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TOTAL ABSOLUTE DIFFERENCE EDGE IRREGULARITY
STRENGTH OF GRAPHS

R. RAMALAKSHMI1 AND KM. KATHIRESAN2

Abstract. We introduce a new graph characteristic, the total absolute difference
edge irregularity strength. We obtain the estimation on the total absolute difference
edge irregularity strength and determine the precise values for some families of
graphs.

1. Introduction

Throughout this paper, G is a simple graph, V and E are the sets of vertices and
edges of G, with cardinalities |V | and |E| respectively. A labeling of a graph is a map
that carries graph elements to the numbers.

A labeling is called a vertex labeling, an edge labeling or a total labeling, if the
domain of the map is the vertex set, the edge set, or the union of vertex and edge
sets respectively. Baca et al. in [2] started to investigate the total edge irregularity
strength of a graph, an invariant analogous to the irregularity strength for total
labeling. For a graph G = (V (G) , E (G)), the weight of an edge e = e1e2 under a
total labeling ξ is wtξ (e) = ξ (e1) + ξ (e) + ξ (e2) . For a graph G we define a labeling
ξ : V (G) ∪ E (G)→ {1, 2, . . . , k} to be an edge irregular total k-labeling of a graph
G if for every two different edges xy and x′y′ of G one has wtξ (xy) 6= wtξ (x′y′) . The
total edge irregular strength, tes(G), is defined as the minimum k for which G has an
edge irregular total k-labeling. In [2], we can find that

tes(G) ≥ max
{⌈
|E (G)|+ 2

3

⌉
,

⌈
∆ (G) + 1

2

⌉}
,
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where ∆(G) is the maximum degree of G, and also there are determined the exact
values of the total edge irregularity strength for paths, cycles, stars, wheels and
friendship graphs. Recently Ivanco and Jendrol [3] proved that for any tree T

tes(T ) = max
{⌈
|E (G)|+ 2

3

⌉
,

⌈
∆ (G) + 1

2

⌉}
.

Moreover, they posed a conjecture that for an arbitrary graph G different from K5
and the maximum degree ∆(G)

tes(G) = max
{⌈
|E (G)|+ 2

3

⌉
,

⌈
∆ (G) + 1

2

⌉}
.

The Ivanco and Jendrol’s conjecture has been verified for complete graphs and
complete bipartite graphs in [4], for categorical product of cycle and path in [1] and
[6], for corona product of paths with some graphs in [5].

A graceful labeling of a graph G = (V,E) with |V | vertices and |E| edges is a one-to-
one mapping Ψ of the vertex set V (G) into the set {0, 1, 2, . . . , |E|} with the following
property: If we define, for any edge e = uv ∈ E(G), the value Ψ′(e) = |Ψ(u)−Ψ(v)|
then Ψ′ is a one-to-one mapping of the set E(G) onto the set {1, 2, . . . , |E|}.Motivated
by the total edge irregularity strength of a graph and motivated by the graceful
labeling, we introduce and investigate the total absolute difference edge irregularity
strength of graphs to reduce the edge weights.

A total labeling ξ is defined to be an edge irregular total absolute difference k-
labeling of the graph G if for every two different edges e and f of G there is wt(e) 6=
wt(f) where weight of an edge e = xy is defined as wt(e) = |ξ(e)− ξ(x)− ξ(y)|. The
minimum k for which the graph G has an edge irregular total absolute difference
labeling is called the total absolute difference edge irregularity strength of the graph
G, tades(G). The main aim of this paper is to obtain estimations on the parameter
tades and determine the precise values of tades for some families of graphs.

2. Main Results

The following result shows that the absolute difference edge irregularity strength is
defined for all graphs.

Theorem 2.1. Let G = (V,E) be a graph with vertex set V and a non-empty edge
set E. Then

⌈
|E|
2

⌉
≤ tades(G) ≤ |E|+ 1.

Proof. To get the upper bound we label each vertex ofG with label 1 and the edges ofG
consecutively with labels 2, 3, . . . , |E|+1. Then wt(e) are consecutively 0, 1, . . . , |E|−1
and the weights for any two distinct edges e and f are distinct.

To get the lower bound, let ξ be an optimal labeling with respect to the tades(G).
The weight of the heaviest edge implies that |ξ(e)− ξ(x)− ξ(y)| ≥ |E| − 1.
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That is, ξ(e)−ξ(x)−ξ(y) ≥ |E|−1 if ξ(e) > ξ(x)+ξ(y), ξ(x)+ξ(y)−ξ(e) ≥ |E|−1.
If ξ(e) < ξ(x) + ξ(y), then

ξ(x) + ξ(y)− ξ(e) ≥ |E| − 1,
which implies

ξ(x) + ξ(y) ≥ |E| − 1 + ξ(e) ≥ |E| − 1 + 1 = |E|.
That is,

ξ(x) + ξ(y) ≥ |E| .
So at least one label is at least

⌈
|E|
2

⌉
.

If ξ(e) > ξ(x) + ξ(y), then ξ(e)− ξ(x)− ξ(y) ≥ |E| − 1.
Suppose ξ(e) <

⌈
|E|
2

⌉
, then

−ξ(x)− ξ(y) ≥ |E| − 1− ξ(e) > |E| − 1−
⌈
|E|
2

⌉
>

⌊
|E|
2

⌋
− 1.

That is,

ξ(x) + ξ(y) < 1−
⌊
|E|
2

⌋
= 0,

which is not possible. Hence,

ξ(e) ≥
⌈
|E|
2

⌉
.

That is, ⌈
|E|
2

⌉
≤ tades(G) ≤ |E|+ 1. �

The lower bound in the Theorem 2.1 is tight as can be seen from the following
theorem.

Theorem 2.2. Let Pn be a path on n ≥ 4 vertices. Then tades(Pn) =
⌈
n−1

2

⌉
.

Proof. From the Theorem 2.1 we have tades(Pn) ≥
⌈
n−1

2

⌉
. So, it is enough to prove

that
tades(Pn) ≤

⌈
n− 1

2

⌉
.

Let Pn be the path v1e1v2e2v3, . . . , vn−1en−1vn, n ≥ 4. Now define a mapping ξ :
V ∪ E →

{
1, 2, . . . ,

⌈
n−1

2

⌉}
by ξ(v1) = 1 and ξ(vi) =

⌈
i−1

2

⌉
for 2 ≤ i ≤ n, ξ(e1) = 2

and ξ(ei) = 1 for 2 ≤ i ≤ n− 1. Now,

max {{ξ(v)|v ∈ V (Pn)} ∪ {ξ(e)|e ∈ E(Pn)}} =
⌈
n− 1

2

⌉
and the edge weights are given by

wt(e1) = |ξ(e1)− ξ(v1)− ξ(v2)| = |2− 1− 1| = 0,
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for 2 ≤ i ≤ n− 1,
wt(ei) = |ξ(ei)− ξ(vi)− ξ(vi+1)| = i− 1.

Hence, the weights are distinct. Therefore, tades(Pn) =
⌈
n−1

2

⌉
. �

Observation 1. We observe that tades(P3) = 2, tades(P2) = 1.

The upper bound in the Theorem 2.1 is not sharp. If we utilize the maximum
degree ∆ = ∆ (G) of the graph G, we obtain the following result.

Theorem 2.3. Let G = (V,E) be a graph with maximum degree ∆ = ∆ (G). Then
tades(G) ≥

⌈
∆+1

2

⌉
.

Proof. Let G = (V,E) be a graph with maximum degree ∆ = ∆ (G). Let x be a
vertex of G with maximum degree ∆ in G. Let ej = xuj be the edges incident with
the vertex x, 1 ≤ j ≤ ∆. Assume to the contrary that, tades(G) <

⌈
∆+1

2

⌉
. Suppose

ξ is an optimal total labeling of G. Then wt(ej) is either ξ(ej) − ξ(x) − ξ(uj) or
−ξ(ej) + ξ(x) + ξ(uj) for 1 ≤ j ≤ ∆. Among the ∆ edges, let i denote the number of
edges that have weight −ξ(ej) + ξ(x) + ξ(uj). Then 0 ≤ i ≤ ∆. Suppose i = 0, then
all the edges have weight ξ(ej)− ξ(x)− ξ(uj). Then wt(ej) = ξ(ej)− ξ(x)− ξ(uj) for
1 ≤ j ≤ ∆. Since ξ(x) ≥ 1 and ξ(uj) ≥ 1, we have −ξ(x) ≤ −1 and −ξ(uj) ≤ −1.
Therefore, wt(ej) ≤

⌊
∆
2

⌋
− 2. Then we have at most

⌊
∆
2

⌋
− 1 distinct weights, but

we need at least ∆ weights. Therefore, i = 0 is not possible. Among the edges ej,
1 ≤ j ≤ ∆, there is an edge ek = xuk with weight wt(ek) = −ξ(ek) + ξ(x) + ξ(uk).
That is, ξ(x) + ξ(uk) ≤ ξ(ek) ≤

⌊
∆
2

⌋
. That is, ξ(x) ≤

⌊
∆
2

⌋
− 1. Then the possible

values of ξ(x) are 1, 2, . . . ,
⌊

∆
2

⌋
− 1. Now, fix the value

⌊
∆
2

⌋
− h to ξ(x) for some

1 ≤ h ≤
⌊

∆
2

⌋
− 1. Then

wt(ej) = −ξ(ej) + ξ(x) + ξ(uj) = −ξ(ej) +
⌊

∆
2

⌋
− h+ ξ(uj).

Suppose −ξ(ej)+
⌊

∆
2

⌋
−h+ξ(uj) ≥ ∆−h, then ξ(uj) ≥

⌈
∆
2

⌉
+ξ(ej) ≥

⌈
∆+1

2

⌉
+1, which

is a contradiction to our assumption. Therefore, −ξ(ej) +
⌊

∆
2

⌋
− h+ ξ(uj) < ∆− h.

Then we have at most ∆−1 distinct weights, but we need at least ∆ weights. Therefore,
i 6= 0 is also not possible. Therefore, tades(G) ≥

⌈
∆+1

2

⌉
. �

The lower bound in the Theorem 2.3 is tight as can be seen from the following
theorem.

Theorem 2.4. Let Sn = K1,n be a star on n+ 1 vertices, n > 2. Then tades(Sn) =⌈
n+1

2

⌉
.

Proof. From the Theorem 2.3

tades(Sn) ≥
⌈
n+ 1

2

⌉
.
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Let the vertices of Sn be {u, v1, v2, . . . , vn} where u is a vertex of maximum degree.
Let ei = uvi, 1 ≤ i ≤ n, be the edges of the star Sn. Now define the labeling
ξ : V ∪ E →

{
1, 2, . . . ,

⌈
n+1

2

⌉}
by ξ(u) =

⌊
n−1

2

⌋
. Then

ξ(vi) =
{
i, if 1 ≤ i <

⌈
n+1

2

⌉
,

dn+1
2 e, if dn+1

2 e ≤ i ≤ n,

ξ(uvi) =


dn2 e, if 1 ≤ i ≤ dn+1

2 e,
2dn+1

2 e − i, if dn+1
2 e < i ≤ n, n is an odd integer,

2dn+1
2 e − i− 1, if dn+1

2 e < i ≤ n, n is an even integer.
Now,

max{{ξ(v) | v ∈ V (Sn)} ∪ {ξ(e) | e ∈ E(Sn)}} =
⌈
n+ 1

2

⌉
.

Also, 0 ≤ wt(uvi) ≤
⌈
n+1

2

⌉
− 1 for 1 ≤ i ≤

⌈
n+1

2

⌉
wt(uvdn+1

2 e) =
⌈
n+ 1

2

⌉
− 1,⌈

n+1
2

⌉
≤ wt(uvi) ≤ n − 1 for

⌈
n+1

2

⌉
< i ≤ n. Hence, the edge weights are distinct.

Therefore, tades(Sn) =
⌈
n+1

2

⌉
.

�

Observation 2. We observe that tades(S1) = 1, tades(S2) = 2.
In the next theorem, we discuss a technique to determine tades for some families

of graphs.
Theorem 2.5. Let G be a graph and φ : V (G)→ {0, 1} be a mapping and let Ei(φ) =
{xy ∈ E (G) |φ(x) + φ(y) = i} for i ∈ {0, 1, 2}. If |E0(φ)| ≤ k − 1, |E1(φ)| ≤ k − 1,
|E2(φ)| = k − 1 and |E| ≤ 2k, then G has a total edge-irregular absolute difference
k-labeling.
Proof. Let G be a graph and φ : V (G)→ {0, 1} be a mapping and

wtφ(e) = φ(u) + φ(v),
where u and v are end vertices of e. Let Ei(φ) = {xy ∈ E (G) | φ(x) + φ(y) = i} for
i = 0, 1, 2. Suppose that |E0(φ)| ≤ k − 1, |E1(φ)| ≤ k − 1, |E2(φ)| = k − 1. Let
E0(φ) = {e1, e2, . . . , er0}, E1(φ) = {e′1, e′2, . . . , e′r1} and E2(φ) = {e′′1, e′′2, . . . , e′′k−1}.
Then define a mapping ξ1 from V (G) into the set of positive integers by ξ1(x) = kφ(x)

if x ∈ V (G). Under the labeling φ, there are r0 edges with weight 0, r1 edges with
weight 1 and k − 1 edges with weight 2. Then under the vertex labling ξ1, there are
r0 edges with weight 2, r1 edges with weight k + 1 and k − 1 edges with weight 2k.
Now define a labeling ξ from V (G) ∪E(G) into the set of positive integers as follows:
ξ(x) = ξ1(x) for all x ∈ V (G),

ξ(ei) =
{
i, if i = 1, 2,
i+ 1, if 3 ≤ i ≤ r0,
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ξ(e′i) = i if 1 ≤ i ≤ r1, ξ(e′′i ) = i if 1 ≤ i ≤ k − 1. Then
{wtξ(ei) | 1 ≤ i ≤ r0} ={0, 1, 2, . . . , r0 − 1},
{wtξ(e′i) | 1 ≤ i ≤ r1} ={k, k − 1, k − 2, . . . , k − r1 + 1},

{wtξ(e′′i ) | 1 ≤ i ≤ k − 1} ={2k − 1, 2k − 2, . . . , k + 1}.
Since |E| ≤ 2k, we have

r0 + r1 + k − 1 ≤ 2k.
That is r0 + r1 ≤ k+ 1. That is, r0− 1 ≤ k− r1 < 1 + k− r1. Hence, the edge weights
are distinct. Therefore, the graph G has a total edge-irregular absolute difference
k-labeling. �

We determine the tades for the graphs Cn, Sn and Fn using the Theorems 2.1 and
2.5.
Theorem 2.6. For n ≥ 3, tades(Cn) =

⌈
n
2

⌉
.

Proof. For n = 3, 4, 5, from the labeling given in the Figure 1, we get the required
result.

Figure 1. Tades for Cn, n = 3, 4, 5

For n > 5, the proof is as follows. From the Theorem 2.1, we have

tades(Cn) ≥
⌈
n

2

⌉
.

The vertex set of Cn is {ui|1 ≤ i ≤ n} and the edge set of Cn is {uiui+1|1 ≤ i ≤ n− 1} .
Now, define the labeling φ : V (Cn)→ {0, 1} by

φ(ui) =

 1, if 1 ≤ i ≤
⌈
n
2

⌉
,

0, if
⌈
n
2

⌉
+ 1 ≤ i ≤ n.

Then
E0 =

{
udn

2 e+1udn
2 e+2, udn

2 e+2udn
2 e+3, . . . , un−1un

}
,

E1 =
{
unu1, udn

2 eudn
2 e+1

}
and

E2 =
{
u1u2, u2u3, . . . , udn

2 e−1udn
2 e
}
.



TOTAL ABSOLUTE DIFFERENCE EDGE IRREGULARITY STRENGTH OF GRAPHS 901

That is,

|E0| =
⌊
n

2

⌋
− 1 ≤

⌈
n

2

⌉
− 1,

|E1| =2 ≤
⌈
n

2

⌉
− 1

and
|E2| =

⌈
n

2

⌉
− 1.

Take k =
⌈
n
2

⌉
. Then, by Theorem 2.5, Cn has a total edge-irregular absolute

difference k-labeling. Hence, tades(Cn) =
⌈
n
2

⌉
. �

Theorem 2.7. Let =n denote the sun graph on 2n vertices. Then tades(=n) = n for
n > 3.

Proof. The vertex set of =n is V (=n) = {ui | 1 ≤ i ≤ n}∪{u′i | 1 ≤ i ≤ n} and the edge
set of =n is E(=n) = {uiui+1 | 1 ≤ i ≤ n− 1} ∪ {uiu′i | 1 ≤ i ≤ n} . Then |E| = 2n.
From the Theorem 2.1, we have tades(=n) ≥ n. Now, define the labeling φ : V (=n)→
{0, 1} by

φ(ui) =

 1, if 1 ≤ i ≤
⌈
n
2

⌉
,

0, if
⌈
n
2

⌉
+ 1 ≤ i ≤ n,

φ(u′i) =

 1, if 1 ≤ i ≤
⌊
n
2

⌋
,

0, if
⌊
n
2

⌋
+ 1 ≤ i ≤ n.

Then

E0 =
{
{uiui+1 | (n2 ) + 1 ≤ i ≤ n− 1} ∪ {uiu′i | (n2 ) + 1 ≤ i ≤ n}, if n is even,
{uiui+1 | dn2 e+ 1 ≤ i ≤ n− 1} ∪ {uiu′i | bn2 c+ 2 ≤ i ≤ n}, if n is odd,

E1 =
{
{u1un, un

2
un

2 +1}, if n is even,
{u1un, udn

2 eud
n
2 e+1, udn

2 eu
′
dn

2 e
}, if n is odd,

and
E2 =

{
uiui+1

∣∣∣∣ 1 ≤ i ≤
⌈
n

2

⌉
− 1

}
∪
{
uiu
′
i

∣∣∣∣ 1 ≤ i ≤
⌊
n

2

⌋}
.

Here

|E0| =
{
n− 1, if n is even,
n− 2, if n is odd,

|E1| =
{

2, if n is even,
3, if n is odd,

and
|E2| = n− 1.

Then, by Theorem 2.5, =n has a total edge-irregular absolute difference k-labeling.
Hence, tades(=n) = n. �
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Theorem 2.8. Let Fn be the fan graph on 2n + 1 vertices, then tades(Fn) =
⌈

3n
2

⌉
for an odd integer n.

Proof. Let k =
⌈

3n
2

⌉
= 3n+1

2 for an odd integer n. The vertex set of Fn is

V (Fn) = {u, v1, v2, . . . , v2n}
and the edge set of Fn is

E(Fn) = {uvi | 1 ≤ i ≤ 2n} ∪ {v2i+1v2i+2 | 0 ≤ i ≤ n− 1} .
From the Theorem 2.1, we have tades(Fn) ≥ d3n

2 e. Now, define the labeling φ :
V (Fn)→ {0, 1} by φ(u) = 1

φ(vi) =
{

1, if 1 ≤ i ≤ n,
0, if n+ 1 ≤ i ≤ 2n.

Then

E0 =
{
v2i+1v2i+2

∣∣∣∣ n+ 1
2 ≤ i ≤ n− 1

}
,

E1 ={uvi | n+ 1 ≤ i ≤ 2n} ∪ {vnvn+1}
and

E2 ={uvi | 1 ≤ i ≤ n} ∪
{
v2i+1v2i+2

∣∣∣∣ 0 ≤ i ≤ n− 3
2

}
,

|E0| =
n− 1

2 ≤ k − 1,

|E1| =n+ 1 ≤ k − 1
and

|E2| =
3n+ 1

2 − 1 = k − 1.
Then, by Theorem 2.5, Fn has a total edge-irregular absolute difference k-labeling.

Hence, tades(Fn) =
⌈

3n
2

⌉
. �

3. Open Problem and Conjectures

Problem. Determine tades(Fn) when n is even.
From our experience on this labeling, we propose the following conjectures.
Conjectures:
• for every tree T of maximum degree ∆ on p vertices,

tades(T ) = max
{⌈
p

2

⌉
,

⌈
∆ + 1

2

⌉}
;

• for any graph G, tes(G) ≤ tades(G).
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