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SUFFICIENT CONDITIONS OF SUBCLASSES OF SPIRAL-LIKE
FUNCTIONS ASSOCIATED WITH MITTAG-LEFFLER
FUNCTIONS

GANGADHARAN MURUGUSUNDARAMOORTHY! AND TEODOR BULBOACA?

ABSTRACT. The purpose of the present paper is to find the sufficient conditions
for some subclasses of analytic functions associated with Mittag-Leffler functions
to be in subclasses of spiral-like univalent functions. Further, we discuss geometric
properties of an integral operator related to Mittag-Leffler functions.

1. INTRODUCTION AND DEFINITIONS

Let E, be the function defined by

[e.9] Zn

E,.(z) = _ e C, a e C, with Rea > 0,
(2) nZ::O Tlan < 1) z a wi e

that was introduced by Mittag-Leffler [14] and commonly known as the Mittag-Leffler
function. Wiman [25] defined a more general function E, s generalizing the E,
Mittag-Leffler function, that is

o0 n

E,5(z) = ©

, : —, 2€C, a,peC, with Reaa >0, Refg > 0.
gz:of(om—kﬁ)

Key words and phrases. Univalent functions, spiral-like functions, starlike and convex functions,
Hadamard (convolution) product, Mittag-Leffler functions.

2020 Mathematics Subject Classification. Primary: 30C45. Secondary: 33E12, 33E30.

DOI

Received: August 20, 2021.

Accepted: October 01, 2021.

921
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When § = 1, it is abbreviated as E,(z) = E, 1(z). Observe that the function E, s
contains many well-known functions as its special case, for example,

Ei(2) = ¢, Epa(z) = 622— 17 o <Z2) — coshz,

1 1 1 3
E4(2) = 3 (cos #M/* 4 cosh 21/4) Es(z) = 3 [ 24 90737 cog <\/_Z1/3)] :

We recall the error function erf given by [1, p. 297]

(= 2 [etan 25 D
= ﬁ;n!(2n+1)z
the complement of the error function erfc defined by

erfc(z) =1 —erf(z) =1 - — Z o 2n+ ) St

and the normalized form of the error function erf denoted by Erf (normalized with
the condition Erf’(0) = 1) is given by
-1 n—1
) z
(n— 1 2n —1)

n

Erf(z) := ;TZ erf(v/2) = 2 + Z

It is of interest to note that by fixing o = 1/2 and 8 = 1 we get
E%J(z) = ¢ erfc(—2),

that is

2 (D" oun
Ei,(2) = <1+\/_Zn'(2n+1)z + )

The Mittag-Leffler function arises naturally in the solution of fractional order
differential and integral equations, and especially in the investigations of fractional ge-
neralization of kinetic equation, random walks, Lévy flights, super-diffusive transport
and in the study of complex systems. Several properties of Mittag-Leffler function
and generalized Mittag-Leffler function can be found for example in [2,3,8,9,11,12].
We note that the above generalized (Mittag-Leffler) function E, 3 does not belongs
to the family A, where A represents the class of functions whose members are of the
form

(1.1) f(2) :z+§:anz", z €D,
n=2

which are analytic in the open unit disk D := {2z € C : |z| < 1} and normalized by
the conditions f(0) = f’(0) — 1 = 0. Let 8 be the subclass of A whose members



SPIRAL-LIKE FUNCTIONS ASSOCIATED WITH MITTAG-LEFFLER FUNCTIONS 923

are univalent in ID. Thus, it is expected to define the following normalization of
Mittag-Leffler functions as below, due to Bansal and Prajapat [3]:

(1.2) Bos(z) = 20(8) Ba s —z+§j nY%+5fn

that holds for the parameters «, € C with Rea > O, Rep > 0 and z € C. In this

paper we shall confine our attention to the case of real-valued parameters o and £,
and we will consider that z € D.

For functions f € A be given by (1.1) and g € A given by g(z) = z + § b, 2",
n=2

z € D, we define the Hadamard product (or convolution) of f and g by

(f*g)(2) =2+ i anb, 2", zeD.

n=2
The two well known subclasses of & are namely the class of starlike and convex
functions (for details see Robertson [20]). Thus, a function f € A given by (1.1) is
said to be starlike of order v, 0 < v < 1, if and only if

2f'(2)
Re( ) ) >, zeD,

and this function class is denoted by 8*(v). We also write 8*(0) =: 8%, where 8*
denotes the class of functions f € A such that f(D) is starlike domain with respect
to the origin.

A function f € A is said to be convez of order v, 0 <~ < 1, if and only if

z2f"(z

]{’((z)>> >y, z€D,

and this class is denoted by K(v). Further, X := K(0) represents the well-known
standard class of convex functions. By Alexander’s duality relation (see [6]), it is a
known fact that

Re <1—|—

feXezf'(z) € 8.
A function f € A is said to be spiral-like if
_- Zf’(2)>
Re (e >0, zeD,
[
for some ¢ € C with |{| < 7, and the class of spiral-like functions was introduced in
[23]. Also, the function f is said to be convex spiral-like if z f'(z) is spiral-like. Due

to Murugusundramoorthy [15,16], we consider the following subclasses of spiral-like
functions as below.

Definition 1.1. For 0 < p < 1,0 <y < 1 and [{| < 7, let define the class 8(¢,7, p)
by

2f'(z)

f(2) + pzf'(2)

S(&,7,p) = {fGA:Re<ei5(1_p) >>’}/COSf,Z€]D}.
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By virtue of Alexander’s relation (see [6]) we define the following subclass K (&, 7, p).

Definition 1.2. For 0 <p < 1,0 <~y <1 and [{] < 7, let define the class X(&,7, p)

by

ie 2f"(2) + ()
f'(2) + pzf"(2)

By specializing the parameter p = 0 in the above two definitions we obtain the

subclasses 8(&,7) := 8(&,7,0) and K(&,v) := K(&,,0), respectively.

Now we state a sufficient conditions for the function f to be in the above classes.

K, v, p) ::{fEA:Re<e )>7008§,Z€D}.

Lemma 1.1 ([15,16]). A function f given by (1.1) is a member of S(&,~, p) if

oo

S [@= )= 1sect + (1= 1)(1+np— p)|lenl <17,

n=2
where\§]<g,0§p<1,0§fy<1.

Since f € K(&,,p) if and only if zf'(z) € 8(§,, p), and from Lemma 1.1 we get
the next result.

Lemma 1.2. A function f given by (1.1) is a member of K(&,~, p) if

o0

> nl(1= p)n = 1)sect + (1= 1)1 +np = p)|lan] <17,

n=2

where [§] < 5,0<p<1,0<y <1

The next class R7 (¢, §) was introduced earlier by Swaminathan [24], and for special
cases see the references cited there in.

Definition 1.3. A function f € A is said to be in the class R™ (¢, ), where 7 € C\ {0},
0 <9 <1,and § < 1, if it satisfies the inequality

(1—9) 2% pof(z) -1
27(1 —8) + (1 — )12 9 f(z) -1
Lemma 1.3 ([24]). If f € R7(V,6) is of the form (1.1), then

2|r|(1-9)
(1.3) la,| < my

The bounds given in (1.3) is sharp for
1 z 2(1 =) ¢t
f(z) ; / = ll L2 =0T ] dt.
0

, z€D.

ne N\ {1}.

T 93 1— 21

Now we define the following new linear operator based on convolution (Hadamard)
product.
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For real parameters «, /3, with «, 5, ¢ {0,—1,—-2,...} and E, s be given by (1.2),
we define the linear operator Ag : A — A with the aid of the convolution product

AGf(z) == f(z) * Eap(2 —z+Z n_ﬁ1)>+ﬁ)a 2", z€D.
Stimulated by prior results on relations between different subclasses of analytic and
univalent functions by using hypergeometric functions (see for example [5,10,13,21,22,
24]) and by the recent investigations related with distribution series (see for example
[4,7,17-19], we obtain sufficient condition for the function E, s to be in the classes
8(&,7, p) and K(&,7, p), and information regarding the images of functions belonging

in R7(¢J,d) by using the convolution operator Ag. Finally, we determined conditions

for the integral operator W§(z) = [ Fa B Jdt to belong to the above classes.

2. INcLUSION RESULTS

In order to prove our main results, unless otherwise stated throughout this paper,
we will use the notation (1.2), therefore

2 Bosl)=1=% sty
e )

>2) WM 1=2 a1 )

& mn- )T(B)

(2.3 BeoD =2 Mot -1+ 5

Theorem 2.1. If

(2.4) [(1=p)sec+p(1 —7)]Eq 5(1) + (1= p)(1 — v —sec &) Eap(1) < 2(1 =),
then E, g € 8(&,7,p).

Proof. Since E, s is defined by (1.2), according to Lemma 1.1 it is sufficient to show
that

- L'(s)

25) 3 (1= p)(n = Dsect + (1= 7)(1+np — p) a1 <
Since the left-hand side of the inequality (2.5) could be written as
N _ B B L'(s)
- nI'(8)

== p)sect+ o= s -5 8)

+ (1 =p)(1 =y —sec) 5_022 r(a(nr—(ﬁf) ot
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therefore, by using (2.1) and (2.2), we get
Q& 7p) =[(1 = p)sece +p(1 = )] [E (1)~ 1]
+ (1= p)(L =7 —sect) [Eap(l) — 1
:[(1 —p)secé + p(1 — )]E&,B( )+ (1 —=p)(1 =7 —secf)Eyz(1)

- (1 =)
Thus, from the assumption (2.4) it follows that Q1 (&, 7, p) < 1—-, that is (2.5) holds,
therefore E, 5 € 8(&,7, p). O
Theorem 2.2. If
26)  |(1=p)sect +p(1 = )| Esl1) + (1= Dy 4(1) <21 - 7)

then Ea,ﬁ € j{(£777p)

Proof. Using the definition (1.2) of E, g, in view of Lemma 1.2 it is sufficient to prove
that

@1 i[ pn—1)sec + (1= )1 +np—p)|

<1—n.
Mam-1+5) =
The left-hand side of the inequality (2.7) could be written as

Q2(8,7,p) = in[(l —p)(n—1)sec&+ (1 —7)(1+np— p)} F(@(nf_(ﬁl)) e
Z[(l—p)se<3€+p(1—7)} i ((ZL i)( ;)
3 nl'(8)
U S e )+

and from (2.2) and (2.3) we get

Qul€,79) = (1= p)sec + p(1 = )| Bl (1) + (1 = D[EL (1) — 11

Hence, the assumption (2.6) implies that Q2(, 7, p) < 1—+ that is (2.7) holds, and
consequently F, g € K(&,~, p). O

3. IMAGE PROPERTIES OF Ag OPERATOR

Making use of the Lemma 1.1 and Lemma 1.3 we will focus the influence of the A
operator for the functions of the class R (¢, ), and we will give sufficient conditions
such that these images are in the classes 8(&, 7, p) and K (&, ~, p), respectively.
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Theorem 3.1. If

2|r[(1=9) [(1 —p)secé + p(1 — 7)} [Eas(1) —1]

(3.1) —i—(l—p)(l—y—sec{)/()l(Ea’f(t)—1>dt§1—7,

then
AG (R7(0,6)) C 8(&,7,p)-

Proof. Let f € R7(1,0) be of the form (1.1). To prove that A§(f) € 8(§,7,p), in view
of Lemma 1.1 it is required to show that

> I'(5)
3 [0 )= 1)sect + (L)1 40— ) gy gl <1
Let we denote the left-hand side of the above inequality by
R _ B B I'(8)
Qu(6.7.0) 1= 3 |(1 = p)(n = 1)sec + (1) (14 mp — )| ol
Since f € R7(¥,0), by Lemma 1.3 we have
2|r|(1-9) neN\ {1},

|an| < T+dn—1)
and using the inequality 1 4+ J(n — 1) > Yn we obtain that

Qute.r) <GS 0 )= )sece s (-1 40 )

9 n—
L(5) }
I'(a(n—1)+8)
_2|r[(1-9) ( —9) {ZQ {(1 — p)secE + p(1 — 7)} F(a(nr_wf) =

— 1 I'(5)
1—p)(1—7y— - .
R R ) SE R ]
From the above inequality, using (2.1), we get

@(e7:0) <2 TEZD 10— p)sece + p(1 )] (B — 1

+(1—p)(1 —~ —secf) /01 (Eaf(t) — 1) dt,

hence, the assumption (3.1) implies then Q3(§, v, p) < 1—7, that is AF(f) € 8(,, p)-
]

Using Lemma 1.2 and following the same procedure as in the proof of Theorem 2.2,
we have the subsequent result.
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Theorem 3.2. If
2|7 (1 =9

N[ ssece -]zt
(3. £ (1= )1 = = secE) Eas(l) — (1 —7)} <1-n,

then
AG (R7(9,0)) C K(E,7,p)-

Proof. Let f € R7(¥,0) be of the form (1.1). In view of Lemma 1.2, to prove that
AG(f) € X(&,v,p) we have to show that

- I'(B)

33) 3 nf(1= p)n = 1)secs + (1=3)(1 4 np = )] el <1
Since f € R7(¥,0), then by Lemma 1.3 we have
2|r|(1-9) neN\ {1},

|an| < T+dn—1)
and 1+ v(n — 1) > In. Denoting the left-hand side of the inequality (3.3) by

Qu(Ep) = 3on[(1 = o) = 1)sec€ + (1= )1+ 19— )| el

we deduce that

Que ) <2 TEZI S [0 pysee(n—1) + (1= 9)(1 +np— )
r(s)
—1

Pla(n =1) +75)

2|r|( 5){[(1 p)sect + p(1 ]g n—%%)

- (3 }

+(1_p)<1_7_secf>2r<a(n_1)+5) :

Now, by using (2.1) and (2.2), the above inequality yields to

Quts ) HHE=D [ s+ o1 =) 2,000 - 1

+ (1= )1 =~ s Eas() - 1]
=2‘T’(;_5){ [(1 — p)secE + p(1 — 7)} E, 5(1)

(= )1 =7 = sec€) Eug(1) — (1 w}.
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Therefore, the assumption (3.2) yields to Q4(§,7,p) < 1 — ~, which implies the
inequality (3.3), that is AF(f) € K(£, 7, p). O

4. THE ALEXANDER INTEGRAL OPERATOR FOR E,

Theorem 4.1. Let the function Vg be given by

Eq5(1)
¢

(4.1) P4 (2) = /O dt, zeD.
If

(1= p)sect + pl(1 = )| Eop(1) + (1= p)(1 = 7 = sec€) Eas(1) < 2(1 = 9),
then W5 € K(¢,, p).

Proof. Since

4.2 U3(z) =2+ -—, z€D,
42 M= L Hao—1+5)
according to Lemma 1.2, it is sufficient to prove that
= 1 I'(5)
n|(l—=p)n—1)sec+ (1 —v)(1+np— ] <1-—7,
Son[(1=pn = Dseet+ (1= +mp—p)] | g <1
or, equivalently
- I'(5)
1—p)n—1)secé+ (1 —v)(1+np— } <1-—7.
3 [0 pn = Dsece + (L)1 bmp o) e <10
Now, the proof of Theorem 4.1 is parallel to that of Theorem 2.1, and so it will be
omitted. 0

Theorem 4.2. Let the function W5 be given by (4.1). If
(1= p)sect + p(L = 7)|(Eas() - 1)
(4.3) +(1—p)(1—'y—sec§)/ol<Ea’f(t)—1>dt§1—'y,

then Vg € 8(&,7,p).

Proof. Since U§ has the power series expansion (4.2), then by Lemma 1.1 it is sufficient
to prove that

> 1
> - [= P = Dsect + (1= 1)1 +np— p)]

n=2 n

L'(8)
[la(n —1) +f)

<1-—7.
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The left-hand side of the above inequality could be rewritten as

Qd&%p%—ixjﬂ—pﬂn—U&%£+Uf”wU+np—m
" L'(B)
F(a(n—1)+3)
= I'(3)
_nz::g |:(1 - p) Sec€+p(1 _7)] F(a(n— 1) +5)

(3
n—1)+p5)

and using (2.1) we get

Qs(6.70) =[(1 = p)sece + p(1 = )] [Eus(D) ~ 1

+(1—p)(1—7—sec§)/01 <Ea’f(t)—1>dt.

Therefore, if the assumption (4.3) holds, then Q5(&,v,p) < 1 — . Hence, ¥§ €
8(&:7,p)- O

Remark 4.1. By taking p = 0 in Theorems 2.1-4.2, we can easily attain the sufficient
condition for E, 3 € 8(§,7) and E, g € K(&,v). The function E, s is associated with
Mittag-Lefler functions and has not been studied sofar. We left this as an exercise
to interested readers.

For the special case o = 1/2 and 8 = 1, that is connected with the error function
can derive some results based on the error function. Thus, a simple computation
shows that if

&(z) = E1,(2) =

il

then

(44)  L=APfGR) = f(2) % E(x) =2 + i %
45) P=0lP() = /0 git)dt: i_o:lnrzzﬂ)

Using the above relations, from Theorems 2.1 and 2.2 we get, respectively.
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Example 4.1. If

[(1—p)sec&+p(1—7) i + (1 —p)(1 =7 —secf) i
n=1 r (T) n=1 r (T)
then € € 8(&,7, p).
Example 4.2. If

= n(n—1 > n
(1= p)seee+p1 -] W=D 1o 3 s <o),
Sr() AR
then € € K(&,~, p).
Similarly, Theorems 4.1 and 4.2 give us the next examples.
Example 4.3. If
2|7 (1 =9) { > 1
A0 pysect+p(1 - )| X —
7 EHey
+ (1= p)(1 -~ —sec — <17,
(I=p)(1 =~ 5);MF (=21) gl
then
L(R7(0,0)) € 8(&,7,p),
where £ is defined by (4.4).
Example 4.4. If
2 1-—
W{[(l p)secé + p(1—~v ]
=
+ (1 —p)(1 —~ —secf) Z (i }
then
L(R7(9,0)) € K (& 7, p),
where £ is defined by (4.4).
Finally, from Theorems 4.1 and 4.2 we have the following.
FExample 4.5. If
(1= p)sect +p(1—7) — p)(1— 7 — secé)
SHCOM R ()

then P € K(&,~, p), where £ is defined by (4.5).

931
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FExample 4.6. If

(1—p)sec§+p(1—7)] izr(il)—i-(l—l))(l—’y—secf)izw

Sl -7,
then P € 8(&,~, p), where £ is defined by (4.5).

5. CONCLUSIONS

In this investigation we obtained sufficient conditions and inclusion results for
functions f € A to be in the classes 8(&, v, p) and K(&, v, p), and information regarding
the images of functions by applying convolution operator with Mittag-Leffler functions.

The investigation methods are based on some recent results and techniques found
in [15] and [16], and we determined sufficient conditions for the functions E, s to
belongs to the new defined classes 8(&,~, p) and K(&, v, p).

Moreover, we found sufficient conditions such that the images of the functions
belonging to the class R7(¢J,0) by the new defined convolution operator A§ are in the
classes 8(&,7, p) and K(,, p), respectively.

Finally, we determined sufficient conditions such that the functions W§ obtained as
images of E, g via the Alexander integral operator belong to the classes 8(¢,, p) and
K&, p)-

We emphasize that till now such kind of results doesn’t appeared in any previous
articles: the general classes $(&, 7, p) and K (&, v, p) are completely new and introduced
in [15,16], while any type of such results were not studied previously.

Acknowledgements. The authors are grateful to the reviewers for their valuable
remarks, comments, and advices that help us to improve the quality of the paper.
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