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INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
(9,h,a — m)-CONVEX FUNCTIONS AND CONSEQUENCE RESULTS

GHULAM FARID! AND JOSIP PECARIC?

ABSTRACT. This paper aims to define a new class of functions, which will be called
(g, h; & — m)-convex functions. We prove Hermite-Hadamard type inequalities for
this new class. Many already known classes of functions can be reproduced from
new notion of (g, h; @ — m)-convexity. Some published results are special cases of
inequalities established in this article.

1. INTRODUCTION
The following definition is taken from [1].

Definition 1.1. Let J C R be an interval containing (0,1) and let ~: J — R be a
non-negative function. Let I C (0, +00) be a real interval and p € R\ {0}. A function
f: 1 — Ris said to be exponentially («, h-m)-p-convex, if

h(t?)f(a) | mh(l—t*)](b)

eta ecb

(1.1) £ ((ta? +m(1 - t)p")7) <
holds provided a, b, ((ta? + m(1 — )t?)7) € I for t € (0,1), ¢ € R and (ar,m) € [0, 1]2.

A chain of definitions of convexities can be deduced from (1.1), and is mentioned
in [1, Remark 1]. For a detailed study on convex functions and their extensions
can be found in [2-5]. We are motivated to extend the results of [1] by giving a
simple inequality as compare to (1.1), see Section 2, Inequality (2.1). The following
inequalities hold for exponentially («, h-m)-p-convex functions.
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(i) If p > 0, then

12 f ((a +2mbp>é>

< (8008 (55) Uzt o) ()

Mmmh(?;;l)w-fod» ()

<r{(ovon () 56 roomn () K@) [ e
(oo <a>e> z<<>mh<22 )1 () )
/tT h(1 }

1
where ¢(z) = 2v, 2 € [aP, mbP], &,(C) = e P™" for ¢ < 0, B,(¢) = e for ¢ > 0,

B,(¢) = e=¢@/™P) for ¢ >0, &,(¢) = e for ¢ < 0.
(ii) If p < 0, then

; ((ap +2mbp>é>

< D (@30 (52) U o 0) (nb?)

(aP — mbr) ) 2
+0,Omh (T (15 00) ()
ST{<®3(O,1<;)J;<@ <2a—1)fc> tT U (1) dt
1

+m<®3(g)h<210) f(ﬁ,)+®4<o h<22 )f(m)e«l/m))

1
x/ t™h (1 — ta)dt},
0

1 1
where ¢(2) = 27, z € [mbP,aP], B,(¢) = e ™" for ¢ < 0, &,(¢) = e for ¢ > 0,

1
&,(¢) = e~/ for ¢ < 0, &,(¢) = e <" for ¢ > 0.
(iii) If p > 0, then

; ((a +2mb”>11’)

<r(r+1) ( 2 )

mbP — aP
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X (esl(g)h (;) <I(TW)+f 0 ¢> (mb”)

00T ) (e 120) (2)
9{(@51(6)}1(21@) " | 6.¢m (2a_1)f )/ v 1h<( ) >dt
+m (moh () 2 v eucmn (2 2) 1 () @1/m>>
< [rn(i-(5)) ).

where ¢(z) = z%, z € [aP,mbP], &,((), ®,(¢) are given in (i).
(iv) If p < 0, then

13/ ((W))

<T(r+1) (ap_mep)
x <Q§S(<)h <21a> ( (azspuey T 0 cb)( )
o0 () (g 79) (2)
<r { (@(C)h (5) 22 4 e, 0mn (251) Jl?) [re((5)) e
o (ov0n () 8+ 000m (5 ) )
L))o
where ¢(2) = 27, z € [mb?, a?], &,(C), &,(C) are given in (ii).

In the following, definitions of Riemann-Liouville fractional integrals of order 7 > 0,
denoted by I7, f and I]_ f used in above inequalities are given [6]:

(1.4) [ @) =g [[@ =0 @t x>
1 b
(1.5) I 60) =55 / (t—2) L f(t)dt, @ <b,

where I'(+) is the gamma function and f € L4[a, b].
In [1], the generalizations of above inequalities were also proved. The motivation
for establishing the above inequalities is the following well-known Hermite-Hadamard
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inequality:

(1.6) f<a+b>< : /abf<:c>dx§f(“)+w

2 ~“b—a 2 ’

where f is convex function on [a, b].

A convex function on [a,b] satisfies the inequality f(tz + (1 — t)y) < tf(x) +
(1 —=0)f(y), t € [0,1], z,y € [a,b]. The inequalities stated in above are actually
generalizations/extensions of the Hermite-Hadamard inequality given in (1.6). The
trend of exploring the Hermite-Hadamard inequality is very common, which is why
many articles and books have been published on it, see [1,7-10].

In the upcoming section, we will define a new class of functions. By applying this
definition, along with definitions of Riemann-Liouville fractional integrals, two vari-
ants of Hermite-Hadamard inequality are presented (see, Theorem 2.1 and Theorem
2.5). Some new inequalities are deduced as applications of Theorem 2.1 and Theorem
2.5 (see, Theorem 2.2 to Theorem 2.4, Theorem 2.6 to Theorem 2.8). In Section 3, two
variants of Fejér-Hermite-Hadamard inequality are presented (see, Theorem 3.1 and
Theorem 3.4). New Fejér-Hermite-Hadamard type inequalities are deduced as applica-
tions of Theorem 3.1 and Theorem 3.4 (see Theorem 3.2, Theorem 3.3, Theorem 3.5,
Theorem 3.6).

2. HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL
RIEMANN-LIOUVILLE INTEGRALS

First, we are interested in giving the definition of (g, h; @ — m)-convex function and
its consequences. In the whole paper we use the notation P(:) := (f.g)(-).

Definition 2.1. Let h be a non-negative function on J C R, (0,1) C J, h # 0
and let g be a positive function on I C R. A function f : I — R is said to be
(g, h; & — m)-convex if it is non-negative and satisfies the following inequality

(2.1) [z +m(l = Ny) < h(A%) f(2)g(x) + mh(l = X%)f(y)g(y),
where a,m € (0,1], A € [0,1], z,y € I.

If we set g(z) = exp(—nz), n € R, in (2.1), we obtain the following inequality:
hA)f(z) | mh( = X)f(y)

(2.2) Az +m(l—Ay) < e ey

A function satisfying the inequality (2.2), is called exponentially (a, h — m)-convex
function, see [1, Definition 4], for « = 1 definition of (g, h; m)-convexity is obtained,
see [11]. Also, quasi F-(g, h; @ — m)-convex function is deduced in (2.11).

First, we state and prove the following Hermite-Hadamard type inequality for
(g, h; @« — m)-convex functions.
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Theorem 2.1. Let f: I C (0,+00) = R be (g, h;a — m)-convex function as defined
in Definition 2.1. The following inequality is valid:

9 () S () o n () ()
<M { <h (21&> f(a) +mh (2a2; 1) f(b)> /01 T h (1) dt
+m <h (;a) f(b) +mh <2a2; 1> f (ﬂf;)) /01 T h (1 —t%) dt} :

where 7 >0, a,b € I, a <b and M = max,cpy (9(x)).

Proof. Using (2.1), one can have the following inequality:
r+my 1 29 —1
ey (55 <h(5) F@e@) + mi (S ) W)
where we have used A = 3, in (2.1). For z =ta+m(1 —¢)band y = tb+ (1 — )< in
(2.4), we get
(2.5)

f <a+2mb> <h (;a) P (ta+m(1 - t)b) + mh (2 - 1) P+-02).

Multiplying the above inequality with {"~! on both sides and integrating over [0, 1],
we have

(2.6) f<a+mb>/ 1t <h( )/ 1P (ta + m(1 — t)b) dt

20 1
—|—mh( )/ f1p (tb+(1—t)a> dt.
2¢ 0 m

Let ta+m(1—t)b = x and tb+ (1 —1)-% = y on right hand side of the above inequality.
Then after some calculations one can obtain the first inequality of (2.3).

On the other hand by (2.1) on the right hand side of (2.5), one can obtain the
inequality:

2% —1

(2.7) h(zla)P(twm(l—t)meh( )P (mra-nr)

<h (21 ) g (ta+ m(1— O)b) (h(t)P(a) + mh(1 — tYP(b))

5 1) g (th+ (=02 (ne)PO) + mh(1 = )P ().

m
Multiplying with "', and then integrating over [0, 1], one can get

(2.8) h (22) /01 1P (ta + m(1 = t)b) dt + mh (2,12; 1) /01 f1p (tb (- t):;) dt

<h(5:) (Pt [ g (ta -+ m(1 — 6)8) h(t®)dt + mP() / g (ta+ m(1 - 0)b)

—l—mh(
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20&

+mP <a> /1 ¢ (tb+ (1- t)a> h(1 — ta)dt>
m wz) ), g - .
Setting ta +m(1 —t)b = z, that is t = =2 and th+ (1 —t)

mb—a

% h(1 — £%)dt) + mh (W - 1) <P(b) /01 1 <tb . t);;) Bt dt

_ ot Y
=y, that is t = =

in integrals on the left hand side of the above inequality (2.8) we get
(29) LU+ (h (;) T P (mb) +m 'k (2 = 1) P (“))

(mb—a)T m

<h (;) (P(a) /01 70 g (ta + m(1 — £)b) h(t*)dt + mP(b) /01 t7=1g (ta + m(1 — £)b)

x h(1 —t®)dt) + mh (22; 1) (P(b) /01 g (tb +(1- t);) h(t®)dt

a 1 a
P(— tT g (th+ (1 —t)— ) h(1 —t*)dt ) .
o <m2>/o g( * )m> ( ) )
Replacing g with M in the above inequality yields the second required inequality. [J

Next, we use the inequality (2.1) to define a new class of functions. By making a
substitution, for a strictly monotone continuous function ', x = F(X) and y = F(Y)
in (2.1), we obtain the following inequality:

(2.10) FOF(X)+m(l—-MNF(Y))
ShA)f(F(X))g(F (X)) +mh(1 =A%) fF(F(Y))g(F(Y)).

Replacing f with f(F~1) and g with g(F~!), the following inequality is obtained:
(2.11)

f(FEOF(X) +m(l = MF(Y))) < R F(X)g(X) +mh(1 = A*) F(Y)g(Y).
This leads to the following definition.
Definition 2.2. Let h be a non-negative function on J C R, (0,1) C J, h # 0 and
let g be a positive function on I C R. Furthermore, let a, m € (0,1]. A function

f: I — Ris said to be quasi F' — (h, g; « — m)-convex function if it is non-negative
and if

(2.12)  f(FT'(AF(a) + (1 = N F(mb)) < h(A*) f(a)g(a) +mh(1 —X*)f(b)g(b)
provided F : I — R is strictly monotone, where A € [0,1],a,b € I.

In the following we give the version of Theorem 2.1 for quasi F-(g, h; @ —m)-convex
function.

Theorem 2.2. Let f be quasi F-(g, h; a0 — m)-convex function as given in Defini-
tion 2.2. Then, the following inequality holds:

(2.13) f<F—1<F@0+;nF@o>>
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<gurt~ (" () e (7 00710)

e () (2 (5))
() 9+ () ) v

(0 () S0 400 (S52) £ (5)) o na =i,

where u,u € I, M = maXgefu,v (9(z)).

Proof. The inequality (2.13) can be obtained, first by setting a = F(u), b = F(v),
where F is strictly monotone function, in (2.3) and then replacing f with f(F~') and
g with g(F~!) in the resulting inequality. O

Theorem 2.3. Let f: I C (0,400) — R be quasi F' — (g, h; « —m)-convex function

as given in Definition 2.2.
(i) If p > 0, then we have

(2.14)

! ((W);> ém <h <21a) T (P o k) (maP)
+mTHp <2°‘2; 1) I, (Pok) <f:::>)
=M { <h (21a> fw) +mh (2a2; 1) f(v)) /01 T h (1) dt

+m <h <21a) F(v) +mh <2a2; 1) f <7:52>> /01 (1 — %) dt} :

where k(t) = t%, t € [uP, mvP], u,v € I.
(13) If p < 0, then we have

(2.15)

f((W)’l’> <(upzfr—;i T < ( ) _(Pok)(mvP)
L <2a2a ) Tt (P ok) (Z:))
{< (2la>f +mh( > 1)1‘"(1})) /OltT_lh(to‘)dt
( ( )f Jmh <2a2;1>f(%))/olf_lh(l—ta)dt},

where k(t) = t%, t € [muP, uP].

Proof. Let F(t) = t, p # 0. Then, for p > 0, F is strictly increasing and if p < 0,
then F is strictly decreasing on I. Hence, by setting this power function for p > 0 the
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inequality (2.14) required in (i) can be achieved, and for p < 0 the inequality (2.15)
required in (77) can be achieved. O

Remark 2.1. By choosing g(x) = exp (—nz) in Theorem 2.3, one can obtain [1, Theo-
rem 1].

Theorem 2.4. Let f: I C (0,400) — R be quasi F' — (g, h; &« — m)-convex function
as given in Definition 2.2. Then, the following inequalities hold

— I(r+1) . m
@16) f (Vi) < (0 (5¢) g P ™)

+m™ R (22& 1) I, P (um))
<M { (h (;) f(u) +mh <2a2; 1) f(v)) /01 T R () dt
+m (h (;@) f(v) +mh <2a2; 1) f <n7::2>> /01 T h (1 — 1) dt} ,

Proof. Since log(+) is a strictly increasing function on (0, +00), then by setting F'(t) =
logt in (2.13), and with some computations the required inequality can be obtained.
O

where M = max,e. (9()), u,v € 1.

In the next theorem we state and prove another Hermite-Hadamard type inequality
for Riemann-Liouville fractional integrals.

Theorem 2.5. Let f: 1 C (0,+00) = R be (g, h;« — m)-convex function as defined
in Definition 2.1. Then, we have

(2.17)
/() <G (1 (3) oy oo

) e ()
(o (2) oo - () ) [ ()
o ()05 () (2)) L () )

where T >0, a,b € I, a <b and M = max,cjqp (9()).

Proof. By setting © = ta+m (1 — %) bandy = b+ (1 — %) £ in (2.4), we get
(2.18) ! <“+2mb> <h (;) P( a+m (1 - ) )
wo (S5) P (g0 (1) )
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Multiplying the above inequality by ¢t”~! on both sides and integrating over [0, 1], we
have

(2.19) f(“mb)/ - 1dt<h< )/ - 1P(2a+m<1—;>b>dt
+mh(2a_1>/ = 1P( b+<1—2) ;)dt.

The first inequality in (2.3) can be achieved by using substitutions z = fa+m (1 - i) b

2
and y = %b + (1 — %) < in the integrals appearing on right hand side of the above

inequality. On the other hand, using (2.1) on the right hand side of (2.5), one can
obtain the inequality:

020 0() (e (-0) e on (E5) (e (- 1) 2
o0 (2)s (o= ) (o () )+ 1= &) )
b (5ol (-5)2)
(&) o om (- () ()

Multiplying with ¢"~!, and then integrating over [0, 1], one can get
(2.21) h (;) /1 TP <;a +m (1 - ;) b) dt
+mh<2a_1>/ £ 1P< b+ <1—;> ;)dt
<h () (P@) [0 (qa+m (1-3)0)((5) )
+mP(b) /01 g (;a +m (1 - ;) b) h (1 - (;)a> dt)
wo (Sg) (P00 [t (g4 (1-5) 1) ((5) )
a Lo [t t\ a t\“
wnp (55 [ et (5o (1-5) ) n (- (5) ) )

Setting fa + m (1 — %) b=z, and b+ (1 — %)
side of the above inequality (2.8), we get

e2) T (0 () gy P o)+ m7n (P sy (1)
< (L) (Pl [ g (e (1= ) 0) ((4))
+ mP(b) /01 ™1y (;a +m (1 — ;) b) h (1 — (;)a) dt)

= g, in integrals on the left hand

a
m
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() (0 [ o (- ) ((2))
() s (-5 2) 00 () ).

Replacing g with M in the above inequality yields the second required inequality. O

In the following we give the version of Theorem 2.5 for quasi F-(g, h; « — m)-convex
function.

Theorem 2.6. The following inequality holds for quasi F'-(g, h; «—m)-convex function
defined in Definition 2.2:

(223) f (F‘l (F(u) +2mF(v)>>
Smw%;jzwr(h<l>§W”MW} (
+m”%(?;;UIZWMMM}P(F (T$§>>
o (1) - ) ) e () )
oo () 0 () () [0 () ) o)

where M = max,ep (9()), u,v € 1.
Proof. The inequality (2.13) can be obtained, first by setting a = F(u), b = F(v),

where F is strictly monotone function, in (2.17) and then replacing f with f(F~!)
and g with g(F~1) in the resulting inequality. O

P (mF (v))

Theorem 2.7. Let f be quasi F'-(g, h; « — m)-convex function as given in Definition
2.2. Then, the following inequalities hold.
(¢) If p > 0, then we have

(7))

g”7+”(h(1)qwﬂw}<Pow0mm

(muP — uP)™ 2
T (T) I ogusy- (P o) (i))
(2 e ema (552 ) (2
o (1 (5e) S0 (52 1 (5) [ e (1= (5)) e

where k(t) = tr, te [uP, mvP], u,v € 1.
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(1) If p < 0, then we have

()

gF(Ll)T (h( L )Iiupﬂmp} (P o k) (moP)

(uP — moP) 2

() ey 28 ()
() 10+ 52 0) - ()
()0 (5 ) 1) f (- (2)) )

where k(t) = tr, te [moP uf|, u,v € I.

Proof. The proof is similar to that of Theorem 2.3. U

Remark 2.2. By choosing g(x) = exp (—nz) in Theorem 2.5, one can obtain [1, Theo-
rem 2].

Theorem 2.8. Let f be quasi F-(g,h;a — m)-convex function as given in Defini-
tion 2.2. Then, the following inequalities hold

(2.24) f(Vavr) UL (h (1) IT e P

(log (57)) V'

T (22; 1) N (um>>

o {(n (52) s+ () s0) [Len((5)) e
o () 0 (557) 1 (52))

« tT 1h(1 () }

where M = max ey, (9( )) vel.

Proof. Since log(+) is a strictly increasing function on (0, +00), then by setting F'(t) =
logt in (2.17), and with some computations the required inequality can be obtained.
O

3. FEJER-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL
RIEMANN-LIOUVILLE INTEGRALS

In the following we present Fejér-Hadamard type inequalities.



274 G. FARID AND J. PECARIC

Theorem 3.1. Under the assumptions of Theorem 2.1, moreover, we have f <w>

= f(x), g (w) = g(z). Then, the following inequalities hold:

m

(3.1)
£ e )
< CE (1 () 12w o)+ () 7 00) (2))

gM{(h 1a> f(a) + mh (22; 1) f(b)) /01 71y (ta + m(1 — £)b) b (t*) dt

+m (h (21(1) f(b) +mh <2a2; 1) f <ﬂf22>> /01 t™p (ta +m(1 —t)b) h (1 — t%) dt} ,

where M = max,ejqp (9()), a,b € 1.

Proof. Multiplying the inequality (2.5) with t"~!p (ta + m(1 — t)b) on both sides and
integrating over [0, 1], we get

(3.2) f (“*mb> /01 71 (ta + m(1 — t)b) dt

2
<h (;a) /0 L (£.g.p) (b + m(1 — 1)) dt
+mh (2,12; 1) /01 1p (tb +(1- t);) p(ta+m(1 —t)b) dt.

Let ta+m(1—t)b = z. Then, t = =2 and th+ (1 —t)L = ¢tmb== a]50 P (‘”me’z) =

a
mb— m

P(z), using these facts one can obtain the first inequality of (3.1).
On the other hand multiplying (2.7) with ¢"~'p (ta + m(1 — ¢)b), and then integrat-
ing over [0, 1], one can get

(33) (21&) /O1 £1(f - p- g) (ba+m(1 — £)b) dt

20‘2; 1) /01 1p (tb+ (1— t>§1> p(ta+m(l—1)b)dt

<h <21a> (P(a) | - g) (ta + (1 — 1)b) h(t%)dt

+mP(b) /01 7 p - g) (ta + m(1 — £)b) h(1 — t"‘)dt)

+ mh <2a2; 1) (P(b) /01 U (tb +(1— t);;) p(ta +m(1 —t)b) h(t™)dt

a

P () /01 7t (04 (1= 0% ) plta+ m(1 = ) (1 — )it )

—l—mh(
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By setting ta + m(1 — t)b = z, and using P (%) =P(z2), 9 (W) =g(z) in

m

integrals on the left hand side of the above inequality (3.10), we get
I(r+1 1Y\ .. . 20 1\
64 oo (n () 15 oo o)+ () ) ()

(mb—a)" 20 m

<h (;a) (P(a) /01 (- g) (ta+ m(1 — £)b) h(t%)dt
+ mP(b) /01 7 (p - g) (ta + m(1 — £)b) h(1 — ta)dt)
2" - 1) (P(b) /01 g (tb +(1- t);) p(ta +m(1 — t)b) h(t*)dt

5
+mP (::2) /01 g (tb (- t)TC:L) p(ta+m(1—£)b) h(1 — t“)dt) .

Replacing g with M in the above inequality yields the second required inequality. [J

—|—mh<

Theorem 3.2. Under the assumptions of Theorem 3.1, the following Fejér-Hadamard
type inequality holds for quasi F-(g, h; « — m)-convex functions:

(3.5)
; (Fl (F(u) + mF(U))) I (F7H (mF()))

2

I'(r+1) Ly - -1
—wwwwimmr@<w>%w4fpﬂNF (mF(v))

e (S5 ) e (7 (52))
(2} (5 0
< Lt (PN () + ml(l — F (@) A (t) dt +m (h (Qla) )

f
+mh (2& - 1) 1e) /01 £ (P 4R )+ m(1 = OF @) h (1= 1) e}

Qo m2

where M = max,efu. (9()), u,v € 1.

Proof. The inequality (3.5) can be obtained, first by setting a = F(u), b = F(v),
where F is strictly monotone function, in (3.1) and then replacing f with f(F~1!), p
with p(F~1) and g with g(F~!) in the resulting inequality. O

Theorem 3.3. Let the assumptions of Theorem 3.2 hold.
(¢) If p > 0, then we have

(3.6) f ((W)) I7op ok (mo?)
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L(r+1) (#(55) T ((F -2 9) 0 ) (o)

— (mwvP — up)T 20

Y (22;1) I,-((f-p-g)ok) (i))

car{(o(3) s (%) 0)

1
X / " Lp o k (tu? + m(1 — t)P) h (%) dt
0

m(n () 0 ()1 ()

1
x [ pok(w? +m(1— 1) h(1 —ta)dt},
0

where k(t) = t%, t € [uP,mvP], u,v € 1.
(i1) If p < 0, then we have

(3.7) / ((“zm)) T p ok (me?)

D (h () T (2 ) o ) (me?)

~ (uP — moP)T 20

Lm (2“2; 1) wr((f-p-g)ok) <1;:>)

{2 0 (20
< | ok (tu? + m(1 — P b () dt

e ((55) s +mh (552 7 ()

1
x [ ok (b m(1 = o) b (1 - 17) dt} ,
0

where k(t) = t%, t € [muP uP], u,v € I.

Proof. By setting F'(t) = t* in (3.5), inequalities (3.6) and (3.7) can be obtained for
p < 0 and p > 0, respectively. 0
Remark 3.1. By choosing g(x) = exp (—nz) in Theorem 3.3, one can obtain [1, Theo-
rem 1].

Theorem 3.4. Let the assumptions of Theorem 3.1 hold, also let f (%) = f(x),
g (w) = g(z). Then, the following inequalities hold:

m

(3.8)

(55) gy )
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gm (h (;) [ gy (F -2 9) (m)

N e 1 9(2) |
(1 () s e (T )s0) [t (oo (1)) () )
b (0 (5 ) 10+ (552) 1 (52))
></Olt7_1p<;a+m(1—;>b)h(1—<;>a>dt},

where 7 >0, a,b € I, a <b, and M = maxgcpqy (9(2)).

3=

Proof. Multiplying the inequality (2.18) with ¢"~1p (%a +m <1 — %) b) on both sides

and integrating over [0, 1], we get

3.9)  f (“ +2mb> /01 t1p (;a +m (1 - ;) b) dt
<h (;) /1 t™(f.g.p) (;a+m <1 — ;) b> dt
+mh(2a_1>/ - 1P( b+<1—;> TZ)p(;a—i—m(l—;)b)dt.

Let %a—l—m(l— %)b:z. Then, £b+ (1—%) & — atmboz als0 P(m) = P(z),
using these facts one can obtain the first inequality of (3 8)

On the other hand multiplying (2.20) with ¢t p (%a +m (1 — %) b), and then inte-
grating over [0, 1], one can get

(3.10)

(&) (e 1))

() (s ) e o )0

(&) (7o 00 (om0 (1))
om0 [ 2 (s () () )o) oo (55)
(0 [ () e (- ()

e (@) 9 (- ) ) frm - )1 () )
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By setting fa + m (1 —%)b = z, and using f (“erTH) = P(2), 9 (w) = g(z) in

m

integrals on the left hand side of the above inequality (3.10), we get
(3.11)

(55) gy )

Sm (h (;) Ii%mb]ﬁ(f -p-g) (mb)

o (S gy 0 (3)

< (50) (7 [0 (e (1=5) ) ((5) )
e [ ) (o (1= 5)0)n (1= (5)) )
e (55 ) (v [ (5 (- 5) ) (oo (=)0 () )
wnp (Gi) o (5o (0= 3) ) oo (1=3)2) (= (3) ) ).

Replacing g with M in the above inequality yields the second required inequality. O

Theorem 3.5. Let the assumptions of Theorem 3.4 hold. Then, the following Fejér-
Hadamard type inequality holds for quasi F-(g, h; « —m)-convex functions:

(3.12) f (F‘l (F(“) +mF(U)>> Iiw}w (F~' (mF(v)))

2

I'(r+1) Ly .- -1
<t Fay (&) Frsspray U 90 (7 (o)

b gy U - (22)
(Do m(F) )
(7 (50 (1 ) ) () )
GG ) |
L (e (e (i ) 2) )

where M = max,epuv) (9(2)), u,v € 1.

t’T 1

[\

Proof. The inequality (3.12) can be obtained, first by setting a = F(u), b = F(v),
where F' is strictly monotone function, in (3.8) and then replacmg fwith f(F74), p
with p(F~') and g with g(F~') in the resulting inequality. O
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Theorem 3.6. The following Fejér-Hadamard type inequality holds for quasi F'-
(g, h; &« — m)-convex function defined in Definition 2.2.
(i) If p > 0, then we have:

(3.13) f ((W)é) ]EW}H)O k (maP)

<D (1 (55) Travspuny (07 ) o ) ()

(mvP — uP)™ 20

b (2 0o ()
gM{(h(;a)f(UHWh( ) )
< ek (g m (1= 5) ) e (5) @

1 u

s (1 (2) 00+ mi (=) £ ()

where k(t) = t%, t € [uP, mvP].
(17) If p < 0, then we have

(3.14) f ((W)é) IT,—pok(muvP)

< T (h (55 ) T (7 2+ 9) 0 k) ()

(uP — muoP)7 20

b (S ) e pg) o) ()

m

() (55 210)
n m1<h (35) f@) +mn (52 1 (Jiz);

where k(t) = tr, te [muP, uP].
Proof. See the proof of Theorem 2.3. U

Remark 3.2. By choosing g(x) = exp (—nz) in Theorem 3.6, one can obtain [1, Theo-
rem 4].
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