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ON A FAMILY OF (p, q)-HYBRID POLYNOMIALS

GHAZALA YASMIN1 AND ABDULGHANI MUHYI1

Abstract. In this paper, the class of (p, q)-Bessel-Appell polynomials is introduced.
The generating function, series definition and determinant definition of this class
are established. Certain members of (p, q)-Bessel-Appell polynomials are considered
and some properties of these members are also derived. Further, the class of 2D
(p, q)-Bessel-Appell polynomials is introduced by means of the generating function
and series definition. In addition, the graphical representations of some members of
(p, q)-Bessel-Appell polynomials and 2D (p, q)-Bessel-Appell polynomials are plotted
with the help of Matlab.

1. Introduction

The quantum calculus (or called q-calculus) has been extensively studied and has
applications in various fields of mathematics, physics and engineering. Further, mo-
tivated and inspired by these applications, many mathematicians and physicist have
developed the theory of post quantum calculus (based on (p, q) numbers), an exten-
sion of the q-calculus and is denoted by (p, q)-calculus. The recent interest in the
subject is due to the fact that the (p, q)-calculus has popped in such diverse areas
as quantum algebra, number theory etc. [3–5,12]. Recently, Duran et al. [5] defined
(p, q)-analogues of Bernoulli, Euler and Genocchi polynomials and derived the (p, q)-
analogues of some known earlier formulae. We now review briefly some definitions
and notations of (p, q)-calculus taken from [3,4, 12].

The (p, q)-numbers are defined as follows:

[α]p,q = pα−1 + pα−2q + pα−3q2 + · · ·+ pqα−2 + qα−1 = pα − qα

p− q
, q < p ≤ 1, α ∈ N.

Key words and phrases. (p, q)-Bessel polynomials, generating relations, determinant definition,
(p, q)-Appell polynomials.
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We note that [α]p,q = pα−1[α]q/p, where [α]q/p is the q-number given by [α]q/p =
(q/p)α−1
(q/p)−1 . By appropriately using the relation [α]p,q = pα−1[α]q/p, most (if not all) of
the (p, q)-results can be derived from the corresponding known q-results by merely
changing the parameters and variables involved. In case of p = 1, (p, q)-numbers
reduce to q-numbers [8, 9].

The (p, q)-factorial [m]p,q! is defined by

[m]p,q! =
m∏
s=1

[s]p,q = [1]p,q[2]p,q[3]p,q · · · [m]p,q, m ∈ N, [0]p,q! = 1.

The (p, q)-binomial coefficient
[
m
s

]
p,q

is defined by[
m

s

]
p,q

= [m]p,q!
[s]p,q! [m− s]p,q!

, s = 0, 1, 2, . . . ,m.

The (p, q)-analogue of (x+ y)n is given by

(x+ y)mp,q =
m∑
s=0

[
m

s

]
p,q

p(
m−s

2 )q(
s
2)xsym−s, (p, q)-Gauss Binomial Formula.

The (p, q)-analogue of the classical derivative Df of a function f with respect to t
is defined by

Dp,qf(t) = f(pt)− f(qt)
pt− qt

, t 6= 0.

Also, we note that
(i) (Dp,qf)(0) = f

′(0), provided that f is differentiable at 0;
(ii) Dp,q(a1f(t) + a2 g(t)) = a1Dp,qf(t) + a2Dp,qg(t);
(iii)
Dp,q(fg)(t) = f(pt)Dp,qg(t) + g(qt)Dp,qf(t) = g(pt)Dp,qf(t) + f(qt)Dp,qg(t);

(iv)

Dp,q

(
f(t)
g(t)

)
= g(pt)Dp,qf(t)− f(pt)Dp,qg(t)

g(pt)g(qt) = g(qt)Dp,qf(t)− f(qt)Dp,qg(qt)
g(pt)g(qt) .

The (p, q)-exponential functions are given as:

ep,q(t) =
∞∑
m=0

p(
m
2 ) tm

[m]p,q!
,(1.1)

Ep,q(t) =
∞∑
m=0

q(
m
2 ) tm

[m]p,q!
,(1.2)

which satisfy the following properties:
Dp,qep,q(t) =ep,q(pt), Dp,qEp,q(t) = Ep,q(qt),(1.3)

ep,q(t)Ep,q(−t) =Ep,q(t)ep,q(−t) = 1.(1.4)
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The class of Appell polynomials was introduced and characterized completely by
Appell [2]. Further, Throne [16], Sheffer [15] and Varma [17] studied this class of
polynomials from different points of views. Sharma and Chak [14] introduced a q-
analogue for the class of Appell polynomials and called this sequence of polynomials
as q-Harmonic. Later, Al-Salam [1] introduced the class of q-Appell polynomials
{Am,q(x)}∞m=0 and studied some of its properties. These polynomials arise in numerous
problems of applied mathematics, theoretical physics, approximation theory and many
other branches of mathematics. Recently, many researchers introduced and studied
some hybrid special polynomials related to q-Appell polynomials (see for example
[19]). The polynomials Am,q(x) (of degree m) are called q-Appell provided that they
satisfy the q-differential equation given by:

(1.5) Dq,x{Am,q(x)} = [m]qAm−1,q(x), m = 0, 1, 2, 3, . . . , q ∈ C, 0 < |q| < 1.

The (p, q)-Appell polynomials (pqAP) {Am,p,q(x)}∞m=0 (see [11]) are defined by
means of the followin generating functions

(1.6) Ap,q(t) ep,q(xt) =
∞∑
m=0

Am,p,q(x) tm

[m]p,q!
,

where

(1.7) Ap,q(t) =
∞∑
m=0

Am,p,q
tm

[m]p,q!
, Ap,q(t) 6= 0,A0,p,q = 1

and Am,p,q := Am,p,q(0) denotes the (p, q)-Appell numbers.
The explicit form of the pqAP Am,p,q(x) given as (see [11]):

(1.8) Am,p,q(x) =
m∑
s=0

[
m

s

]
p,q

p(
m−s

2 )As,p,qx
m−s.

The function Ap,q(t) may be called the determining function for the set Am,p,q(x).
Based on suitable selections for the function Ap,q(t), different members belonging to
the family of (p, q)-Appell polynomial Am,p,q(x) can be obtained. These members are
mentioned in Table 1.

Table 1. Some known (p, q)-Appell polynomials

S. No. Ap,q(t) Generating Functions Polynomials
I. Ap,q(t) = t

(ep,q(t)−1)
t

(ep,q(t)−1)ep,q(xt) = ∑∞
m=0 Bm,p,q(x) tm

[m]p,q ! The (p, q)-Bernoulli
polynomials [6] (see also [11])

II. Ap,q(t) = [2]p,q
(ep,q(t)+1)

[2]p,q
(ep,q(t)+1)ep,q(xt) = ∑∞

m=0 Em,p,q(x) tm

[m]p,q ! The (p, q)-Euler polynomials [6]
III. Ap,q(t) = [2]p,qt

(ep,q(t)+1)
[2]p,qt

(ep,q(t)+1)ep,q(xt) = ∑∞
m=0 Gm,p,q(x) tm

[m]p,q ! , The (p, q)-Genocchi polynomials [6]

The Bessel polynomials form a set of orthogonal polynomials on the unit circle in
the complex plane. They are important in certain problems of mathematical physics,
for example, they arise in the study of electrical networks and when the wave equation
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is considered in spherical coordinates. Several important properties and applications
of these polynomials can be found in [7].

The Bessel polynomials ρm(x) [18] are defined by means of the following generating
function

∞∑
m=0

ρm(x) t
m

m! = ex(1−
√

1−2t).

This paper is organized as follows. In Section 2, the (p, q)-Bessel-Appell polynomials
are introduced by means of the generating function and series definition. Also, the
determinant definition and some properties for the (p, q)-Bessel-Appell polynomials are
established. Further, some members of (p, q)-Bessel-Appell polynomials are considered.
In Section 3, the 2D (p, q)-Bessel-Appell polynomials are introduced by means of the
generating function and series definition. In Section 4, the graphical representations of
some members belonging to (p, q)-Bessel-Appell and 2D (p, q)-Bessel-Appell families
are plotted for suitable values of the indices.

2. (p, q)-Bessel-Appell Polynomials

In this section, we introduce the (p, q)-Bessel-Appell polynomials (pqBeAP) by
means of generating function, series definition and determinant definition. First,
we introduce the (p, q)-analogue of the Bessel polynomials denoted as (p, q)-Bessel
polynomials ρm,p,q(x).

Definition 2.1. The (p, q)-analogue of the Bessel polynomials pn(x) are defined by
the following generating function:

(2.1)
∞∑
m=0

ρm,p,q(x) tm

[m]p,q!
= ep,q(x(1−

√
1− 2t))

and posses the following series expansion:

ρm,p,q(x) =
m−1∑
s=0

[m− 1 + s]p,q! xm−s

[m− 1− s]p,q![s]p,q! 2s .

In order to establish the generating function for the pqBeAP, the following result
is proved.

Theorem 2.1. The following generating function for the (p, q)-Bessel-Appell polyno-
mials ρAm,p,q(x) holds true:

(2.2) Ap,q(t)ep,q(x(1−
√

1− 2t)) =
∞∑
m=0

ρAm,p,q(x) tm

[m]p,q!
.

Proof. By expanding the (p, q)-exponential function ep,q(xt) in the left hand side of
the equation (1.6) and then replacing the powers of x, i.e., x0, x, x2, . . . , xm by the
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corresponding polynomials ρ0,p,q(x), ρ1,p,q(x), ρ2,p,q(x), . . . , ρm,p,q(x) in the left hand
side and x by ρ1,p,q(x) in the right hand side of the resultant equation, we have

Ap,q(t)
(

1 + ρ1,p,q(x) t

[1]p,q!
+ ρ2,p,q(x) t2

[2]p,q!
+ · · ·+ ρm,p,q(x) tm

[m]p,q!
+ · · ·

)

=
∞∑
m=0

Am,p,q(ρ1,p,q(x)) tm

[m]p,q!
.(2.3)

Further, summing up the series in left hand side and then using equation (2.1) in
the resultant equation, we get

Ap,q(t)ep,q(x(1−
√

1− 2t)) =
∞∑
m=0

Am,p,q(ρ1,p,q(x)) tm

[m]p,q!
.

Finally, denoting the resultant pqBeAP in the right hand side of the above equation
by ρAm,p,q(x), that is

Am,p,q(ρ1,p,q(x)) = ρAm,p,q(x),
the assertion (2.2) is proved. �

Remark 2.1. It is remarked that for p = 1, the pqBeAP ρAm,p,q(x) reduce to the
q-Bessel-Appell polynomials (qBeAP) ρAm,q(x) such that

ρAm,q(x) := ρAm,1,q(x).
Thus, taking p = 1 in equation (2.2), we get

Aq(t)eq(x(1−
√

1− 2t)) =
∞∑
m=0

ρAm,q(x) tm

[m]q!
,

which is the generating function for the q-Bessel-Appell polynomials.

Next, the series definition for the pqBeAP ρAm,p,q(x) is derived by proving the
following result.

Theorem 2.2. The (p, q)-Bessel-Appell polynomials ρAm,p,q(x) are defined by the
following series definition:

(2.4) ρAm,p,q(x) =
m∑
s=0

[
m

s

]
p,q

As,p,q ρm−s,p,q(x).

Proof. In view of equations (1.7) and (2.1), equation (2.2) can be written as:
∞∑
s=0

As,p,q
ts

[s]p,q!

∞∑
m=0

ρm,p,q(x) tm

[m]p,q!
=

∞∑
m=0

ρAm,p,q(x) tm

[m]p,q!
,

which on using the Cauchy product rule gives
∞∑
m=0

m∑
s=0

[
m

s

]
p,q

As,p,q ρm−s,p,q(x) tm

[m]p,q!
=

∞∑
m=0

ρAm,p,q(x) tm

[m]p,q!
.

Equating the coefficients of like powers of t in both sides of the above equation, we
arrive at our assertion (2.4). �
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Remark 2.2. For p = 1, series definition (2.4) becomes

ρAm,q(x) =
m∑
s=0

[
m

s

]
q

As,q ρm−s,q(x),

which is the series definition for the q-Bessel-Appell polynomials.

Next, we establish the determinant definition for the pqBeAP ρAm,p,q(x).

Theorem 2.3. The (p, q)-Bessel-Appell polynomials ρAm,p,q(x) of degree m are defined
by

ρA0,p,q(x) = 1
B0,p,q

,(2.5)

ρAm,p,q(x) = (−1)m

(B0,p,q)m+1(2.6)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1,p,q(x) ρ2,p,q(x) . . . ρm−1,p,q(x) ρm,p,q(x)

B0,p,q B1,p,q B2,p,q . . . Bm−1,p,q Bm,p,q

0 B0,p,q
[2

1
]
p,q

B1,p,q . . .
[
m−1

1
]
p,q

Bm−2,p,q
[
m
1
]
p,q

Bm−1,p,q

0 0 B0,p,q . . .
[
m−1

2
]
p,q

Bm−3,p,q
[
m
2
]
p,q

Bm−2,p,q
...

...
...

. . .
...

...
0 0 0 . . . B0,p,q

[
m
m−1

]
p,q

B1,p,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Bm,p,q =− 1
A0,p,q

( m∑
s=1

[
m

s

]
p,q

As,p,qBm−s,p,q

)
, m = 1, 2, 3, . . . ,

where B0,p,q 6= 0, B0,p,q = 1
A0,p,q

and ρm,p,q(x), m = 0, 1, 2, . . . , are the (p, q)-Bessel
polynomials of degree m.

Proof. Consider ρAm,p,q(x) to be a sequence of the pqBeAP defined by equation (2.2)
and Am,p,q, Bm,p,q be two numerical sequences (the coefficients of q-Taylor’s series
expansions of functions) such that

Ap,q(t) =A0,p,q + A1,p,q
t

[1]p,q!
+ A2,p,q

t2

[2]p,q!
+ · · ·+ Am,p,q

tm

[m]p,q!
+ · · · ,

m = 0, 1, 2, 3, . . . , A0,p,q 6= 0,(2.7)

Âp,q(t) =B0,p,q + B1,p,q
t

[1]p,q!
+ B2,p,q

t2

[2]p,q!
+ · · ·+ Bm,p,q

tm

[m]p,q!
+ · · · ,

m = 0, 1, 2, 3, . . . , B0,p,q 6= 0,(2.8)

satisfying

(2.9) Ap,q(t)Âp,q(t) = 1.



ON A FAMILY OF (p, q)-HYBRID POLYNOMIALS 415

On using Cauchy product rule for the two series production Ap,q(t)Âp,q(t), we get

Ap,q(t)Âp,q(t) =
∞∑
m=0

Am,p,q
tm

[m]p,q!

∞∑
m=0

Bm,p,q
tm

[m]p,q!

=
∞∑
m=0

m∑
s=0

[
m

s

]
p,q

As,p,qBm−s,p,q
tm

[m]p,q!
.

Consequently,

(2.10)
m∑
s=0

[
m

s

]
p,q

As,p,qBm−s,p,q =

1, if m = 0,
0, if m > 0.

That is

(2.11)


B0,p,q = 1

A0,p,q
,

Bm,p,q = − 1
A0,p,q

 m∑
s=1

[
m

s

]
p,q

As,p,qBm−s,p,q

 , m = 1, 2, . . .

Next, multiplying both sides of equation (2.2) by Âp,q(t), we get

Ap,q(t)Âp,q(t)ep,q(x(1−
√

1− 2t)) = Âp,q(t)
∞∑
m=0

ρAm,p,q(x) tm

[m]p,q!
.

Further, in view of equations (2.1), (2.8) and (2.9), the above equation becomes

(2.12)
∞∑
m=0

ρm,p,q(x) tm

[m]p,q!
=

∞∑
m=0

Bm,p,q
tm

[m]p,q!

∞∑
m=0

ρAm,p,q(x) tm

[m]p,q!
.

Now, on using Cauchy product rule for the two series in the r.h.s of equation (2.12),
we obtain the following infinite system for the unknowns ρAm,p,q(x):

(2.13)

B0,p,q ρA0,p,q(x) = 1,
B1,p,q ρA0,p,q(x) + B0,p,q ρA1,p,q(x) = ρ1,p,q(x),
B2,p,q ρA0,p,q(x) +

[
2
1

]
p,q
B1,p,q ρA1,p,q(x) + B0,p,q ρA2,p,q(x) = ρ2,p,q(x),

...
Bm−1,p,q ρA0,p,q(x) +

[
m−1

1

]
p,q
Bm−2,p,q ρA1,p,q(x) + · · ·+ B0,p,q ρAm−1,p,q(x)

= ρm−1,p,q(x),
Bm,p,q ρA0,p,q(x) +

[
m
1

]
p,q
Bm−1,p,q ρA1,p,q(x) + · · ·+ B0,p,q ρAm,p,q(x) = ρm,p,q(x),

...

Obviously the first equation of system (2.13) leads to our first assertion (2.5). The
coefficient matrix of system (2.13) is lower triangular, so, this helps us to obtain
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the unknowns ρAm,p,q(x) by applying Cramer rule to the first m + 1 equations of
system (2.13). According to this, we can obtain
(2.14)

ρAm,p,q(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,p,q 0 0 . . . 0 1

B1,p,q B0,p,q 0 . . . 0 ρ1,p,q(x)

B2,p,q
[2

1
]
p,q

B1,p,q B0,p,q . . . 0 ρ2,p,q(x)
...

...
...

. . .
...

...
Bm−1,p,q

[
m−1

1
]
p,q

Bm−2,p,q
[
m−1

2
]
p,q

Bm−3,p,q . . . B0,p,q ρm−1,p,q(x)

Bm,p,q
[
m
1
]
p,q

Bm−1,p,q
[
m
2
]
p,q

Bm−2,p,q ...
[
m
m−1

]
p,q

B1,p,q ρm,p,q(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,p,q 0 0 . . . 0 1

B1,p,q B0,p,q 0 . . . 0 0

B2,p,q
[2

1
]
p,q

B1,p,q B0,p,q . . . 0 0
...

...
...

. . .
...

...
Bm−1,p,q

[
m−1

1
]
p,q

Bm−2,p,q
[
m−1

2
]
p,q

Bm−3,p,q . . . B0,p,q 0

Bm,p,q
[
m
1
]
p,q

Bm−1,p,q
[
m
2
]
p,q

Bm−2,p,q . . .
[
m
m−1

]
p,q

B1,p,q B0,p,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where m = 1, 2, 3, . . . , which on expanding the determinant in the denominator and
taking the transpose of the determinant in the numerator, yields to

(2.15)

ρAm,p,q(x) = 1
(B0,p,q)m+1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,p,q B1,p,q B2,p,q . . . Bm−1,p,q Bm,p,q

0 B0,p,q
[2

1
]
p,q

B1,p,q . . .
[
m−1

1
]
p,q

Bm−2,p,q
[
m
1
]
p,q

Bm−1,p,q

0 0 B0,p,q . . .
[
m−1

2
]
p,q

Bm−3,p,q
[
m
2
]
p,q

Bm−2,p,q
...

...
...

. . .
...

...
0 0 0 . . . B0,p,q

[
m
m−1

]
p,q

B1,p,q

1 ρ1,p,q(x) ρ2,p,q(x) . . . ρm−1,p,q(x) ρm,p,q(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Finally, after m circular row exchanges, that is after moving the jth row to the
(j + 1)th position for j = 1, 2, 3, . . . ,m− 1, we arrive at our assertion (2.6). �

On taking p = 1 in Theorem 2.3, we get the determinant definition for the q-Bessel-
Appell polynomials ρAm,q(x).

Corollary 2.1. The q-Bessel-Appell polynomials ρAm,q(x) of degree m are defined by

ρA0,q(x) = 1
B0,q

,(2.16)



ON A FAMILY OF (p, q)-HYBRID POLYNOMIALS 417

ρAm,q(x) = (−1)m

(B0,q)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1,q(x) ρ2,q(x) . . . ρm−1,q(x) ρm,q(x)

B0,q B1,q B2,q . . . Bm−1,q Bm,q

0 B0,q
[2

1
]
q
B1,q . . .

[
m−1

1
]
q
Bm−2,q

[
m
1
]
q
Bm−1,q

0 0 B0,q . . .
[
m−1

2
]
q
Bm−3,q

[
m
2
]
q
Bm−2,q

...
...

...
. . .

...
...

0 0 0 . . . B0,q
[
m
m−1

]
q
B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,(2.17)

Bm,q =− 1
A0,q

( m∑
s=1

[
m

s

]
q

As,qBm−s,q

)
, m = 1, 2, 3, . . .

Theorem 2.4. The following identity for the pqBeAP ρAm,p,q(x) holds true:

ρAm,p,q(x) = 1
B0,p,q

(
ρm,p,q(x)−

m−1∑
s=0

[
m

s

]
p,q

Bm−s,p,q ρAs,p,q(x)
)
, m = 1, 2, . . .

Proof. Expanding the determinant in equation (2.6) with respect to the (m+ 1)th row
and using the same technique used in [10], we get the required result. �

On taking p = 1 in Theorem 2.4, we get the following result for the q-Bessel-Appell
polynomials ρAm,q(x).

Corollary 2.2. The following identity for the qBeAP ρAm,q(x) holds true:

ρAm,q(x) = 1
B0,q

(
ρm,q(x)−

m−1∑
s=0

[
m

s

]
q

Bm−s,q ρAs,q(x)
)
, m = 1, 2, . . .

2.1. Certain Members of the (p, q)-Bessel-Appell Polynomials. Recently, dif-
ferent members of the family of (p, q)-Appell polynomials are studied by many re-
searchers (see for example [4, 5]). By making suitable selections for the function
Ap,q(t), the members belonging to the family of the (p, q)-Bessel-Appell polynomials
ρAm,p,q(x) can be obtained. The (p, q)-Bernoulli polynomials (pqBP) Bm,p,q(x), (p, q)-
Euler polynomials (pqEP) Em,p,q(x) and (p, q)-Genocchi polynomials (pqGP) Gm,p,q(x)
are important members of the (p, q)-Appell family. In this subsection, we introduce the
(p, q)-Bessel-Bernoulli polynomials (pqBeBP) ρBm,p,q(x), (p, q)-Bessel-Euler polynomi-
als (pqBeEP) ρEm,p,q(x) and (p, q)-Bessel-Genocchi polynomials (pqBeGP) ρGm,p,q(x)
by means of the generating functions, series definitions and determinant definitions.

2.1.1. (p, q)-Bessel-Bernoulli polynomials. Since, for Ap,q(t) = t
ep,q(t)−1 , the pqAP

Am,p,q(x) reduce to the pqBP Bm,p,q(x) (Table 1 (I)). Therefore, for the same choice
of Ap,q(t), the pqBeAP ρAm,p,q(x) reduce to pqBeBP ρBm,p,q(x), which are defined by
means of following generating function:

(2.18) t

ep,q(t)− 1 ep,q(x(1−
√

1− 2t)) =
∞∑
m=0

ρBm,p,q(x) tm

[m]p,q!
.
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The pqBeBP ρBm,p,q(x) of degree m are defined by the series

ρBm,p,q(x) =
m∑
s=0

[
m

s

]
p,q

Bs,p,qρm−s,p,q(x).

The following identity for the pqBeBP ρBm,p,q(x) holds true:

(2.19) ρBm,p,q(x) = 1
B0,p,q

(
ρm,p,q(x)−

m−1∑
s=0

[
m

s

]
p,q

Bm−s,p,q ρBs,p,q(x)
)
, m = 1, 2, . . .

Further, by taking B0,p,q = 1 and Bj,p,q = 1
[j+1]p,q , j = 1, 2, 3, . . . , in equations (2.5)

and (2.6), we obtain the determinant definition of the pqBeBP ρBm,p,q(x).

Definition 2.2. The (p, q)-Bessel-Bernoulli polynomials ρBm,p,q(x) of degree m are
defined by

ρB0,p,q(x) =1,(2.20)

ρBm,p,q(x) =(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1,p,q(x) ρ2,p,q(x) . . . ρm−1,p,q(x) ρm,p,q(x)

1 1
[2]p,q

1
[3]p,q

. . . 1
[m]p,q

1
[m+1]p,q

0 1
[2

1
]
p,q

1
[2]p,q

. . .
[
m−1

1
]
p,q

1
[m−1]p,q

[
m
1
]
p,q

1
[m]p,q

0 0 1 . . .
[
m−1

2
]
p,q

1
[m−2]p,q

[
m
2
]
p,q

1
[m−1]p,q

...
...

...
. . .

...
...

0 0 0 . . . 1
[
m
m−1

]
p,q

1
[2]p,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,(2.21)

m = 1, 2, 3, . . . ,

where ρm,p,q(x), m = 0, 1, 2, 3, . . . , are the (p, q)-Bessel polynomials of degree m.

2.1.2. (p, q)-Bessel-Euler polynomials. Since, for Ap,q(t) = [2]p,q
ep,q(t)+1 , the pqAP

Am,p,q(x) reduce to the pqEP Em,p,q(x) (Table 1 (II)). Therefore, for the same choice
of Ap,q(t), the pqBeAP ρAm,p,q(x) reduce to pqBeEP ρEm,p,q(x) which are defined by
means of following generating function:

(2.22) [2]p,q
ep,q(t) + 1 ep,q(x(1−

√
1− 2t)) =

∞∑
m=0

ρEm,p,q(x) tm

[m]p,q!
.

The pqBeEP ρEm,p,q(x) of degree m are defined by the series:

ρEm,p,q(x) =
m∑
s=0

[
m

s

]
p,q

Es,p,qρm−s,p,q(x).

The following identity for the pqBeEP ρEm,p,q(x) holds true:

ρEm,p,q(x) = 1
B0,p,q

(
ρm,p,q(x)−

m−1∑
s=0

[
m

s

]
p,q

Bm−s,p,q ρEs,p,q(x)
)
, m = 1, 2, . . .

Further, by taking B0,p,q = 1 and Bj,p,q = 1
2 , j = 1, 2, 3, . . . , in equations (2.5) and

(2.6), we obtain the determinant definition of the pqBeEP ρEm,p,q(x).
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Definition 2.3. The (p, q)-Bessel-Euler polynomials ρEm,p,q(x) of degreem are defined
by

ρE0,p,q(x) =1,(2.23)

ρEm,p,q(x) =(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1,p,q(x) ρ2,p,q(x) . . . ρm−1,p,q(x) ρm,p,q(x)

1 1
2

1
2 . . . 1

2
1
2

0 1
[2

1
]
p,q

1
2 . . .

[
m−1

1
]
p,q

1
2

[
m
1
]
p,q

1
2

0 0 1 . . .
[
m−1

2
]
p,q

1
2

[
m
2
]
p,q

1
2

...
...

...
. . .

...
...

0 0 0 . . . 1
[
m
m−1

]
p,q

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,(2.24)

m = 1, 2, 3, . . . ,

where ρm,p,q(x), m = 0, 1, 2, 3, . . . , are the (p, q)-Bessel polynomials of degree m.

2.1.3. (p, q)-Bessel-Genocchi polynomials. Since, for Ap,q(t) = [2]p,qt
ep,q(t)+1 , the pqAP

Am,p,q(x) reduce to the pqGP Gm,p,q(x) (Table 1 (III)). Therefore, for the same choice
of Ap,q(t), the pqBeAP ρAm,p,q(x) reduce to pqBeGP ρGm,p,q(x) which are defined by
means of following generating functions:

(2.25) [2]p,qt
ep,q(t) + 1 ep,q(x(1−

√
1− 2t)) =

∞∑
m=0

ρGm,p,q(x) tm

[m]p,q!
.

The pqBeGP ρGm,p,q(x) of degree m are defined by the series:

ρGm,p,q(x) =
m∑
s=0

[
m

s

]
p,q

Gs,p,qρm−s,p,q(x).

The following identity for the pqBeGP ρGm,p,q(x) holds true:

ρGm,p,q(x) = 1
B0,p,q

(
ρm,p,q(x)−

m−1∑
s=0

[
m

s

]
p,q

Bm−s,p,q ρGs,p,q(x)
)
, m = 1, 2, . . .

3. 2D (p, q)-Bessel-Appell Polynomials

First, we introduce the (p, q)-analogue of the 2D Appell polynomials which are the
2-variable generalization of the (p, q)-Appell polynomials denoted as 2D (p, q)-Appell
polynomials Am,p,q(x, y).

Definition 3.1. The (p, q)-analogue of the 2D Appell polynomials Am,p,q(x, y) are
defined by the following generating function:

(3.1) Ap,q(t) ep,q(xt)Ep,q(yt) =
∞∑
m=0

Am,p,q(x, y) tm

[m]p,q!
, Am,p,q = Am,p,q(0, 0).
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Table 2. Some members of 2D (p, q)-Appell polynomials

S. No. Ap,q(t) Generating Functions Polynomials
I. Ap,q(t) = t

(ep,q(t)−1)
t

(ep,q(t)−1) ep,q(xt)Ep,q(yt) The 2D (p, q)-Bernoulli
=
∑∞

m=0 Bm,p,q(x, y) tm

[m]p,q ! polynomials

II. Ap,q(t) = [2]p,q

(ep,q(t)+1)
[2]p,q

(ep,q(t)+1) ep,q(xt)Ep,q(yt) The 2D (p, q)-Euler
=
∑∞

m=0 Em,p,q(x, y) tm

[m]p,q ! polynomials

III. Ap,q(t) = [2]p,qt

(ep,q(t)+1)
[2]p,qt

(ep,q(t)+1) ep,q(xt)Ep,q(yt) The 2D (p, q)-Genocchi
=
∑∞

m=0 Gm,p,q(x, y) tm

[m]p,q ! polynomials

Some members of the 2D (p, q)-Appell polynomials are listed in Table 2.
The approach used in previous section is further exploited to introduce the 2D

(p, q)-Bessel-Appell polynomials (2DpqBeAP) and focus on deriving its generating
functions and series definitions.

In order to establish the generating function for the 2DpqBeAP, the following result
is proved.

Theorem 3.1. The following generating function for the 2D (p, q)-Bessel-Appell
polynomials ρAm,p,q(x, y) holds true:

(3.2) Ap,q(t)ep,q(x(1−
√

1− 2t))Ep,q(yt) =
∞∑
m=0

ρAm,p,q(x, y) tm

[m]p,q!
.

Proof. By expanding the first (p, q)-exponential function ep,q(xt) in the left hand side
of the equation (3.1) and then replacing the powers of x, i.e., x0, x, x2, . . . , xm by the
corresponding polynomials ρ0,p,q(x), ρ1,p,q(x), ρ2,p,q(x), . . . , ρm,p,q(x) in the left hand
side and x by ρ1,p,q(x) in the right hand side of the resultant equation, we have

Ap,q(t)
(

1 + ρ1,p,q(x) t

[1]p,q!
+ ρ2,p,q(x) t2

[2]p,q!
+ · · ·+ ρm,p,q(x) tm

[m]p,q!
+ · · ·

)
Ep,q(yt)

=
∞∑
m=0

Am,p,q(ρ1,p,q(x), y) tm

[m]p,q!
.

Further, summing up the series in left hand side and then using equation (2.1) in
the resultant equation, we get

Ap,q(t)ep,q(x(1−
√

1− 2t))Ep,q(yt) =
∞∑
m=0

Am,p,q(ρ1,p,q(x), y) tm

[m]p,q!
.

Finally, denoting the resultant 2DpqBeAP in the right hand side of the above
equation by ρAm,p,q(x, y), that is

Am,p,q(ρ1,p,q(x), y) = ρAm,p,q(x, y),

the assertion (3.2) is proved. �
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Remark 3.1. It is remarked that for p = 1, the 2DpqBeAP ρAm,p,q(x, y) reduce to the
2D q-Bessel-Appell polynomials (2DqBeAP) ρAm,q(x, y) such that

ρAm,q(x, y) := ρAm,1,q(x, y).

Thus, taking p = 1 in equation (3.2), we get

Aq(t)eq(x(1−
√

1− 2t))Eq(yt) =
∞∑
m=0

ρAm,q(x, y) tm

[m]q!
,

which is the generating function for the 2D q-Bessel-Appell polynomials.

Next, we give the series definition for the 2DpqBeAP ρAm,p,q(x, y), by proving the
following result.

Theorem 3.2. The 2D (p, q)-Bessel-Appell polynomials ρAm,p,q(x, y) are defined by
the following series definition:

(3.3) ρAm,p,q(x, y) =
m∑
s=0

[
m

s

]
p,q

q(
s
2)ysρAm−s,p,q(x).

Proof. In view of equations (1.2) and (2.2), equation (3.2) can be written as:
∞∑
m=0

ρAm,p,q(x) tm

[m]p,q!

∞∑
s=0

q(
s
2) ys ts

[s]p,q!
=

∞∑
m=0

ρAm,p,q(x, y) tm

[m]p,q!
,

which on using the Cauchy product rule gives

(3.4)
∞∑
m=0

m∑
s=0

[
m

s

]
p,q

q(
s
2)ysρAm−s,p,q(x) tm

[m]p,q!
=

∞∑
m=0

ρAm,p,q(x, y) tm

[m]p,q!
.

Equating the coefficients of like powers of t in both sides of the above equation, we
arrive at our assertion (3.3). �

Remark 3.2. For p = 1, series definition (3.3) becomes

ρAm,q(x, y) =
m∑
s=0

[
m

s

]
q

q(
s
2)ysρAm−s,q(x),

which is the series definition for the 2D q-Bessel-Appell polynomials.

Certain members belonging to the 2D (p, q)-Appell family are given in Table 2.
Since, corresponding to each member belonging to the 2D (p, q)-Appell family, there
exists a new special polynomial belonging to the 2D (p, q)-Bessel-Appell family. Thus,
by making suitable choices for the functions Ap,q(t) in equations (3.2) and (3.3), the
generating functions and series definitions for the corresponding members belonging
to the 2D (p, q)-Bessel-Appell family can be obtained. The resultant members of
the 2D (p, q)-Bessel-Appell family along with their generating functions and series
definitions are given in Table 3.
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Table 3. Certain members belonging to the 2D (p, q)-Bessel-Appell polynomials

S. No. Ap,q(t) Generating Functions Series Definition Polynomials

I. t
(ep,q(t)−1)

t
(ep,q(t)−1)ep,q(x(1−

√
1− 2t))Ep,q(yt) ρBm,p,q(x, y) The 2D (p, q)-Bessel-Bernoulli

= ∑∞
m=0 ρBm,p,q(x, y) tm

[m]p,q ! = ∑m
s=0

[
m
s

]
p,q
q(

s
2)ysρBm−s,p,q(x) polynomials

II. [2]p,q
(ep,q(t)+1)

[2]p,q
(ep,q(t)+1)ep,q(x(1−

√
1− 2t))Ep,q(yt) ρEm,p,q(x, y) The 2D (p, q)-Bessel-Euler

= ∑∞
m=0 ρEm,p,q(x, y) tm

[m]p,q ! = ∑m
s=0

[
m
s

]
p,q
q(

s
2)ysρEm−s,p,q(x) polynomials

III. [2]p,qt
(ep,q(t)+1)

[2]p,qt
(ep,q(t)+1)ep,q(x(1−

√
1− 2t))Ep,q(yt) ρGm,p,q(x, y) The 2D (p, q)-Bessel-Genocchi

= ∑∞
m=0 ρGm,p,q(x, y) tm

[m]p,q ! , = ∑m
s=0

[
m
s

]
p,q
q(

s
2)ysρGm−s,p,q(x) polynomials

4. Graphical Representation

In this section with the help of Matlab, we plot the graphs of (p, q)-Bessel-Bernoulli
polynomials ρBm,p,q(x), (p, q)-Bessel-Euler polynomials ρEm,p,q(x). To draw the graphs
of these polynomials, we consider the values of the first four (p, q)-Bessel polynomials
ρm,p,q(x), the expressions of these polynomials are given in Table 4.

Table 4. Expressions of the first four ρm,p,q(x).

m 0 1 2 3

ρm,p,q(x) 1 x x2 + [2]p,q
2 x x3 + [3]p,q [2]p,q

2 x2 + [4]p,q [3]p,q
4 x

Next, taking p = 1
2 , q = 1

4 in the determinant definitions (2.21), (2.24) and using
the expressions of the ρm,p,q(x) from Table 4, we get the results mentioned in Table 5
for m = 0, 1, 2, 3.

Table 5. The first four expressions of ρBm, 1
2 ,

1
4
(x) and ρEm, 1

2 ,
1
4
(x).

m 0 1 2 3

ρBm, 1
2 ,

1
4
(x) 1 −4

3 + x x2 − 5
8x−

20
21 x3 − 161

384x
2 − 7493

12288x−
107
45

ρEm, 1
2 ,

1
4
(x) 1 −1

2 + x x2 − 5
16 x3 − 7

128x
2 − 791

4096x−
165
512

Now, with the help of Matlab and using equations (2.20), (2.23) and the expressions
of ρBm,p,q(x) and ρEm,p,q(x) from Table 5, we get the graphs at Figure 1 and 2.
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Figure 1. Graph of ρBm,p,q(x)
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Figure 2. Graph of ρEm,p,q(x)

Further, setting m = 3, p = 1
2 , q = 1

4 in the series definitions of ρBm,p,q(x, y),
ρEm,p,q(x, y) given in Table 3 and using the expressions of ρBm,p,q(x), ρEm,p,q(x) from
Table 5, we have

ρB3, 1
2 ,

1
4
(x, y) =x3 − 161

384x
2 − 7493

12288x−
107
45 + 7

16x
2y − 35

128xy −
5
12y −

7
48y

2 + 7
64xy

2 + 1
64y

3,

(4.1)

ρE3, 1
2 ,

1
4
(x, y) =x3 − 7

128x
2 − 791

4096x−
165
512 + 7

16x
2y − 35

256y −
7

128y
2 + 7

64xy
2 + 1

64y
3,

(4.2)

In view of equations (4.1)–(4.2), we get the surface plots at Figure 3 and 4.
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Figure 3. Surface plot of ρB3, 1
2 ,
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(x, y)
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Figure 4. Surface plot of ρE3, 1
2 ,

1
4
(x, y)

5. Concluding Remarks

The Bernoulli, Euler and Genocchi numbers are among the most interesting and
important number sequences in mathematics. These numbers are particularly impor-
tant in number theory, they have deep connections with calculus of finite differences,
combinatorics and other fields. Here, let us recall (p, q)-Bernoulli, (p, q)-Euler and
(p, q)-Genocchi numbers.
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We note that (see [6])

Bm,p,q := Bm,p,q(0), (p, q)-Bernoulli numbers,
Em,p,q := Em,p,q(0), (p, q)-Euler numbers,
Gm,p,q := Gm,p,q(0), (p, q)-Genocchi numbers.

Further, we note that

ρm,p,q := ρm,p,q(0), (p, q)-Bessel numbers.

In this section, we introduce the numbers related to the polynomial families estab-
lished in Sections 2 and 3.

Taking x = 0 in the generating functions of the ρBm,p,q(x), ρEm,p,q(x) and ρGm,p,q(x)
given by equations (2.18), (2.22) and (2.25), the (p, q)-Bernoulli, (p, q)-Euler and
(p, q)-Genocchi numbers are obtained. These numbers are listed in Table 6.

Table 6. Certain members belonging to (p, q)-Bessel-Appell numbers

S. No. Notations Generating Functions Numbers

I. ρBm,p,q := ρBm,p,q(0) t
ep,q(t)−1 =

∞∑
m=0

ρBm,p,q
tm

[m]p,q ! The (p, q)-Bessel-Bernoulli numbers

II. ρEm,p,q := ρEm,p,q(0) [2]p,q

(ep,q(t)+1) =
∞∑
m=0

ρEm,p,q
tm

[m]p,q ! The (p, q)-Bessel-Euler numbers

III. ρGm,p,q := ρGm,p,q(0) [2]p,qt

(ep,q(t)+1) =
∞∑
m=0

ρGm,p,q
tm

[m]p,q ! , The (p, q)-Bessel-Genocchi numbers

Similarly, on taking x = y = 0 in the generating functions of the ρBm,p,q(x, y),
ρEm,p,q(x, y) and ρGm,p,q(x, y) given in Table 3 (I-III), we get the same numbers given
in Table 6 (I-III).

We note that the class of numbers introduced in this section are actually the
(p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi numbers, respectively.

In this article, the (p, q)-analogue of Bessel polynomials and its hybrid form are
introduced by means of series expansion and generating function. The determinant
form related to these polynomials are derived, which can be helpful for computation
purposes and can also be used in finding the solutions of general linear interpolation
problems.

Some properties including addition theorem, difference equations and recurrence
relations for the (p, q)-Appell family have been analyzed and established in [13] (see
also [11]). This provides motivation to establish (p, q)-difference equations and other
properties for (p, q)-Bessel-Appell polynomials and their generalized 2D form in future
investigation.
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