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OPTIMIZATIONS ON STATISTICAL HYPERSURFACES WITH
CASORATI CURVATURES

ALIYA NAAZ SIDDIQUI1 AND MOHAMMAD HASAN SHAHID1

Abstract. In the present paper, we study Casorati curvatures for statistical hy-
persurfaces. We show that the normalized scalar curvature for any real hypersurface
(i.e., statistical hypersurface) of a holomorphic statistical manifold of constant holo-
morphic sectional curvature k is bounded above by the generalized normalized
δ−Casorati curvatures and also consider the equality case of the inequality. Some
immediate applications are discussed.

1. Introduction

In 1985, a notion of statistical manifold has been studied by Amari [1]. The abstract
generalizations of statistical models are considered as the statistical manifolds. The
geometry of statistical manifolds lies at a junction of several branches of geometry (in-
formation geometry, affine differential geometry and Hessian geometry). A statistical
structure can be considered as a generalization of a Riemannian structure (a pair of
a Riemannian metric and its Levi-Civita connection). It includes the notion of dual
connection, also called conjugate connection. The theory of statistical manifold and
its statistical submanifold plays a role of central importance in many research fields
of differential geometry.

Recently, H. Furuhata investigated the existence of complex structures on statistical
manifolds and introduced the concept of holomorphic statistical manifold, as the
statistical counterpart of the notion of complex manifold (see [11,12]). Similarly, by
putting a natural affine connection to a Sasakian manifold and a Kenmotsu manifold,
Furuhata defined a Sasakian statistical manifold [13] and a Kenmotsu statistical
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manifold [14]. The theory of statistical manifolds and their statistical submanifolds
is a very recent geometry. Therefore, it attracts the geometers and several interesting
results have been obtained by many of them (for example [3–5,21,22,26,28]).

The Casorati curvature has been defined by F. Casorati [6] as the normalized square
of the length of the second fundamental form of a submanifold of a Riemannian man-
ifold. This notion extends the concept of the principal direction of a hypersurface of
a Riemannian manifold. This curvature, which is of interest in computer vision, was
preferred by Casorati over the traditional curvatures because it seems to correspond
better with the common intuition of curvature. Several geometers have found geomet-
rical interpretation and significance of the (extrinsic) Casorati curvatures. Therefore,
it follows that it is of great interest to establish a family of optimal Casorati inequali-
ties for different submanifolds with any codimension of different ambient space forms
(for example [9, 10,15,16,18,19,24,25,27])

In this paper, we obtain a family of optimal inequalities which relate the normalized
scalar curvature with the Casorati curvature for statistical hypersurfaces of holomor-
phic statistical manifolds of constant holomorphic sectional curvature. Equality cases
are also verified. Such inequalities were recently obtained for a statistical submanifold,
which is obviously a particular class of statistical hypersurfaces. See, for instance
[2, 8, 17, 20]. We mention that the ambient spaces in the above mentioned articles
are different as compared to the ambient space (that is, a holomorphic statistical
manifold of constant holomorphic sectional curvature) in our work, namely a quater-
nion Kahler-like statistical space form, a Kenmotsu statistical manifold, a statistical
manifold, and a Sasakian statistical manifold, respectively.

2. Statistical Manifold and its Submanifolds

This section is fully devoted to a brief review of several fundamental formulae and
some definitions which are required later.

Definition 2.1 ([12]). Let ∇ be an affine connection of Riemannian manifold (M, g)
with Riemannian metric g on M.

(a) The affine connection ∇∗ of M defined by

Zg(X,Y) = g(∇ZX,Y) + g(X,∇∗ZY),

for any X,Y,Z ∈ Γ(TM) is known as the dual connection of ∇ with respect
to g.

(b) The triplet (M,∇, g) is known as a statistical manifold if the torsion tensor
field of ∇ vanishes and ∇g ∈ Γ(TM(0,3)) is symmetric.

Remark 2.1. If (M,∇, g) is a statistical manifold, so is (M,∇∗, g). The dual connec-
tions ∇ and ∇∗ of M satisfy (see [12]) (∇∗)∗ = ∇ and 2∇0 = ∇ +∇∗, where ∇0 is
Levi-Civita connection for M of g.



OPTIMIZATIONS ON STATISTICAL HYPERSURFACES WITH CASORATI CURVATURES. . .451

Example 2.1. Let (M, g) be a family of exponential distributions of mean 0
M := {p(u,Φ) | p(u,Φ) = Φe−Φu, u ∈ [0,∞),Φ ∈ (0,∞)},

a Riemannian metric is given by g := Φ−2(dΦ)2, and an α−connection (α ∈ R) on M

is defined by
∇α

∂
∂Φ

∂

∂Φ = (α− 1)Φ−1 ∂

∂Φ .

Then, (M,∇α
, g) is a 1-dimensional statistical manifold.

We remark that one can also construct examples for higher dimension by defining
Fisher information metric and α−connection on a family of statistical distribution
(for example [12]).

Definition 2.2 ([12]). Let
(
M,∇, g

)
be a statistical manifold andM be a submanifold

of M. Then
(
M,∇, g

)
is also a statistical manifold with the induced statistical

structure (∇, g) on M from (∇, g) and we call
(
M,∇, g

)
as a statistical submanifold

in
(
M,∇, g

)
.

Definition 2.3 ([12]). Let
(
M, g, J

)
be a Kaehler manifold and ∇ be an affine

connection on M. Then
(
M,∇, g, J

)
is said to be a holomorphic statistical manifold

if
(a)

(
M,∇, g

)
is a statistical manifold, and

(b) a 2−form $ on M, given by $(X,Y) = g(X, JY) for any X,Y ∈ Γ(TM), is
∇−parallel, that is, ∇$ = 0.

For a holomorphic statistical manifold
(
M, g, J

)
, we have the following relation (see

[12]) ∇X(JY) = J∇∗XY for any X,Y ∈ Γ(TM).

Lemma 2.1 ([11]). Let (M, g, J) be a Kaehler manifold and a connection ∇ is defined
as ∇ := ∇g +K, where K is a (1, 2)−tensor field satisfying the following conditions:

K(X,Y) =K(Y,X),(2.1)
g(K(X,Y),Z) =g(Y, K(X,Z)),

and K(X, JY) + JK(X,Y) = 0 for any X,Y,Z ∈ Γ(TM). Then, (M,∇, g, J) is a
holomorphic statistical manifold.

By following [26] and Lemma 2.1, we have the following examples.

Example 2.2 ([26]). Let (g, J) be a Kaehler structure on M. We take a vector field
U ∈ Γ(TM) and set a tensor field K1 ∈ Γ(TM(1,2)) as follows:

K1(X,Y) =
[
g(JU,X)g(JU,Y)− g(U,X)g(U,Y)

]
U

+
[
g(JU,X)g(U,Y) + g(U,X)g(JU,Y)

]
JU,
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for any X,Y ∈ Γ(TM). Then, by simple computation, we see that K1 satisfies three
conditions of Lemma 2.1, and hence a holomorphic statistical manifold
(M,∇ := ∇g +K1, g, J) is obtained.

Example 2.3 ([26]). For a Kaehler manifold (M, g, J), we take a vector field U ∈ Γ(TM)
and set K2 as follows:

K2(X,Y) =
[
g(U, JX)g(U, JY)− g(U,X)g(U,Y)

− g(U, JX)g(U,Y)− g(U,X)g(U, JY)
]
U

+
[
g(U,X)g(U,Y)− g(U, JX)g(U, JY)

− g(U, JX)g(U,Y)− g(U,X)g(U, JY)
]
JU,

for any X,Y ∈ Γ(TM). Then K2 ∈ Γ(TM(1,2)) satisfies three conditions of Lemma
2.1 as in Example 2.2, and hence (M,∇ := ∇g + K2, g, J) becomes a holomorphic
statistical manifold.

Example 2.4 ([26]). Let us consider a Kaehler manifold

(M = {(u1, u2)′ ∈ R2 | u1 > 0}, g, J),

where a Riemanian metric g and the standard complex structure J on M are defined
by g = u1{(du1)2 + (du2)2} and J∂1 = ∂2, J∂2 = −∂1, where ∂i = ∂

∂ui for i = 1, 2.
Now, for any κ ∈ R, we define a (1, 2)-tensor field K3 on R2 as follows:

K3 =
2∑

i,j,l=1
klij∂l ⊗ dui ⊗ duj,

where −k1
11 = k2

12 = k2
21 = k1

22 = κ and k2
11 = k1

12 = k1
21 = k2

22 = 0. Then K3 satisfies
all three conditions of Lemma 2.1, and hence we get a holomorphic statistical manifold
(M,∇ := ∇g +K3, g, J), where an affine connection ∇ on M is given by

∇∂1∂1 =
(

1
2(u1)−1 − κ

)
∂1,

∇∂1∂2 =∇∂2∂1 =
(

1
2(u1)−1 + κ

)
∂2,

∇∂2∂2 =−
(

1
2(u1)−1 − κ

)
∂1.

Now, we pay attention to the concept of statistical hypersurface. Let (M, g) be
a statistical hypersurface of a holomorphic statistical manifold (M, g, J). By the
Kaehler structure J, one can transfer any tangent vector field X on M in M as follows:
JX = PX + u(X)N, where PX = tan(JX) and N is a unit normal vector field on M

in M.
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Then, it naturally satisfies the following relations (see [12]):
P2X = −X + u(X)ξ,
u(ξ) = 1,
Pξ = 0.

The fundamental equations in the geometry of Riemannian submanifolds are the
Gauss and Weingarten formulae and the equations of Gauss, Codazzi and Ricci (see
[29]). In the statistical setting, Gauss and Weingarten formulae are, respectively,
defined by [12] ∇XY = ∇XY + ς(X,Y)N, ∇∗XY = ∇∗XY + ς∗(X,Y)N,

∇XN = −Λ(X) + ν(X)N, ∇∗XN = −Λ∗(X) + ν∗(X)N,

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where ∇ and ∇∗ (resp. ∇ and ∇∗) are the
dual connections on M (resp. on M). Define ν and ν∗ by ν(X) = g(DXN,N) and
ν∗(X) = g(D∗XN,N), respectively. The symmetric and bilinear imbedding curvature
tensors of M in M for ∇ and ∇∗ are denoted by ς and ς∗, respectively. The relation
between ς (resp., ς∗) and Λ (resp. Λ∗) is defined by [12]{

g(ς(X,Y),N) = g(Λ∗X,Y),
g(ς∗(X,Y),N) = g(ΛX,Y),

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M).

Definition 2.4 ([5]). Let (M,∇, g) be a submanifold with any codimension of a
statistical manifold (M,∇, g). Then M is said to be

(a) totally geodesic with respect to ∇ if ς = 0;
(a)∗ totally geodesic with respect to ∇∗ if ς∗ = 0;
(b) tangentially totally umbilical with respect to ∇ if ς(X,Y) = g(X,Y)H for any

X,Y ∈ Γ(TM), (here H is the mean curvature vector of M in M for ∇);
(b)∗ tangentially totally umbilical with respect to ∇∗ if ς∗(X,Y) = g(X,Y)H∗ for

any X,Y ∈ Γ(TM), (here H∗ is the mean curvature vector of M in M for ∇∗);
(c) normally totally umbilical with respect to ∇ if ΛNX = g(H,N)X for any

X ∈ Γ(TM) and N ∈ Γ(T⊥M);
(c)∗ normally totally umbilical with respect to ∇∗ if Λ∗NX = g(H∗,N)X for any

X ∈ Γ(TM) and N ∈ Γ(T⊥M).

The curvature tensors with respect to ∇ and ∇∗ are denoted by R and R
∗, respec-

tively. Also, R and R∗ are the curvature tensors with respect to∇ and∇∗, respectively.
Then the curvature tensor fields of M and M are respectively defined as (see [12])
S = 1

2(R + R
∗) and S = 1

2(R + R∗).
The sectional curvature K on M of M is given by (see [21,22])

K(X ∧ Y) = g(S(X,Y)Y,X) = 1
2(g(R(X,Y)Y,X) + g(R∗(X,Y)Y,X)),

for any orthonormal vectors X,Y ∈ T℘M, ℘ ∈M.
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Definition 2.5 ([12]). A holomorphic statistical manifold (M,∇, g, J) is said to be
of constant holomorphic curvature k ∈ R if the following curvature equation holds

S(X,Y)Z =k4
{
g(Y,Z)X− g(X,Z)Y + g(JY,Z)JX− g(JX,Z)JY + 2g(X, JY)JZ

}
,

for any X,Y,Z ∈ Γ(TM). It is denoted by M(k).

The corresponding Gauss equation is given by (see [12])
k

2
{
g(Y,Z)X− g(X,Z)Y + g(PY,Z)PX− g(PX,Z)PY + 2g(X,PY)PZ

}
(2.2)

=2S(X,Y)Z
=2S(X,Y)Z− g(Λ∗Y,Z)ΛX + g(Λ∗X,Z)ΛY− g(ΛY,Z)Λ∗X + g(ΛX,Z)Λ∗Y,

for any X,Y,Z ∈ Γ(TM).

3. Casorati Curvatures for Statistical Hypersurfaces

In this section, we study Casorati curvatures for a statistical hypersurface M of a
holomorphic statistical manifold M.

We put dim(M) = m = 2n − 1 and dim(M) = 2n. Now, we consider a local
orthonormal tangent frame {E1, . . . ,Em} of TMm and a local orthonormal normal
frame {E} of T⊥Mm in M

2n. The scalar curvature σ(℘) of M, ℘ ∈M, is given by

σ(℘) =
∑

1≤i<j≤m
g(S(Ei,Ej)Ej,Ei)

=1
2

{ ∑
1≤i<j≤m

g(R(Ei,Ej)Ej,Ei) +
∑

1≤i<j≤m
g(R∗(Ei,Ej)Ej,Ei)

}
,

and the normalized scalar curvature % of M is defined as

% = 2σ(℘)
m(m− 1) .

The mean curvature vectors H and H∗ of M in M are given by

H = 1
m

m∑
i=1

ς(Ei,Ei),
(
resp. H∗ = 1

m

m∑
i=1

ς∗(Ei,Ei)
)
.

Conveniently, let us put

ςij = g(ς(Ei,Ej),E),
(
resp. ς∗ij = g(ς∗(Ei,Ej),E)

)
,

for i, j = 1, . . . ,m.
Then, the squared norm of mean curvature vectors of M is defined as

‖H‖2 =
(

1
m

m∑
i=1

ςii

)2

,

resp. ‖H∗‖2 =
(

1
m

m∑
i=1

ς∗ii

)2
 .



OPTIMIZATIONS ON STATISTICAL HYPERSURFACES WITH CASORATI CURVATURES. . .455

The squared norm of second fundamental forms ς and ς∗ are denoted by C and C∗,
respectively, called the Casorati curvatures of M in M. Therefore, we have

C = 1
m
‖ς‖2,

(
resp. C∗ = 1

m
‖ς∗‖2

)
,

where

‖ς‖2 =
m∑

i,j=1

(
ςij
)2
,

resp. ‖ς∗‖2 =
m∑

i,j=1

(
ς∗ij
)2
 .

If we consider a r-dimensional subspace W of TM, r ≥ 2, and an orthonormal basis
{E1, . . . ,Er} of W. Then the scalar curvature of the r-plane section W is defined as

σ(W) =
∑

1≤i<j≤r
S(Ei,Ej,Ej,Ei)

=1
2

{ ∑
1≤i<j≤r

R(Ei,Ej,Ej,Ei) +
∑

1≤i<j≤r
R∗(Ei,Ej,Ej,Ei)

}
,

and the Casorati curvatures of the subspace W are the following:

C(W) = 1
r

r∑
i,j=1

(
ςij
)2
,

resp. C∗(W) = 1
r

r∑
i,j=1

(
ς∗ij
)2
 .

The normalized Casorati curvatures δC(m− 1) and δ̂C(m− 1) are defined as
(a)

[δC(m− 1)]℘ =1
2C℘ +

(
m+ 1

2m

)
inf{C(W) |W : a hyperplane of T℘M}resp. [δ∗C(m− 1)]℘ =1

2C
∗
℘ +

(
m+ 1

2m

)
inf{C∗(W) |W : a hyperplane of T℘M}

;

(b)

[δ̂C(m− 1)]℘ =2C℘ −
(

2m− 1
2m

)
sup{C(W) |W : a hyperplane of T℘M}resp. [δ̂∗C(m− 1)]℘ =2C∗℘ −

(
2m− 1

2m

)
sup{C∗(W) |W : a hyperplane of T℘M}

.
Further, we define the generalized normalized Casorati curvatures δC(s;m − 1) and
δ̂C(s;m− 1) as follows

(a) for 0 < s < m2 −m

[δC(s;m− 1)]℘ =sC℘ + ζ(s) inf{C(W) |W : a hyperplane of T℘M}
(resp. [δ∗C(s;m− 1)]℘ =sC∗℘ + ζ(s) inf{C∗(W) |W : a hyperplane of T℘M});
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(b) for s > m2 −m

[δ̂C(s;m− 1)]℘ =sC℘ + ζ(s) sup{C(W) |W : a hyperplane of T℘M}
(resp. [δ̂∗C(s;m− 1)]℘ =sC∗℘ + ζ(s) sup{C∗(W) |W : a hyperplane of T℘M}),

where ζ(s) = 1
sm

(m− 1)(m+ s)(m2 −m− s), s 6= m(m− 1).
Throughout this paper, we work with the above mentioned notations only.

4. Bounds of Normalized Scalar Curvature

The most fascinating problem in the theory of Riemannian submanifolds is to
find simple relationships between various invariants (intrinsic and extrinsic) of the
submanifolds and Riemannian manifolds. Initially, B.-Y. Chen [7] obtained sharp
optimal inequalities involving the intrinsic δ-curvatures of Chen and the extrinsic
squared mean curvature of submanifolds in a real space form. On the other hand, the
study of δ−Casorati [9] curvatures proposed new solutions to the above problem. In
this section, we prove such inequalities for a statistical hypersurface (Mm,∇, g) of a
holomorphic statistical manifold (M2n

,∇, g, J) with constant holomorphic sectional
curvature k, M2n(k).

Theorem 4.1. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n-dimesnional
holomorphic statistical manifold with constant holomorphic sectional curvature k,
M

2n(k). Then

% ≥ k(m+ 3)
4m + m

m− 1‖H‖‖H
∗‖ − 1

m(m− 1)‖ς‖‖ς
∗‖.(4.1)

Proof. Let an orthonormal frame of M be {E1, . . . ,Em} and a unit normal vector to
M be {E}. From equation (2.2), we get

2σ = k(m+ 3)(m− 1)
4m +m2‖H‖‖H∗‖ −

m∑
i,j=1

ςijς
∗
ij.

Applying Cauchy-Buniakowski-Schwarz, we have

2σ ≥ k(m+ 3)(m− 1)
4m +m2‖H‖‖H∗‖ − ‖ς‖‖ς∗‖.

From last inequality, we can easily obtain (4.1). This is the required inequality. �

Theorem 4.1 shows that the normalized scalar curvature is bounded below. Now,
we switch to our next theorem, which shows that the normalized scalar curvature is
bounded above in terms of Casorati curvature. The result is as follows.

Theorem 4.2. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional
holomorphic statistical manifold with constant holomorphic sectional curvature k,
M

2n(k). Then
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(a) the generalized normalized Casorati curvatures δC(s;m − 1) and δ∗C(s;m − 1)
satisfy

(4.2) % ≤ 2δ0
C(s;m− 1)
m(m− 1) +

[
k(m+ 3)

4m + C0

m− 1 −
2m
m− 1‖H

0‖2 + m

m− 1g(H,H∗)
]
,

for any s ∈ R with 0 < s < m(m − 1), where 2C0 = C + C∗ and 2δ0
C(s;m − 1) =

δC(s;m− 1) + δ∗C(s;m− 1);
(b) the generalized normalized Casorati curvatures δ̂C(s;m − 1) and δ̂∗C(s;m − 1)

satisfy

% ≤2δ̂0
C(s;m− 1)
m(m− 1) +

[
k(m+ 3)

4m + C0

m− 1 −
2m
m− 1‖H

0‖2 + m

m− 1g(H,H∗)
]
,(4.3)

for any s ∈ R, with s > m(m − 1), where 2C0 = C + C∗ and 2δ̂0
C(s;m − 1) =

δ̂C(s;m− 1) + δ̂∗C(s;m− 1).

Proof. Let an orthonormal frame of M be {E1, . . . ,Em} and a unit normal vector to
M be {E}. From equation (2.2), we get

2σ(℘) =k4

[
(m− 1)(m+ 3)

]
+ 2m2‖H0‖2 − m2

2

(
‖H‖2 + ‖H∗‖2

)

− 2m C0 + m

2
(
C + C∗

)
.

Let us take a quadratic polynomial K in the components of the second fundamental
form

K =sC0 + ζ(s)C0(W)− 2σ(℘) + k

4

[
(m− 1)(m+ 3)

]

− m2

2

(
‖H‖2 + ‖H∗‖2

)
+ m

2
(
C + C∗

)
.(4.4)

Without loss of generality, we assume that W is spanned by E1, . . . ,Em and together
with (4.4), we find that

K = m+ s

m

m∑
i,j=1

(ς0
ij)2 + ζ(s)

m− 1

m−1∑
i,j=1

(ς0
ij)2 −

(
m∑
i=1

ς0
ii

)2

or

K =
m−1∑
i=1

[
q(ς0

ii)2 + 2(m+ s)
m

(ς0
im)2

]

+
[
2q

∑
1≤i 6=j≤m−1

(ς0
ij)2 − 2

∑
1≤i 6=j≤m

(ς0
iiς

0
jj) + s

m
(ς0
mm)2

]
,(4.5)

where
q =

(
m+ s

m
+ ζ(s)
m− 1

)
.
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From (4.5), we observe that the solutions of the following system of linear homogenous
equations: 

∂K

∂ς0
ii

= 2q(ς0
ii)− 2∑m

l=1 ς
0
ll = 0,

∂K

∂ς0
mm

= 2s
m
ς0
mm − 2∑m−1

l=1 ς0
ll = 0,

∂K

∂ς0
ij

= 4qς0
ij = 0,

∂K

∂ς0
im

= 4(m+s
m

)ς0
im = 0,

(4.6)

are the critical points

ς0c =
(
ς0
11, ς

0
12, . . . , ς

0
mm

)
(4.7)

of K, where i, j = 1, . . . ,m− 1, i 6= j.
Hence, every solution ς0c has ς0

ij = 0 for i 6= j and the determinant which corresponds
to the first two equations of the above system is zero. Furthermore, the Hessian matrix
Hess

K
of K is given by

Hess
K

=

 I O O
O II O
O O III

 ,(4.8)

where O are the null matrices and the matrices I, II and III are, respectively, given
below:

I =− 2


1− q 1 . . . 1 1

1 1− q . . . 1 1
... ... . . . ... ...
1 1 . . . 1− q 1
1 1 . . . 1 −s

m

 ,

II =4q


1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ... ...
0 0 . . . 1 0
0 0 . . . 0 1

 ,

III =4(m+ s)
m


1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ... ...
0 0 . . . 1 0
0 0 . . . 0 1

 .
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Therefore, the eigenvalues of Hessian matrix Hess
K
are given below:

µ11 =0, µ22 = 2
(

2s
m

+ ζ(s)
m− 1

)
, µ33 = · · · = µmm = 2q,

µij =4q, µim = 4(m+ s)
m

, for all i, j = 1, 2, . . . ,m− 1, i 6= j.

Thus, we know that K is parabolic and reaches a minimum K(ς0c) for each solution
ς0c of the system (4.6). From the equations (4.5) and (4.6), we arrive at K(ς0c) = 0.
Hence K ≥ 0, and this further gives following inequality:

2σ(℘) ≤sC0 + ζ(s)C0(W) + k(m− 1)(m+ 3)
4

− m2

2

(
‖H‖2 + ‖H∗‖2

)
+ m

2
(
C + C∗

)
.

Hence, we find that

% ≤ s

m(m− 1)C
0 + ζ(s)

m(m− 1)C
0(W) + k(m+ 3)

4m

− 2m
m− 1‖H

0‖2 + m

m− 1g(H,H∗) + 1
2(m− 1)

(
C + C∗

)
,

for every tangent hyperplane W of M. If we take the infimum over all tangent
hyperplanes W, our assertion (4.2) follows.

In the same manner, we can establish an inequality (4.3) in the second part of the
theorem. �

Remark 4.1. The proof of Theorem 4.2 is mainly based on a classical optimization
procedure by showing that a quadratic polynomial in the components of the second
fundamental form ς0 with respect to Levi-Civita connection is parabolic (see [15,16,
18, 24, 27]). Since, we have proved that the Hessian matrix (4.8) is positive semi-
definite for all points and admits precisely one eigenvalue equal to zero. Therefore,
it is easy to say that K is parabolic and reaches a minimum K(ς0c) for each solution
ς0c of the system (4.6). In fact, because of the convexity, the critical point is a global
minimum. We note that an alternative proof of Theorem 4.2 can be done by making
use of T. Oprea’s optimization technique [23], namely analyzing a suitable constrained
extremum problem (see also [8, 19, 25]).

The characterisation of equality cases in Theorem 4.2.

Theorem 4.3. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional
holomorphic statistical manifold with constant holomorphic sectional curvature k,
M

2n(k). Equalities hold in the relations (4.2) and (4.3) if and only if

ςij = −ς∗ij, for all i, j = 1, . . . ,m, i 6= j,
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and

ς0
mm = m(m− 1)

s
ς0
11 = · · · = m(m− 1)

s
ς0
m−1 m−1.

5. Some Geometric Applications

In this section, we discuss some immediate applications of the results proved in the
previous section. Some immediate consequences of Theorem 4.2 are the following.

Corollary 5.1. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional
holomorphic statistical manifold with constant holomorphic sectional curvature k,
M

2n(k). Then
(a) the normalized Casorati curvatures δC(m− 1) and δ∗C(m− 1) satisfies

% ≤2δ0
C(m− 1) +

[
k(m+ 3)

4m + C0

m− 1 −
2m
m− 1‖H

0‖2 + m

m− 1g(H,H∗)
]
,

where 2C0 = C + C∗ and 2δ0
C(m− 1) = δC(m− 1) + δ∗C(m− 1);

(b) the normalized Casorati curvatures δ̂C(m− 1) and δ̂∗C(m− 1) satisfies

% ≤2δ̂0
C(m− 1) +

[
k(m+ 3)

4m + C0

m− 1 −
2m
m− 1‖H

0‖2 + m

m− 1g(H,H∗)
]
,

where 2C0 = C + C∗ and 2δ̂0
C(m− 1) = δ̂C(m− 1) + δ̂∗C(m− 1).

Remark 5.1. We remark that one can prove Corollary 5.1 by considering s = m(m−1)
2

in δC(s;m− 1) (resp. δ∗C(s;m− 1)) and we have the following relation (see [16])[
δC

(
m(m− 1)

2 ;m− 1
)]

℘

=m(m− 1) [δC(m− 1)]℘resp. [δ∗C
(
m(m− 1)

2 ;m− 1
)]

℘

=m(m− 1) [δ∗C(m− 1)]℘


at any point ℘ ∈M.

Corollary 5.2. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional
holomorphic statistical manifold with constant holomorphic sectional curvature k,
M

2n(k). If M is minimal, i.e., H0 = 0, then
(a) the generalized normalized Casorati curvatures δC(s;m − 1) and δ∗C(s;m − 1)

satisfy

% ≤ 2δ
0
C(s;m− 1)
m(m− 1) + k(m+ 3)

4m + C0

m− 1 + m

m− 1g(H,H∗),

for any s ∈ R, with 0 < s < m(m − 1), where 2C0 = C + C∗ and 2δ0
C(s;m − 1) =

δC(s;m− 1) + δ∗C(s;m− 1);
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(b) the generalized normalized Casorati curvatures δ̂C(s;m − 1) and δ̂∗C(s;m − 1)
satisfy

% ≤ 2 δ̂
0
C(s;m− 1)
m(m− 1) + k(m+ 3)

4m + C0

m− 1 + m

m− 1g(H,H∗),

for any s ∈ R, with s > m(m − 1), where 2C0 = C + C∗ and 2δ̂0
C(s;m − 1) =

δ̂C(s;m− 1) + δ̂∗C(s;m− 1).

The following result follows directly from Corollary 5.1.

Corollary 5.3. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional
holomorphic statistical manifold with constant holomorphic sectional curvature k,
M

2n(k). If M is minimal, i.e., H0 = 0, then
(a) the normalized Casorati curvature δC(m− 1) and δ∗C(m− 1) satisfy

% ≤ 2δ0
C(m− 1) + k(m+ 3)

4m + C0

m− 1 + m

m− 1g(H,H∗),

where 2C0 = C + C∗ and 2δ0
C(m− 1) = δC(m− 1) + δ∗C(m− 1);

(b) the normalized Casorati curvature δ̂C(m− 1) and δ̂∗C(m− 1) satisfy

% ≤ 2δ̂0
C(m− 1) + k(m+ 3)

4m + C0

m− 1 + m

m− 1g(H,H∗),

where 2C0 = C + C∗ and 2δ̂0
C(m− 1) = δ̂C(m− 1) + δ̂∗C(m− 1).

Now, we have the following statistical significance of Theorem 4.1.

Corollary 5.4. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional
holomorphic statistical manifold with constant holomorphic sectional curvature k,
M

2n(k). If M is totally umbilical and totally geodesic with respect to ∇ and ∇∗.
Then

% ≥ k(m+ 3)
4m .(5.1)

Remark 5.2. In the above Corollary 5.4, we have M is totally umbilical and totally
geodesic with respect to ∇ and ∇∗, that is, for any X,Y ∈ TpM, 0 = ς(X,Y) =
g(X,Y)H, which gives H = 0. Similarly, 0 = ς∗(X,Y) = g(X,Y)H∗ implies H∗ = 0.
Hence, an inequality (4.1) reduces to (5.1).

Further, we observe the following.

Corollary 5.5. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional
holomorphic statistical manifold with constant holomorphic sectional curvature k,
M

2n(k). Suppose that % = k(m+3)
4m . Then M is not totally geodesic with respect

to ∇ and ∇∗.
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