservation laws. We briefly give
the preliminaries concerning the Noether’s theorem approach in Section 4.3 to find
an exact Lagrangian of equation (1.4), which allows us to construct conservation laws
by Noether’s theorem. The next method [16] employs integral formulas, related to
homotopy operators, to compute the fluxes in Section 4.4. In Section 4.5, we utilize
the new conservation theorem which does not require the existence of a Lagrangian
and is based on a concept of an adjoint equation for non-linear equations suggested
recently by Ibragimov. Finally, a correspondence between the variational symmetry
components and local conservation laws following from Noether’s first theorem is
outlined. Also, we present comparisons of these methods for computing conservation
laws in the last section.

In the symmetry and conservation law computations the use of computer algebra
systems such as Mathematica and Maple is needed.

2. Lie Symmetry Analysis of the System

In this section we obtain the Lie point symmetries of the Boussinesq system (1.4),
which we exploit in Subsection 4.3.4.
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First of all, let us consider a one-parameter Lie group of infinitesimal transforma-
tions:

t 7→ t+ ετ (t, x, u, v) ,
x 7→ x+ εξ (t, x, u, v) ,
u 7→ u+ εφ (t, x, u, v) ,
v 7→ v + εψ (t, x, u, v) ,

with a small parameter ε � 1. The vector field associated with the above group of
transformations can be written as

(2.1) X = τ (t, x, u, v) ∂
∂t

+ ξ (t, x, u, v) ∂

∂x
+ φ (t, x, u, v) ∂

∂u
+ ψ (t, x, u, v) ∂

∂v
.

Applying the second prolongation X(2) to equation (1.4), we find the following system
of Lie equations

φt − ψxx = 0,
ψt − φxx + φ+ 2uφ = 0.(2.2)

Solving this system we obtain the following five Lie point symmetries:

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = ∂

∂v
, X4 = x

∂

∂v
,

X5 = t
∂

∂t
+
(
x

2

)
∂

∂x
−
(
u+ 1

2

)
∂

∂u
+
(
t

2 − v
)
∂

∂v
.(2.3)

The commutator relations between these operators are given in Table 1.

Table 1. Lie algebra

[ , ] X1 X2 X3 X4 X5
X1 0 0 0 0 X1 + 1

2X3
X2 0 0 X3 0 1

2X2
X3 0 −X3 0 0 −3

2X4
X4 0 0 0 0 −X3
X5 −X1 − 1

2X3 −1
2X2

3
2X4 X3 0

The table shows that they obviously construct a finite-dimensional Lie algebra of
symmetries

G1 : (ε+ t, x, u, v) ,
G2 : (t, ε+ x, u, v) ,
G3 : (t, x, u, ε+ v) ,
G4 : (t, x, u, εx+ v) ,

G5 :
(
teε, xe

ε
2 ,−1

2 + e−ε
(
u+ 1

2

)
,
1
4te

ε +
(
− t4 + v

)
e−ε

)
.
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The corresponding action on solutions of the Boussinesq system says that if u = f (t, x)
and v = g (t, x) are solutions, so are
u(1) = f (t− ε, x) , v(1) = g (t− ε, x) ,
u(2) = f (t, x− ε) , v(2) = g (t, x− ε) ,
u(3) = f (t, x) , v(3) = g (t, x) + ε,

u(4) = f (t, x) , v(4) = g (t, x) + εx,

u(5) =
(
f
(
e−εt, e−

ε
2x
)

+ 1
2

)
eε − 1

2 , v(5) =
(
g
(
e−εt, e−

ε
2x
)
− 1

4t
)
eε + 1

4te
−ε.

3. Classical Similarity Solutions

The first advantage of the symmetry group method is to construct new solutions
from known solutions. To do this, the infinitesimals are considered and their cor-
responding invariants are determined. The Boussinesq system is expressed in the
coordinates (t, x, u, v), in order to reduce this system allowing us to search for its
form in specific coordinates. Those coordinates will be constructed by searching for
independent invariants (y, U, V ) corresponding to an infinitesimal generator. So using
the chain rule, the expression of the system in the new coordinates allows us to reduce
the system. Since the original system of partial differential equations has two inde-
pendent variables, then this system transforms into a system of ordinary differential
equations after reduction. Here we will compute some invariant solutions with respect
to symmetries. First we obtain the similarity variables for each term of the Lie algebra
g, of symmetries; they can be obtained by integrating the characteristic equations.
Then we use this method to reduce the system and find the invariant solutions.

3.1. Time translation invariance X1. The classical similarity solution of (1.4) for
this symmetry is obtained by integrating the group trajectories

(3.1) dt
dε = 1.

where ε is a parameter along the trajectories. Integration of (3.1) yields the invariant
transformation
(3.2) y = x, U (y) = u (t, x) , V (y) = v (t, x) ,
thus the reduced system with respect to invariants (3.2) is

−V ′′ (y) = 0, −U ′′ (y) + U (y) + U2 (y) = 0,
and the similarity solution for v (t, x) is

v (t, x) = C3 x+ C4 ,

and u(t, x) can be calculated in the following integrative form:

−
∫ u(x) ±3√

6 a3 + 9 a2 + 9 C1
da + x+ C2 = 0.
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3.2. Space translation invariance X2. The classical similarity solution of (1.4) is
obtained by integrating the group trajectories

(3.3) dx
dε = 1.

Integration of (3.3) yields the invariant transformation
(3.4) y = t, U (y) = u (t, x) , V (y) = v (t, x) ,
thus the reduced system with respect to invariants (3.4) is

U ′ (y) = 0, V ′ (y) + U (y) + U2 (y) = 0;
and the similarity solution is

u (t, x) = C1 , v (t, x) = t
(
−C1 − C1

2
)

+ C2 .

3.3. Solution translation invariance X3, X4. For these symmetries every trans-
lated solution with any constant is a similarity solution.

3.4. Solution translation invariance X5. The classical similarity solution of (1.4)
for the last symmetry is obtained by integrating the group trajectories

(3.5) dt
dε = t,

dx
dε = x

2 ,
du
dε = −u− 1

2 ,
dv
dε = t

2 − v.

Integration of (3.5) yields the invariant transformation

(3.6) y = x√
t
, U (y) = u (t, x) t+ t

2 , V (y) = −1
4 (t− 4 v (t, x)) t,

thus the reduced system with respect to invariants (3.6) is
2V ′′ (y) + yU ′ (y) + 2U (y) = 0,

2U ′′ (y) + yV ′ (y)− 2U2 (y) + 2V (y) = 0.
It easy to see that one has a particular solution

u (t, x) = 1 + x2

2t −
x3

4t
√
t

+ x4

6t2 −
x5

40t2
√
t

+O

(
x6

t3

)
,

v (t, x) = x√
t
− x2

2t −
x4

12t2 + x5

32t2
√
t

+O

(
x6

t3

)
.

4. Local Conservation Laws

A conservation law of a given DE system is a divergence expression that vanishes
on all solutions of the DE system. In the study of systems of DEs, the concept of a
conservation law plays an very important role in the analysis of essential properties
of the solutions, particularly, investigation of existence, uniqueness and stability of
solutions [22,23]. They have also been used in the development of numerical methods
[14,24].
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4.1. Direct method. A more general systematic method of constructing local con-
servation laws, called the direct method, was suggested in [1, 2]. When employing
this method, one seeks a set of local multipliers (also called factors or characteristics)
depending on independent and dependent variables of a given PDE system and deriva-
tives of dependent variables up to some fixed order, such that a linear combination
of the PDEs of the system taken with these multipliers yields a divergence expres-
sion. Families of multipliers that yield conservation laws are found from determining
equations that follow from Euler differential operators. After finding sets of local
conservation law multipliers, one needs to derive expressions for the corresponding
conservation law fluxes.

Consider a system ∆
(
x, u(k)

)
= 0 ofN DEs of order k with n−independent variables

x = (x1, . . . , xn) and m−dependent variables u = (u1, . . . , um), given by

(4.1) ∆σ [u] = ∆σ
(
x, u, ∂u, . . . , ∂ku

)
= 0, σ = 1, . . . , N.

A local conservation law of the system (4.1) is a divergence expression

(4.2) DiΦi [u] = D1Φ1 [u] , . . . ,DnΦn [u] = 0,

holding on all solutions of the system (4.1). In (4.2), Di are the total derivatives
with respect to xi and Φi [u] = Φi (x, u, ∂u, . . . , ∂ru), i = 1, . . . , n, are the fluxes of
conservation laws.

In general, for a given non-degenerate DE system (4.1), nontrivial local conservation
laws arise from seeking scalar products that involve linear combinations of the equa-
tions of the DE system (4.1) with multipliers (factors) that yield nontrivial divergence
expressions. In seeking such expressions, the dependent variables and each of their
derivatives that appear in the DE system (4.1) or in the multipliers, are replaced by
arbitrary functions. Such divergence expressions vanish on all solutions of the DE
system (4.1) provided the multipliers are non-singular.

In particular a set of multipliers {Λσ [U ]}Nσ=1 =
{

Λσ

(
x, U, ∂U, . . . , ∂`U

)}N
σ=1

yields
a divergence expression for the DE system ∆

(
x, u(k)

)
if the identity

Λσ [U ] ∆σ[U ] ≡ DiΦi [U ] ,

holds for arbitrary functions U (x). Then on the solutions U (x) = u (x) of the DE
system (4.1), if Λσ [u] is non-singular, one has the local conservation laws

Λσ [u] ∆σ[u] = DiΦi [u] = 0.

Definition 4.1. The Euler operator with respect to Uµ is the operator defined by

(4.3) EUµ = δ

δUµ
= ∂

∂Uµ
+
∞∑
s=1

(−1)s Di1 · · ·Dis

∂

∂Uµ
i1···is

.

.
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By direct calculation, one can show that the Euler operators (4.3) annihilate any
divergence expression DiΦi (x, U, ∂U, . . . , ∂rU) for any r. In particular, the following
identity holds for arbitrary U (x):

EUµ
(
DiΦi (x, U, ∂U, . . . , ∂rU)

)
≡ 0, µ = 1, . . . ,m.

It is straightforward to show that the converse also holds. Namely, the only scalar
expressions annihilated by Euler operators are divergence expressions. This establishes
the following theorem.

Theorem 4.1. The equations EUµF (x, U, ∂U, . . . , ∂sU) ≡ 0, µ = 1, . . . ,m, hold for
arbitrary U (x) if and only if F (x, U, ∂U, . . . , ∂sU) ≡ DiΨi (x, U, ∂U, . . . , ∂s−1U) for
some functions Ψi (x, U, ∂U, . . . , ∂s−1U), i = 1, . . . , n.

From Theorem (4.1), the proof of the following theorem that connects local multi-
pliers and local conservation laws is immediate.

Theorem 4.2. A set of non-singular local multipliers
{

Λσ

(
x, U, ∂U, . . . , ∂`U

)}N
σ=1

yields a divergence expression for a DE system (4.1) if and only if the set of equations

(4.4) EUµ
(
Λσ

(
x, U, ∂U, . . . , ∂`U

)
∆σ

(
x, U, ∂U, . . . , ∂kU

))
≡ 0, µ = 1, . . . ,m,

holds for arbitrary functions U (x).

The set of equations (4.4) yields the set of linear determining equations to find
all sets of local conservation law multipliers of a given DE system (4.1) by letting
` = 1, 2, . . . in (4.4). Since the equations in (4.1) hold for arbitrary U (x), it follows
that they also hold for each derivative of U (x) replaced by an arbitrary function.
In particular, since derivatives of U (x) of orders higher than ` can be replaced
by arbitrary functions, it follows that the linear PDE system (4.1) splits into an
over-determined linear system of determining equations whose solutions are the sets
of local multipliers

{
Λσ

(
x, U, ∂U, . . . , ∂`U

)}N
σ=1

of the differential equation system
∆σ

(
x, u(k)

)
.

The direct method to obtain local conservation laws is now illustrated through (1.4).

4.1.1. Local conservation law multipliers of first order for DE system (1.4). We seek
all local conservation law multipliers of the form

(4.5) Λ1 = ξ (t, x, U, V, Ut, Vt, Ux, Vx) , Λ2 = ϕ (t, x, U, V, Ut, Vt, Ux, Vx)

of the PDE system (1.4). In terms of the Euler operators

EU = ∂

∂U
−Dx

∂

∂Ux
−Dt

∂

∂Ut
+ D2

x

∂

∂Uxx
,(4.6)

EV = ∂

∂V
−Dx

∂

∂Vx
−Dt

∂

∂Vt
+ D2

x

∂

∂Vxx
,
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the determining equations (4.4) for the multipliers (4.5) become

EU [ξ (t, x, U, . . . , Vx) (Ut − Vxx) + ϕ (t, x, U, . . . , Vx)
(
Vt − Uxx + U + U2

)
] ≡ 0,(4.7)

EV [ξ (t, x, U, . . . , Vx) (Ut − Vxx) + ϕ (t, x, U, . . . , Vx)
(
Vt − Uxx + U + U2

)
] ≡ 0,(4.8)

where U (t, x) and V (t, x) are arbitrary functions. The determining equations (4.7)
and (4.8) yield the solutions

Λ1 = 1
5C1 (−7 tVt − 5xVx + 2t− V )− C4 Vx + C2x− C3Vt + C5 ,(4.9)

Λ2 = 1
5C1 (7 tUt + 5xUx + 4U + 2) + C3Ut + C4 Ux,

where C1, C2, C3, C4 and C5 are arbitrary constants. As a result, one obtains linearly
independent conservation laws, arising from the multipliers

(ξ1, ϕ1) = (−Vt, Ut) ,
(ξ2, ϕ2) = (−Vx, Ux) ,
(ξ3, ϕ3) = (1, 0) ,
(ξ4, ϕ4) = (x, 0) ,

(ξ5, ϕ5) =
(
−7

5 tVt − xVx + 2
5t−

1
5V,

7
5 tUt + xUx + 4

5 U + 2
5

)
.

Each set (ξ, ϕ) determines a non-trivial local conservation law
DxΦ (t, x, U, V, Ut, Vt, Ux, Vx) +DtΨ (t, x, U, V, Ut, Vt, Ux, Vx) = 0,

with the characteristic form
DxΦ (t, x, U, V, Ut, Vt, Ux, Vx) + DtΨ (t, x, U, V, Ut, Vt, Ux, Vx)(4.10)

≡ξ (t, x, U, . . . , Vx) (Ut − Vxx) + ϕ (t, x, U, . . . , Vx)
(
Vt − Uxx + U + U2

)
.

The integration of the equations (4.10) for each set of multipliers yields the corre-
sponding density-flux pairs.

Φ1 = 1
2 (utux − vtvx − uutx + vvtx) , Ψ1 = 1

2

(
uuxx − vvxx − u2 − 2

3u
3
)
,

Φ2 = 1
6
(
−3u2 − 2u3 + 3u2

x − 3v2
x

)
− uvt, Ψ2 = uvx,

Φ3 = −vx, Ψ3 = u,

Φ4 = v − xvx, Ψ4 = xu.

To calculate the conserved quantities Φ and Ψ corresponding to (ξ5, ϕ5), we need to
invert the total divergence operator. This requires the integration (by parts) of an
expression in multi-dimensions involving arbitrary functions and its derivatives, which
is a difficult and cumbersome task. In Subsection 4.4 and Subsection 4.5, we will
obtain these conserved quantities for (ξ5, ϕ5).
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4.1.2. Local conservation law multipliers of fourth order for DE system (1.4). In
[5], local multipliers of the form Λ [U, V ] = Λ (t, x, U, V, Ux, Vx, . . . , U4x, V4x) of the
Boussinesq system (1.4) given by

Λ1[U, V ] = U4x − (3U + 1)Uxx −
3
2U

2
x −

1
2V

2
x + 2

3U
3 + 1

2U
2,(4.11)

Λ2[U, V ] = −V4x + UVxx + UxVx.

The set multiplier (4.11) determines a non-trivial local conservation law with the
characteristic form

DxΦ (t, x, U, V, . . . , U4x, V4x) + DtΨ (t, x, U, V, . . . , U4x, V4x)

≡Λ1 (t, x, U, . . . , V4x) (Ut − Vxx) + Λ2 (t, x, U, . . . , V4x)
(
Vt − Uxx + U + U2

)
.

One can determine the flux and density using integration by parts as follows:

Ψ = 1
12u

(
2u2 + 2u3 − 6vx2 − 6uxx − 9uuxx + 6u4x

)
− 1

2vv4x,

Φ =1
2u

2vx + 1
3u

3vx −
1
2ux

2vx + 1
6vx

3 + uxvxx + 2uuxvxx − vxxu3x

− uv3x − u2v3x + uxxv3x −
1
2uxut −

3
2uuxut + 1

2u3xut + uvxvt

− 1
2v3xvt + 1

2uutx + 3
4u

2utx −
1
2uxxutx + 1

2vxxvtx + 1
2uxutxx

− 1
2vxvtxx −

1
2uut3x + 1

24vvt3x.

4.2. Linearizing operators and adjoint equations. Consider a given DE system
∆
(
x, u(k)

)
= 0 (4.1). The linearizing operator L[U ] associated with the DE system

(4.1) is given by

Lσµ[U ]V µ =
[
∂∆σ[U ]
∂Uµ

+ ∂∆σ[U ]
∂Uµ

i

Di + · · ·+ ∂∆σ[U ]
∂Uµ

i1...ik

Di1 · · ·Dik

]
V µ, σ = 1, . . . , N,

(4.12)

in terms of an arbitrary function V (x) = (V 1(x), . . . , V m(x)). The adjoint operator
L∗[U ] associated with the DE system (4.1) is given by
(4.13)

L∗σµ [U ]Wσ = ∂∆σ[U ]
∂Uµ

Wσ −Di

(
∂∆σ[U ]
∂Uµ

i

Wσ

)
+ · · ·+ (−1)kDi1 · · ·Dik

(
∂∆σ[U ]
∂Uµ

i1...ik

Wσ

)
,

where µ = 1, . . . ,m, in terms of an arbitrary function W (x) = (W1(x), . . . ,WN(x)).

4.2.1. Self-adjoint DE systems. An especially interesting situation arises when the
linearizing operator (Fréchet derivative) L[U ] of a given DE system (4.1) is self-adjoint.

Definition 4.2. Let L[U ], with its components Lσµ[U ] given by (4.12), be the lineariz-
ing operator associated with a DE system (4.1). The adjoint operator of L[U ] is L∗[U ],
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with its components L∗σµ [U ] given by (4.13). L[U ] is a self-adjoint operator if and only
if L[U ] ≡ L∗[U ], i.e., Lσµ[U ] ≡ L∗σµ [U ], σ, µ = 1, . . . ,m.

Most importantly, one can show that a given DE system, as written, has a variational
formulation (Lagrangian) if and only if its associated linearizing operator is self-
adjoint [32].

If the linearizing operator associated with a given DE system is self-adjoint, then
each set of local conservation law multipliers yields a local symmetry of the given DE
system. In particular, one has the following theorem.

Theorem 4.3. Consider a given DE system (4.1) with N = m. Suppose its as-
sociated linearizing operator L[U ], with components (4.12), is self-adjoint. Suppose{

Λσ(x, U, ∂U, . . . , ∂`U)
}m
σ=1

is a set of local conservation law multipliers of the DE
system (4.1). Let ησ(x, u, ∂u, . . . , ∂`u) = Λσ(x, u, ∂u, . . . , ∂`u), σ = 1, . . . ,m, where
U(x) = u(x) is any solution of the DE system (4.1). Then

ησ(x, u, ∂u, . . . , ∂`u) ∂

∂uσ

is a local symmetry of the DE system (4.1).

4.2.2. Self-adjointness of SNLB. Here we note that the system (1.1) does not admit
a Lagrangian. Nevertheless, the linearized PDE system for (1.4) is given by

Dtṽ
1 −Dx

2ṽ2 = 0,
Dtṽ

2 −Dx
2ṽ1 + (1 + 2u)ṽ1 = 0,

holding for any solution of PDE system (1.4), whereas the adjoint linearized system
is given by

−Dtw̃
1 −Dx

2w̃2 + (1 + 2u)w̃2 = 0,
−Dtw̃

2 −Dx
2w̃1 = 0,

holding for any solution of PDE system (1.4). In general, for substitution w̃1 = ṽ1

and w̃2 = ṽ2, for the solutions u = u (t, x) and v = v (t, x) of the NLB system (1.4),
the PDE system (1.4) is not self-adjoint. But if we set w̃1 = ṽ2 and w̃2 = ṽ1 the
adjoint linearized system coincides with the orginal linearized PDE system. Further,
equations (1.4) are the Euler-Lagrange equations determined by the action

∫
Ldtdx

with Lagrangian [11]:

(4.14) L = 1
2(u2

x + v2
x + vut − uvt)−

1
3u

3 − 1
2u

2.

4.3. Noether’s Theorem. There are many methods of constructing conservation
laws for DEs. One of the most well-known systematic methods is due to Emmy
Noether (1918), who demonstrated that for self-adjoint (variational) PDE systems,
conservation laws arise from variational symmetries, i.e., symmetries that preserve
the action integral [30]. However, the applicability of Noether’s theorem is severely
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limited, since the majority of PDE systems arising in applications are not self-adjoint
[4].

4.3.1. Preliminaries on the Noether’s symmetry. Consider a functional J [U ] in terms
of n independent variables x = (x1, . . . , xn) and m arbitrary functions U =
(U1(x), . . . , Um(x)) and their derivatives up to order k, defined on a domain ΩÂŋ,

J [U ] =
∫
Ω
L [U ] dx =

∫
Ω
L
(
x, U, ∂U, . . . , ∂kU

)
dx.

The function L [U ] = L
(
x, U, ∂U, . . . , ∂kU

)
is called a Lagrangian and the func-

tional J [U ] is called an action integral.
Suppose A is the universal space of all differential functions of finite orders, clearly

it is a vector space and forms an algebra. Consider The Lie-Backlund operator or
generalized operator

(4.15) X = ξi
∂

∂xi
+ ησ

∂

∂Uσ
+
∑
s≥1

ζσi1,i2,...,is ,

where ξi, ησ ∈ A and the additional coefficients are determined uniquely by the
prolongation formulas

ζσi = Di (ησ)− Uσ
j Di

(
ξj
)
,

ζσi1,i2,...,is = Dis

(
ζσi1,i2,...,is−1

)
− Uσ

ji1,i2,...,is−1Dis

(
ξj
)
, s > 1,

which Di is the total derivatives with respect to xi. A vector C = (C1, C2, . . . , Cn),
Ci ∈ A, i = 1, 2, . . . , n, associated with (4.1) is called a conserved vector if DiC

i = 0
holds for all solutions of (4.1).

4.3.2. Noether’s formulation of Noether’s theorem.

Definition 4.3. A Lie-Backlund operator X, of the form (4.15), is called a Noether
operator corresponding to a Lagrangian L [U ] of equation (4.1) if

(4.16) δL
δUσ

= 0, σ = 1, . . . ,m

and
(4.17) X (L) + LDi

(
ξi
)

= Di

(
Bi
)
,

for some gauge functions Bi [U ] = Bi (x, U, ∂U, . . . , ∂rU) ∈ A, i = 1, . . . , n.

The effectiveness of an available Noether operator resides in the following theorem.

Theorem 4.4 (Noether [30]). If X, as given in (4.15), is a Noether point symmetry
generator corresponding to a given Lagrangian L [U ], then the vector C = (C1, . . . , Cn),
defined by
(4.18) Ci = N i (L)−Bi, i = 1, . . . , n,



184 E. SABERI AND S. REZA HEJAZI

is a conserved vector associated with the operator X, and the Noether operator associ-
ated with X is

N i = ξi +W σ δ

δUσ
i

+
∑
s≥1

Di1 · · ·Dis (W σ) δ

δUσ
ji1,i2,...,is

, i = 1, . . . , n,

where W σ = η̂σ = ησ − ξiUσ
i , σ = 1, . . . ,m, is the Lie characteristics function.

4.3.3. Boyer’s formulation of Noether’s theorem. Boyer [9] extended Noether’s theo-
rem in order to construct conservation laws arising from invariance under generalized
symmetries [32], i.e., symmetries with infinitesimals depending on higher-order deriva-
tives by generalizing Noether’s definition of invariance of an action integral J (see
[5]). In particular, under the following definition, an action integral J is invariant
under a one-parameter higher-order transformation if its integrand L[U ] is invariant
to within a divergence under such a transformation.

Definition 4.4. Let

(4.19) X̂ = η̂α(x, U, ∂U, . . . , ∂sU) ∂

∂Uα

be the infinitesimal generator of a one-parameter higher-order local transformation
with its extension X̂∞ given by

(4.20) X̂∞ = η̂µ
∂

∂Uµ
+ η̂

(1)µ
i

∂

∂Uµ
i

+ · · ·+ η̂
(p)µ
i1...ip

∂

∂Uµ
i1...ip

,

which means
η̂(1)µ = Diη̂

µ, η̂
(p)µ
i1...ip = Dip η̂

(p−1)µ
i1...ip−1 , µ = 1, . . . ,m, i, ij = 1, . . . , n, p = 2, 3, . . . .

Let η̂α [U ] = η̂α(x, U, ∂U, . . . , ∂sU). The above transformation is a local symmetry
of J if and only if
(4.21) X̂∞L [U ] = DiA

i [U ]
holds for some set of functions Ai [U ] = Ai(x, U, ∂U, . . . , ∂rU), i = 1, . . . , n.

Definition 4.5. A local transformation with infinitesimal generator (4.19) that is, a
local symmetry of J , is called a variational symmetry of J .

The following theorem generalizes Noether’s formulation of her theorem.

Theorem 4.5 (Boyer’s generalization of Noether’s theorem). Suppose a given DE
system ∆(x, U, ∂U, . . . , ∂kU) = 0 (4.1) is derivable from a variational principle, i.e.,
a system of the Euler-Lagrange equations whose solutions are extrema of an action
integral J [x, U ] with Lagrangian L [x, U ]. Suppose a local transformation with infini-
tesimal generator (4.19) yields a variational symmetry of J . Let Rl [U,w] be defined
by

Ri [U,w] =wσ
(
∂L[U ]
∂Uσ

i

+ · · ·+ (−1)k−1Dj1 · · ·Djk−1

∂L[U ]
∂Uσ

ij1...jk−1

)
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+ wσj1

(
∂L[U ]
∂Uσ

ij1

+ · · ·+ (−1)k−2Dj2 · · ·Djk−1

∂L[U ]
∂Uσ

ij1...jk−1

)

+ · · ·+ wσj1···jk−1

∂L[U ]
∂Uσ

ij1...jk−1

, wσ(x) = η̂σ[U ],(4.22)

for arbitrary functions U(x), w(x). Then
(a) the identity

(4.23) η̂µEUµ(L[U ]) ≡ Di(Ai[U ]−Ri[U, η̂[U ]])
holds for arbitrary functions U(x), i.e., η̂µ[U ]mµ=1 is a set of local multipliers of
the Euler-Lagrange system (4.16);

(b) the local conservation law
(4.24) Di(Ri[u, η̂[u]]− Ai[u]) = 0

holds for any solution u = Θ(x) of the Euler-Lagrange system (4.16).

4.3.4. Construction of conservation laws for equations (1.4) via Noether’s formulation.
In what follows, we apply Noether’s theorem on the SNLB and obtain its conservation
laws. Recall that PDE system (1.4) is a variational system arising from a classical
variational principle, with the Lagrangian having the form [11]:

(4.25) L = 1
2(U2

x + V 2
x + V Ut − UVt)−

1
3U

3 − 1
2U

2.

Recall that (1.4) admits the following five Lie point symmetry generators:

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = ∂

∂v
, X4 = x

∂

∂v
,(4.26)

X5 = t
∂

∂t
+
(
x

2

)
∂

∂x
−
(
u+ 1

2

)
∂

∂u
+
(
t

2 − v
)
∂

∂v
.(4.27)

The actions of the extensions of the generators (4.26) are summarized in Table 2.
To apply this theorem, the generators (4.26) must satisfy the following invariance
condition
(4.28) X(1) (L) + LDi

(
ξi
)

= 0,

where X(1) is the first order prolongation of X.
The invariance condition (4.28) can be replaced by the divergence condition

(4.29) X(1) (L) + LDi

(
ξi
)

= Di

(
Bi
)
.

Calculations show that X(1)
1 and X(1)

2 satisfy the invariance condition (4.28) while
X

(1)
3 and X(1)

4 satisfy the divergence condition (4.29) as follows:

X
(1)
3 (L) + L [0] = 1

2Ut = Dt

(1
2U

)
,

X
(1)
4 (L) + L [0] = 1

2xUt + Vx = Dt

(1
2xU

)
+ Dx (V ) .
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Table 2. Point symmetry Xi, first prolongation of Xi, local symmetry
X̂i and prolongation of X̂i

Xi X
(1)
i X̂i X̂∞i

X1 ∂t −ut∂u − vt∂v X̂1 − utt∂ut + . . .

X2 ∂x −ux∂u − vx∂v X̂2−uxx∂ux + . . .

X3 ∂v ∂v ∂v

X4 x∂v + ∂vx x∂v X̂4 + ∂vx

X5
X5 − 2ut∂ut +(

1
2 − 2vt

)
∂vt − 3

2ux∂ux −
3
2vx∂vx

(
−u− 1

2

)
∂u −(

tut + 1
2xux

)
∂u +(

1
2 t− v − tvt −

1
2xvx

)
∂v

X̂5 − (2ut + tutt) ∂ut +(
1
2 − 2vt − tvtt

)
∂vt +

· · ·

The prolongation X(1)
5 did not satisfy any of the two conditions above, hence X5 does

not generate a variational symmetry group of L. Using X1, X2, X3 and X4 respectively
in the vector field (4.18), we obtain the conservation law

Dt

(
C1
)

+ Dx

(
C2
)

= 0,

with components of the conserved vector C = (C1, C2) given by(
C1

1 , C
2
1

)
=
(1

2V
2
x + 1

2U
2
x −

1
2U

2 − 1
3U

3, −UxUt − VxVt
)
,(

C1
2 , C

2
2

)
= 1

2

(
UVx −

1
2V Ux, V Ut − UVt − U

2 − 2
3U

3 − V 2
x − U2

x

)
,(

C1
3 , C

2
3

)
= (−U, Vx) ,(

C1
4 , C

2
4

)
= (−xU, xVx − V ) .

4.3.5. Construction of conservation laws for equation (1.4) via Boyer’s formulation.
In particular, the actions of the extensions of the generators (4.26) on the Lagrangian
(4.25) yield the divergence expressions:

X̂∞1 L =Dt

(
2U2 + 3U3 + 2UUxx + 2V Vxx − 2V Ut + 1

2UVt
)

+ Dx

(
−1

2UxUt −
1
2VxVt −

1
2UUtx −

1
2V Vtx

)
,

X̂∞2 L =Dx

(1
2UVt + 2U2 + 3U3 − 2V 2

x − 2U2
x − 2V Ut

)
,(4.30)



A COMPARISON OF CONSERVATION LAWS OF THE BOUSSINESQ SYSTEM 187

X̂∞3 L =Dt

(1
2U

)
,

X̂∞4 L =Dt

(1
2xU

)
+ Dx

(1
2V

)
.

Hence through Boyer’s formulation of Noether’s theorem [Theorem (4.5)], the four
symmetries (4.26) yield four conservation laws with eight multipliers given by

Λ1
1[U, V ] = η̂1

1[U, V ] = −Ut, Λ2
1[U, V ] = η̂2

1[U, V ] = −Vt,
Λ1

2[U, V ] = η̂1
2[U, V ] = −Ux, Λ2

2[U, V ] = η̂2
2[U, V ] = −Vx,

Λ1
3[U, V ] = η̂1

3[U, V ] = 0, Λ2
3[U, V ] = η̂2

3[U, V ] = 1,
Λ1

4[U, V ] = η̂1
4[U, V ] = 0, Λ2

4[U, V ] = η̂2
4[U, V ] = x.

In this example, due to the simplicity of the form of multipliers and the given PDE,
fluxes of the four conservation laws are readily found through integration by parts.
However, in more complicated practical situations when Noether’s theorem is used, one
would normally compute fluxes using the formula (4.24) which involves no integration.
Here we illustrate the use of this formula. Denoting x1 = t, x2 = x, we first compute
the quantities Ri [U, V, w1, w2] (4.22), i = 1, 2, using the Lagrangian (4.25):

R1
[
U, V, w1, w2

]
= 1

2 η̂
1V − 1

2 η̂
2U, R2

[
U, V, w1, w2

]
= η̂1Ux + η̂2Vx.

Then for the four conservation laws, from (4.30), we identify(
A1

1, A
2
1

)
=(2U2 + 3U3 + 2UUxx + 2V Vxx − 2V Ut + 1

2UVt,

− 1
2UxUt −

1
2VxVt −

1
2UUtx −

1
2V Vtx),(

A1
2, A

2
2

)
=
(

0, 1
2UVt + 2U2 + 3U3 − 2V 2

x − 2U2
x − 2V Ut

)
,(

A1
3, A

2
3

)
=
(1

2U, 0
)
,(

A1
4, A

2
4

)
=
(1

2xU,
1
2V

)
.

Therefore from (4.24), the four conservation laws of PDE (1.4) corresponding to
variational symmetries (4.26) have the form

Dt (−U) + Dx (Vx) = 0,

Dt (0) + Dx

(
xVx −

1
2V

)
= 0,

Dt

(
−1

2V Ux + 1
2UVx

)
+ Dx

(
−UxUt + V 2

x −
1
2UVt − 2U2 − 3U3 + 2U2

x + V Ut

)
= 0,

Dt

(
−1

2V Ut + 1
2UVt − 2U2 − 3U3 − 2UUxx − 2V Vxx + 2V Ut −

1
2UVt

)
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+ Dx

(
−1

2UxUt −
1
2VxVt + 1

2UUtx + 1
2V Vtx

)
= 0.

One can check that the symmetry (4.27) does not yield a variational symmetry of
the action functional J [U, V ] with Lagrangian (4.25). This is considered from three
points of view: Noether’s formulation of Noether’s theorem, Boyer’s formulation of
Noether’s theorem and, finally, the direct method.

(1) Noether’s formulation of Noether’s theorem. First of all, in terms of using
Noether’s formulation, the additional infinitesimal generator (4.27) corresponds
to the scaling symmetry t∗ = λt, x∗ = λ

1
2x, u∗ = λ−1

(
u+ 1

2

)
− 1

2 and v∗ =
λ−1

(
v − t

4

)
+ 1

4λt. Now one checks whether the scaling transformation t∗ = λt,
x∗ = λ

1
2x, U∗ = λ−1

(
U + 1

2

)
− 1

2 and V ∗ = λ−1
(
V − t

4

)
+ 1

4λt is a symmetry
of the action functional J [U, V ]. In particular,

J [U∗, V ∗] =
∫
L [U∗, V ∗] dt∗dx∗ = λ

3
2

∫
L [U∗, V ∗] dtdx,

but L [U∗, V ∗] = λ−3L [U, V ]. Hence J [U∗, V ∗] = λ−
3
2J [U, V ] 6= J [U, V ].

Thus, using Noether’s formulation of Noether’s theorem, the scaling symme-
try (4.27) does not yield an additional conservation law of the Boussinesq
system (1.4).

(2) Boyer’s formulation of Noether’s theorem. Secondly, in terms of the more
general Boyer’s formulation of Noether’s theorem, using the extension of the
infinitesimal generator (4.27) with u (x) replaced by an arbitrary function U (x),
one obtains the expression

X̂∞5 L [U, V ] = 1
4U + 3

2U
2 + U3 + 1

2x UUx + 1
2xU

2 Ux −
3
2U

2
x −

3
2V

2
x + 1

4Vt

− 1
2xUxUxx −

1
2xVxVxx −

1
4tUt + tUUt + tU2Ut −

3
2V Ut(4.31)

− 1
4xVxUt + 3

2UVt + 1
4xUxVt −

1
2tV Utt + 1

2tUVtt.

The right-hand side of (4.31) can not be expressed as a divergence expression.
To show this, it is best to directly apply the Euler operator (4.3) with respect
to U and V to this expression. In particular, one obtains

EU
(
X̂∞5 L [U, V ]

)
= 1

4
(
2 + 6U + 6U2 + 10Uxx + 7Vt

)
6= 0,

EV
(
X̂∞5 L [U, V ]

)
= 5

2Vxx −
7
4Ut 6= 0,

which means that X̂∞5 L [U, V ] is not a divergence expression, and hence X5
does not yield a variational symmetry of the action functional. Thus this
scaling symmetry does not yield a conservation law multiplier in terms of using
Boyer’s formulation of Noether’s theorem.
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(3) Direct method Finally, it is easy to show that the scaling symmetry (4.27) does
not yield a variational symmetry through using the direct method. In section
(4.1), we have checked whether (ξ5, ϕ5) is a set of multipliers for a conservation
law. In particular, one merely applies the Euler operator (4.3) with respect to
U , V , i.e., EU , EV given by (4.3), to the expression

ξ5∆1 + ϕ5∆2 =7
(
−7

5 tVt − xVx + 2
5t−

1
5V

)
(Ut − Vxx)

+
(7

5 tUt + xUx + 4
5 U + 2

5

) (
Vt − Uxx + U + U2

)
,

to show that

EV
[
ξ5∆1 + ϕ5∆2

]
= 0, EU

[
ξ5∆1 + ϕ5∆2

]
= −6

5 Uxx 6= 0,

for arbitrary functions U (t, x) and V (t, x). The right-hand side of the above
expression is not equivalent to 0, which means that X5 does not yield a varia-
tional symmetry.

The conserved densities and fluxes corresponding to the symmetry (4.27) can be
computed using the following approaches: Homotopy operator method and Ibragi-
mov’s theorem.

4.4. Homotopy operator method. In the case of complicated forms of multipliers
and/or equations, for the inversion of divergence operators, one can use homotopy
operators that arise in differential geometry and reduce the problem of finding fluxes
to a problem of integration in single-variable calculus. We begin this part by a brief
definition of a homotopy operator [15].

Definition 4.6. Let f
(
t, x,u(M) (t, x)

)
be an exact differential function involving

two independent variables (t, x). The second homotopy operator is a vector operator
with two components

(4.32)
(
Ht

u(t,x) (f) ,Hx
u(t,x) (f)

)
,

where

Ht
u(t,x) (f) =

∫ 1

λ0

 N∑
j=1
Ituj(t,x) (f)

 [λu]dλ
λ
,(4.33)

Hx
u(t,x) (f) =

∫ 1

λ0

 N∑
j=1
Ixuj(t,x) (f)

 [λu]dλ
λ
.(4.34)

The t-integrand, Ituj(t,x) (f), is defined as

Ituj(t,x) (f) =
Mj

1∑
k1=1

Mj
2∑

k2=0

k1−1∑
i1=0

k2∑
i2=0

Btuji1t i2x (−Dt)k1−i1−1 (−Dx)k2−i2

 ∂f

∂ujk1t k2x

,(4.35)
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with combinatorial coefficient Bt = B (i1, i2, k1, k2) defined as

(4.36) B (i1, i2, k1, k2) =

(
i1+i2
i1

)(
k1+k2−i1−i2−1

k1−i1−1

)
(
k1+k2
k1

) .

Similarly, the x−integrand, Ixuj(t,x) (f), is given by

Ixuj(t,x) (f) =
Mj

1∑
k1=0

Mj
2∑

k2=1

 k1∑
i1=0

k2−1∑
i2=0

Bxuji1t i2x (−Dt)k1−i1 (−Dx)k2−i2−1

 ∂f

∂ujk1t k2x

,(4.37)

where Bx = B (i2, i1, k2, k1).
The homotopy with λ0 = 0 is used, except when singularities at λ = 0 occur. Using

homotopy operator Div−1, we have the following theorem [15,17].

Theorem 4.6. Let f = f
(
t, x,u(M) (t, x)

)
be exact, i.e., f = DivF for some F =

F
(
t, x,u(M−1) (t, x)

)
. Then F = Div−1 (f) =

(
Ht

u(t,x) (f) ,Hx
u(t,x) (f)

)
.

Theorem (4.6) helps us to find the flux and density of the equation (1.4) by using
the multipliers (4.9) and (4.11). Once we have one component of the conservation
law, e.g., the density or a component of the flux, we can compute the remaining
components using the homotopy operator.

4.4.1. Flux and density of the set of multipliers (4.9). For example, one can show that
PDE (1.4) has a local conservation law arising from the multiplier (ξ1, ϕ1) = (−vt, ut) ,
i.e.,

f = −vt (ut − vxx) + ut
(
vt − uxx + u+ u2

)
,

is a divergence expression. We now reconstruct the corresponding density Ψ and flux
Φ. Using (4.35), we obtain

Itu(t,x) (f) =
1∑

k1=1

2∑
k2=0

k1−1∑
i1=0

k2∑
i2=0

Btui1t i2x (−Dt)k1−i1−1 (−Dx)k2−i2

 ∂f

∂uk1t k2x
,

= u
∂f

∂ut
= −uuxx + u2 + u3,

Itv(t,x) (f) =
1∑

k1=1

2∑
k2=0

k1−1∑
i1=0

k2∑
i2=0

Btvi1t i2x (−Dt)k1−i1−1 (−Dx)k2−i2

 ∂f

∂vk1t k2x
,

= v
∂f

∂vt
= vvxx.

Likewise, using (4.37), we have

Ixu(t,x) (f) =
1∑

k1=0

2∑
k2=1

 k1∑
i1=0

k2−1∑
i2=0

Bxui1t i2x (−Dt)k1−i1 (−Dx)k2−i2−1

 ∂f

∂uk1t k2x

= u (−Dx)
∂f

∂uxx
+ ux

∂f

∂uxx
= uutx − utux,



A COMPARISON OF CONSERVATION LAWS OF THE BOUSSINESQ SYSTEM 191

Ixv(t,x) (f) =
1∑

k1=0

2∑
k2=1

 k1∑
i1=0

k2−1∑
i2=0

Bxvi1t i2x (−Dt)k1−i1 (−Dx)k2−i2−1

 ∂f

∂vk1t k2x

= v (−Dx)
∂f

∂vxx
+ vx

∂f

∂vxx
= vxvt − vvtx.

Then, using (4.33) and (4.34), yields

Ht
u(t,x) (f) =

∫ 1

0

(
Itu(t,x) (f)[λu] + Itv(t,x) (f)[λu]

) dλ
λ

= 1
2
(
vvxx − uuxx + u2

)
+ 1

3u
3,

Hx
u(t,x) (f) =

∫ 1

0

(
Ixu(t,x) (f)[λu] + Ixv(t,x) (f)[λu]

) dλ
λ

= 1
2 (uutx − utux − vvtx + vtvx) .

Thus, the homotopy operator gives the vector

F = Div−1f = 1
2

(
vvxx − uuxx + u2 + 2

3u
3

uutx − utux − vvtx + vtvx

)
.

Similarly, we have computed the densities and fluxes corresponding to the other
multipliers. The results are presented in Table 3.

4.4.2. Flux and dentity of the set of multipliers (4.11). For equation (1.4), we found
out that (Λ1,Λ2) are the set of multipliers and are candidates for reconstructing the
flux and density. For the homotopy operator (4.32) and for (4.11) with u = (u, v) the
differential function f is defined as

f = Λ1∆1 + Λ2∆2

= (−vxx + ut)
(
−uxx (3u+ 1)− 3/2u2

x − 1/2 v2
x + 2/3u3 + 1/2u2 + u4x

)
+
(
−uxx + vt + u+ u2

)
(vxxu+ vxux − v4x) .

Thus, the t−integrand (4.37) is given by

Itu(t,x)(f) =
1∑

k1=1

4∑
k2=0

k1−1∑
i1=0

k2∑
i2=0

Btui1t i2x(−Dt)k1−i1−1(−Dx)k2−i2

 ∂f

∂uk1t k2x
(4.38)

= −uuxx −
3
2uu

2
x −

1
2uv

2
x − 3u2uxx + 1

2u
3 + uu4x + 2

3u
4,

Itv(t,x)(f) =
1∑

k1=1

4∑
k2=0

k1−1∑
i1=0

k2∑
i2=0

Btvi1t i2x(−Dt)k1−i1−1(−Dx)k2−i2

 ∂f

∂vk1t k2x
,(4.39)

= +uvvxx + vvxux − vv4x.
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Table 3. Flux and density with multipliers (4.9) of the Boussinesq
system (1.4).

Multiplier Flux and Density

(ξ1, ϕ1) = (−vt, ut)
Ht

u(t,x) (f) = 1
2 (vvxx − uuxx + u2) + 1

3u
3,

Hx
u(t,x) (f) = 1

2 (uutx − utux − vvtx + vtvx)

(ξ2, ϕ2) = (−vx, ux)

Ht
u(t,x) (f) = 1

2 (vux − uvx) ,

Hx
u(t,x) (f) =

1
2

(
uvt − vut + u2 − u2

x + v2
x + 2

3u
3
)

(ξ3, ϕ3) = (1, 0)
Ht

u(t,x) (f) = u,

Hx
u(t,x) (f) = −vx

(ξ4, ϕ4) = (x, 0)
Ht

u(t,x) (f) = xu,

Hx
u(t,x) (f) = v − xvx

(ξ5, ϕ5) =

−
(

7
5 tvt − xvx + 2

5 t−
1
5v,

7
5 tut + xux + 4

5 u+ 2
5

)
Htu(t,x) (f) = 1

2vut −
1
2uvx + 2

5 tu+ 7
10 tu

2 + 7
15 tu

3 + 3
10uv +

7
5vt −

7
5 tvt −

7
10 tuuxx + 2

5v −
7

10 tvut + 1
2xvux + 7

10 tvvxx,

Hxu(t,x) (f) =
1
2xu

2 + 1
2xu

3 + 1
2xuvt + 1

2uux −
2
5ux −

1
2xu

2
x − 7

10 tutux +
7

10 tuutx −
2
5 tvx + 1

2xv
2
x − 1

2vvx −
1
2xvut −

7
10 tvvtx + 7

10 tvxvt

Substituiting (4.38) and (4.39) in the first component of the homotopy operator (4.32)
yields

Ht
u(t,x)(f) =

∫ 1

0

(
Itu(t,x)(f)[λu] + Itv(t,x)(f)[λu]

) dλ
λ

(4.40)

= −1
2uuxx −

1
2uu

2
x −

1
6uv

2
x − 3u2uxx + 1

6u
3

+ 1
2uu4x + 1

6u
4 + 1

3uvvxx + 1
3vvxux −

1
2vv4x,

which is a flux corresponding to (Λ1,Λ2). Similarly the x−integrand (4.35) is given
by

Ixu(t,x)(f) =
1∑

k1=0

4∑
k2=1

 k1∑
i1=0

k2−1∑
i2=0

Bxui1t i2x(−Dt)k1−i1(−Dx)k2−i2−1

 ∂f

∂uk1t k2x
(4.41)
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=− 3uuxut + 5uuxvxx − uvxuxx + uvtvx + u2vx + u3vx + uutx

− uut3x − uv3x − 2u2v3x− uuxvxx + uuxxvx + 3u2utx − uxut
+ uxv4x + uxvxx − vxu2

x − u3xvxx + u3xut + uxxv3x − uxxutx
− utxv4x + uxutxx,

Ixv(t,x)(f) =
1∑

k1=0

4∑
k2=1

 k1∑
i1=0

k2−1∑
i2=0

Bxvi1t i2x(−Dt)k1−i1(−Dx)k2−i2−1

 ∂f

∂vk1t k2x
(4.42)

= −vvxut + 1
2v

3
x + 1

3u
3vx + 1

2u
2vx − vxu4x + uvtvx − uvvtx

− 3vuxuxx + uxxv3x − vtv3x − uv3x− u2v3x + 2uuxvxx + uxvxx

+ vxxvtx − u3xvxx + vxu4x −
1
2vxu

2
x − vxvtxx + vvt3x + 3vuxuxx.

Substituiting (4.46) and (4.47) in the second component of the homotopy operator
(4.37)„ yields a density for equation (1.4) corresponding to (Λ1,Λ2):

Hx
u(t,x)(f) =

∫ 1

0

(
Ixu(t,x)(f)[λu] + Ixv(t,x)(f)[λu]

) dλ
λ

=− uuxut + 2
3uuxvxx −

1
3uvxuxx + 2

3uvtvx + 1
2u

2vx + 1
3u

3vx

+ 1
2uutx − uv3x − u2v3x+ 1

3uuxxvx + u2utx −
1
2uxut + 1

2uxv4x

+ uxvxx −
1
2vxu

2
x + 4

3uuxvxx − u3xvxx + 1
2u3xut + 1

2uxxv3x

− 1
2uxxutx −

1
2uut3x −

1
2utxv4x + 1

2uxutxx −
1
3vvxut + 1

6v
3
x

− 1
3uvvtx −

1
2vtv3x + 1

2vxxvtx −
1
2vxvtxx + 1

2vvt3x + 1
2vxxuxx.

Setting Φ = Hx
u(t,x)(f) and Ψ = Ht

u(t,x)(f), conservation laws corresponding to
multipliers (4.11) for the system of equations (1.4) is given by

DtΨ + DxΦ = 0.

4.5. Ibragimov’s theorem. In this section we obtain conservation laws for the
(1 + 1)-dimensional Boussinesq system (1.4) using Ibragimov theorem [19], but first
we give some definitions and notations which we will utilize later.

We begin with nonlinear self-adjointness introduced by Ibragimov [18], whose main
idea is first to turn the system of PDEs into Lagrangian equations by artificially
adding new variables, and then applying the theorem proved in [19] to construct local
and nonlocal conservation laws.

Let L be the formal Lagrangian of system (4.1) written as

(4.43) L = ϑβ∆β
(
x, u, ∂u, . . . , ∂ku

)
,
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where ϑβ is the new introduced dependent variable, then the adjoint equations of
system (4.1) are defined by

(4.44) (∆σ)∗
(
x, u, ϑ, ∂u, . . . , ∂ku, ∂kϑ

)
= δL
δuσ

= 0,

where ϑ = (ϑ1, . . . , ϑm) and δ/δuσ is the Euler operator defined as (4.3).
Then the definition of nonlinear self-adjointness of system (4.1) is given as follows.

Definition 4.7. The system (4.1) is said to be nonlinearly self-adjoint if the adjoint
system (4.44) is satisfied for all solutions u of system (4.1) upon a substitution
ϑ = ϕ (x, u) such that ϕ (x, u) 6= 0.

Here, ϕ (x, u) = (ϕ1 (x, u) , . . . , ϕm (x, u)) and ϑ = ϕ (x, u) means ϑi = ϕi (x, u),
ϕ (x, u) 6= 0 means that not all elements of ϕ (x, u) equal zero and is called a nontrivial
substitution. Definition (4.7) is equivalent to the following identities holding for the
undetermined functions λβσ = λβσ

(
x, u, ∂u, . . . , ∂ku

)
(∆σ)∗

(
x, u, ϑ, ∂u, . . . , ∂ku, ∂kϑ

)
|ϑ=ϕ

= λβσ∆β,

which is applicable in the proofs and computations.
Nonlinear self-adjointness contains three subclasses. In particular, if the substitution

ϑ = ϕ (x, u) becomes ϑ = u, then system (4.1) is called strictly self-adjointness. If
ϑ = ϕ (u), then it is termed quasi self-adjointness. If ϑ = ϕ (x, u) involving x and
u, then it is called weakly self-adjointness. As an extension of the substitution, if
ϑ = ϕ (x, u, ∂u, . . . , ∂su), then it is called nonlinearly self-adjoint with differential
substitution.

Let us now assume the system (4.1) admits the symmetry generator

(4.45) X = ξi
∂

∂xi
+ ησ

∂

∂uσ
.

Then the system of adjoint equations (4.44) admits the operator

Y = ξi
∂

∂xi
+ ησ

∂

∂uσ
+ ησ∗

∂

∂ϑσ
,(4.46)

ησ∗ = −
[
λβσϑ

β + ϑσDi

(
ξi
)]
,

where the operator (4.46) is an extension of (4.45) to the variable ϑσ and the λβσ are
obtainable from X (∆σ) = λβσ∆β.

We now state the following theorem.

Theorem 4.7 (see [19]). Every Lie point, Lie-Bäcklund, and nonlocal symmetry
(4.45) admitted by the system of (4.1) leads to a conservation law Di (T i) = 0, where
the components T i constructed by the formula

T i =ξiL+W σ

[
∂L
∂uσi
−Dj

(
∂L
∂uσij

)
+ DjDk

(
∂L
∂uσijk

)
− · · ·

]
+ Dj (W σ)(4.47)
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×
[
∂L
∂uσij

−Dk

(
∂L
∂uσijk

)
+ · · ·

]
+ DjDk (W σ)

[
∂L
∂uσijk

− · · ·
]

+ · · · ,

where W σ = ησ − ξjuσj and L is the formal Lagrangian (4.43) which is written in the
symmetric form about the mixed derivatives.

4.5.1. Construction of Conservation Laws for (1.4) via Ibragimov’s theorem. In Sec-
tion 2, we derived five Lie point symmetries (2.3) of SNLB (1.4).

Corresponding to each of these five Lie point symmetries we shall construct five
conserved vectors. The adjoint equations of (1.4), by invoking (4.44), are

δ

δu

[
P (ut − vxx) +Q(vt − uxx + u+ u2)

]
= 0,(4.48)

δ

δv

[
P (ut − vxx) +Q(vt − uxx + u+ u2)

]
= 0,

where P = P (t, x) and Q = Q(t, x) are new dependent variables and (4.48) gives

(4.49) ∆∗ =
{
Pt = −Qxx +Q+ 2uQ,
Qt = −Pxx.

Clearly, (1.4) is not self-adjoint. By recalling (4.43), we get the following Lagrangian
for the system of equations (1.4) and (4.49):
(4.50) L = P (ut − vxx) +Q(vt − uxx + u+ u2).

(i) We first consider the Lie point symmetry generator X1 = ∂
∂t

. It can be verified
from (4.46) that the operator Y1 is the same as X1 and the Lie characteristic
functions are W1 = −ut, W2 = −vt. Thus, by using (4.47), the components T i,
i = 1, 2, of the conserved vector T = (T 1, T 2) are given by

T 1 = Q(u+ u2 − uxx)− Pvxx,
T 2 = Qutx + Pvtx −Qxut − Pxvt.

Remark 4.1. The conserved vector T contains the arbitrary solutions P,Q of
the adjoint equation (4.49) and hence gives an infinite number of conservation
laws.

The same remark applies to all the following four cases.
(ii) Now for the second symmetry generator X2 = ∂

∂x
, we have W1 = −ux,

W2 = −vx. Hence, by invoking (4.47), the symmetry generator X2 gives
rise to the following components of the conserved vector:

T 1 = −Pux −Qvx,
T 2 = Put +Q(u+ u2 + vt)−Qxux − Pxvx.

(iii) For the third symmetry X3 = ∂
∂v
, we have W1 = 0, W2 = 1 and the correspond-

ing components of the conserved vector are:
T 1 = Q, T 2 = Px.
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(iv) The fourth symmetry X4 = x ∂
∂v
, gives W1 = 0, W2 = x and the corresponding

components of the conserved vector are:

T 1 = xQ, T 2 = xPx − P.

(v) Finally, for the symmetry

X5 = t
∂

∂t
+
(
x

2

)
∂

∂x
−
(
u+ 1

2

)
∂

∂u
+
(
t

2 − v
)
∂

∂v
,

the value of Y5 is not the same as X5 and in fact is given by

Y5 = t
∂

∂t
+
(
x

2

)
∂

∂x
−
(
u+ 1

2

)
∂

∂u
+
(
t

2 − v
)
∂

∂v
+ 1

2P
∂

∂P
+ 1

2Q
∂

∂Q
.

In this case the Lie characteristic functions are W1 = −u − 1
2 − tut −

1
2xux,

W2 = −v+ t
2− tvt−

1
2xvx. So using (4.47), one can obtain the conserved vector

T whose components are given by

T 1 =tQ(u+ u2 − uxx)− tPvxx − P
(
u+ 1

2 + 1
2xux

)
+Q

(
−v + t

2 −
1
2xvx

)
,

T 2 =x2Q(u+ u2 − vt) + x

2Put − P
(3

2vx + tvtx

)
+Q

(3
2ux + tutx

)
−Qx

(
u+ tut + 1

2 + 1
2xux

)
+ Px

(
−v + t

2 − tvt −
1
2xvx

)
.

Conclusion

In this paper a comprehensive analysis of the symmetries and conservation laws
of the Boussinesq system of PDEs (SNLB), is presented. The classical symmetries
of the SNLB are computed by applying the criterion of invariance of the equations
under the infinitesimal prolonged infinitesimal generators. The one parameter groups
and symmetry transformations associated to infinitesimal symmetries are determined.
Meanwhile, the Lie invariants and the similarity reduced equations associated to
infinitesimal symmetry generators are computed. Finally, the conservation laws of
the SNLB are determined via five different methods.

(a) Noether’s theorem. We have found an exact Lagrangian of equation (1.4),
then have obtained local variational symmetries. There is a one-to-one corre-
spondence between local symmetries X̂i in Table 2 and local conservation law
multipliers which were presented in Table 4.

(b) Boyer’s generalization of Noether’s theorem. We outline a generalization of
Noether’s theorem which includes higher-order symmetries due to Boyer’s
formulation. It is straightforward to apply Noether’s theorem to obtain a
conservation law for any one-parameter higher-order transformation leaving
invariant the action functional to within a divergence term.

(c) Direct method. We present the direct (multiplier) method of local conservation
law construction, which is applicable to both variational and non-variational
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Table 4. Comparison of Lie point symmetries (2.3) in the evolution-
ary form Table 2 and local conservation law multipliers (4.9) of the
Boussinesq system (1.4).

Symmetry generator Conservation law multipliers
X̂1 = −ut∂u − vt∂v Λ1 = vt, Λ2 = −ut
X̂2 = −ux∂u − vx∂v Λ1 = vx, Λ2 = −ux
X̂3 = ∂v Λ1 = 1, Λ2 = 0
X̂4 = x∂v Λ1 = x, Λ2 = 0
X̂5 =

(
−u− 1

2 − tut −
1
2xux

)
∂u Λ1 = 5tvt + xvx − t− v,

+
(

1
2t− v − tvt −

1
2xvx

)
∂v Λ2 = −5tut − xux − 1− 2u

PDE systems. This method yields the multipliers for conservation laws as well
as an integral formula for corresponding conserved densities.

(d) Homotopy operator method. After the multipliers are computed, fluxes and
densities of the corresponding divergence expression can be reconstructed, here
we are applying the homotopy operator.

(e) Ibragimov’s theorem. The conservation laws for the Boussinesq system were
also derived by using the new conservation theorem due to Ibragimov in order to
find formal Lagrangians of the Boussinesq system without variational structure.

All five of these methods have some limitations in their use.
On comparing (a): we note that there are several limitations to Noether’s theorem.

It is restricted to variational systems. Consequently, to be applicable to a given system
as written, the given system must be of even order, have the same number of dependent
variables as the number of equations in the system and have no dissipation. There is
also the difficulty of finding symmetries admitted by the action functional. Moreover,
the use of Noether’s theorem to find conservation laws is coordinate-dependent.

On comparing (b): this method is generalises Noether’s definition of invariance of
an action integral. Note that the four conservation laws which we have obtained by
Boyer’s formulation, have been also resulted from the celebrated Noether’s theorem.
Also, it is restricted to variational systems and one must find an explicit Lagrangian.

In comparing the direct method (c) with Noether’s theorem, it is important to
reiterate that conservation laws arise from multipliers for both approaches. But unlike
Noether’s theorem (also, Ibragimov’s theorem), the direct method is not limited to
PDE systems arising from some variational principle (i.e., self-adjoint PDE systems).
None of these complications arise when one computes conservation law multipliers
through the direct method. Indeed, the multiplier determining equations are solved
off the solution space of the given PDEs.

On comparing (d): as was observed the major weakness of the direct method is in
calculating the fluxes and the densities of the conservation law. Whereas when one
employs the Homotopy operator method either shall be one is able to find in a very
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direct fashion two polynomials in terms of the dependent variables and their derivatives.
These may then be expressed as a divergence expression via using special formulas
which usually include the integration of multiple sentences. While in complicated cases
where the system of PDEs includes higher-order derivatives, integration is seldom
possible. This problem can be resolved by combining Noether’s theorem and the
direct method but as previously mentioned, Noether’s theorem has several limitation.
In the case of complicated forms of multipliers and/or equations, for the inversion of
divergence operators, one can use homotopy operators.

On comparing (e) with Noether’s theorem: we find that this method is similar
to Noether’s theorem which requires a Lagrangian to exist, however, Lagrangians
exists only for very special types of DEs within the construct of Noether’s theorem.
Ibragimov has attempted to overcome this difficulty by defining an adjoint equation for
non-linear DEs and constructing a Lagrangian for an arbitrary (linear and non-linear)
equation considered together with its adjoint equation. Comparing the conservation
laws obtained in Subsection 4.3.4 by the exact Lagrangian to thoese in Subsection
4.5.1 obtained from Ibragimov’s theorem, we can see that they are equivalent.

Finally, we find that there are only two means by which one may obtain all fluxes
and densities: the Homotopy operator method and Ibragimov’s theorem.
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