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A STUDY OF THE SCATTERING PROPERTIES OF
EIGENPARAMETER-DEPENDENT MATRIX DIFFERENCE

OPERATOR WITH TRANSMISSION CONDITION

GÜLER BAŞAK ÖZNUR1 AND YELDA AYGAR2

Abstract. In this paper, we set a transmission boundary value problem for a
matrix valued difference equation on the semi axis. The main purpose of this study
is to examine the properties of scattering solutions and scattering functions of this
problem. Firstly, by giving the Jost solution and scattering solutions of this problem,
we obtain the Jost function and the scattering function of the problem. We also
investigate eigenvalues, spectral singularities, resolvent operator and continuous
spectrum of this problem.

1. Introduction

In daily life, boundary value or initial value problems are used in the functional
analysis, applied mathematics, spectral analysis and scattering analysis modeling of
many problems encountered in the fields of physics, mathematics and engineering.
For solving these problems in spectral and scattering theory, operator theory is an
important tool. For many years, many scientists have used it to analyse the spectral
and scattering properties of differential and difference operators in physics, quantum
mechanics and applied mathematics. The Sturm-Liouville operator, which is a one-
dimensional Schrödinger operator, has an important one in the literature [23, 25,
27, 31] for this analysis. On the other hand, the state of the process can suddenly
change during some physical and chemical events, including natural problems. Both
differential equations and difference equations theory could not answer this situation.
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Therefore, a new theory was needed. Sudden and sharp changes can be encountered at
same stages of scientific processes. Compared to the whole process, the duration of this
sudden and sharp change is negligible, but the functioning of this system still changes.
These short-term effects are called impulse effects, and to deal with these effects,
the conditions called transmission condition, point interaction, impulsive condition,
jump condition and interface condition are applied to the value problem [1, 21, 26,
28, 29]. Non-stationary biological systems such as heart rhythm beats, blood flows,
population dynamics; physical phenomena with variable structure such as theoretical
physics, atomic physics, radiophysics, phormacokinetics, and many other such as
mathematical economy, chemical technology, electrical technology, metallurgy, ecology,
industrial robotics, medicine contain impulse effects. Therefore, as a natural response
to the developing technology, interest in differential equations with transmission
condition has increased and these equations have been the subject of both theoretical
and experimental researches. The problems for the differential equation systems
with transmission condition were examined in detail by Samoilenko and Perestyuk,
Perestyuk et al. and Lakshmikantham et al. and important results were obtained
[22, 32, 33]. There are many studies in the literature examining the spectral and
scattering analysis of transmission boundary value problems [7, 10–15,18,34]. On the
other hand, although there are many studies investigating the spectral and scattering
theory of various matrix-valued operators without transmission condition [2–5,9,17,30],
there are few studies examining the spectral and scattering theory of transmission
boundary value problem with matrix coefficients [6, 8, 16]. In this study, our aim is
to examine some spectral and scattering properties of a matrix difference operator
with transmission conditions. The difference from [8] is that the spectral parameter
λ is included in both the matrix coefficient difference equation and the boundary
condition. This gives a different perspective to the problem and so this paper becomes
the general form of [8].

Let L denote the matrix difference operator generated in the Hilbert space l2 (N,Cµ)
given by

l2 (N,Cµ) :=

Y = {Yn}n∈N , Yn ∈ Cµ, ||Y ||2 =
∑
n∈N

||Yn||2 < +∞

 ,

where Cµ is a µ-dimensional (µ < ∞) Euclidian space, ||·|| denotes the matrix norm
in Cµ. We shall consider that the operator L is created by the following difference
expression

(1.1) Yn−1 +DnYn + Yn+1 = λYn, n ∈ N\{m0 − 1,m0,m0 + 1},

with the boundary condition

(1.2) (γ0 + γ1λ)Y1 + (ν0 + ν1λ)Y0 = 0, γ0ν1 − γ1ν0 ̸= 0,
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and the transmission conditions

(1.3)

Ym0+1 = K̃Ym0−1,

Ym0+2 = M̃Ym0−2,

where λ = 2 cos z is a spectral parameter, for i = 0, 1, γi, νi are real numbers,
D := {Dn}n∈N is a selfadjoint matrix acting in Cµ satisfying

(1.4)
∑
n∈N

n ||Dn|| < +∞,

and m0 is an arbitrary natural number. Throughout this paper, we assume that K̃
and M̃ are selfadjoint diagonal matrices in Cµ such that all eigenvalues of K̃ and M̃
are different and nonzero. Since D is a selfadjoint matrix, it is clear that if Yn(z)
is a solution of (1.1), then Y T

n (z) is a solution of (1.1), where ”T“ is the transpose
operator.

The set of this paper is summarized as follows. In Section 2, we give the basic
solutions and properties of equation of (1.1) without the transmission condition. In
Section 3, we obtain basic results and theorems for Jost solution, Jost function and
scattering function of this problem. In Section 4, we find resolvent operator and
Green function of the operator L. We also get the sets of eigenvalues and spectral
singularities of this problem. Then, we obtain the asymptotic representation of the
Jost function and continuous spectrum of (1.1)–(1.3).

2. Preliminaries And Auxiliary Results

In this section, we first give useful information and results for matrix difference
equation with a general boundary condition that we use throughout the study. We
remark that Wronskian of any two solutions U = {Un(z)} and V = {Vn(z)} of the
equation (1.1) is known as
(2.1) W

[
U, V T

]
(n) = V T

n−1Un − V T
n Un−1.

Now, let us define two semi-strips

B :=
{
z ∈ C : z = x+ iy, y > 0,−π

2 ≤ x ≤ 3π
2

}
, B0 := B ∪

[
−π

2 ,
3π
2

]
.

Assume that P (z) = {Pn(z)} and Q(z) = {Qn(z)} are the fundamental solutions of
(1.1) for z ∈ B0 and n = 0, 1, . . . ,m0 − 1, fulfilling the initial conditions

P0(z) = 0, P1(z) = I,

Q0(z) = I, Q1(z) = 0.
The solutions Pn(z) and Qn(z) are entire functions of z.

Furthermore, for z ∈ C+ := {λ ∈ C : Imz ≥ 0}, the bounded solution
E(z) = {En(z)} of (1.1) which is represented by

En(z) = einz

[
I +

+∞∑
m=1

Knme
imz

]
, n = m0 + 1,m0 + 2, . . . ,
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where Knm is expressed in terms of {Dn} . E(z) is called the Jost solution of the
equation (1.1) and provides the following asymptotic equalities for z ∈ C+ [20]

En(z) =einz [I + o(1)] , n → +∞,

En(z) =einz [I + o(1)] , Im z → +∞.(2.2)

Additionally, equation (1.1) has an unbounded solution, denoted by Ê(z) =
{
Ên(z)

}
,

which satisfies the following asymptotic equation
Ên(z) = e−inz [I + o(1)] , z ∈ C+, n → +∞.

3. Jost Solution, Jost Function and Scattering Matrix

For z ∈ B0, let us define the following solution of (1.1)–(1.3) by using P (z), Q(z)
and E(z)

Jn(z) =

Pn(z)θ1(z) +Qn(z)θ2(z), if n ∈ {0, 1, . . . ,m0 − 1} ,
En(z), if n ∈ {m0 + 1,m0 + 2, . . . } ,

here θ1 and θ2 are z-dependent coefficients. By the help of (1.3), we can obtain the
following equalities
(3.1) K̃−1Em0+1(z) = Pm0−1(z)θ1(z) +Qm0−1(z)θ2(z)
and
(3.2) M̃−1Em0+1(z) = Pm0−2(z)θ1(z) +Qm0−2(z)θ2(z).

From (2.1), it can be easily found that W
[
P (z), P T (z)

]
= 0, W

[
Q(z), QT (z)

]
= 0

and W
[
P (z), QT (z)

]
= I for all z ∈ C+. Using these Wronskian equalities, (3.1) and

(3.2), θ1(z) and θ2(z) must be as follows:

θ1(z) = K̃−1M̃−1
[
M̃QT

m0−2(z)Em0+1(z) − K̃QT
m0−1(z)Em0+2(z)

]
,

θ2(z) = K̃−1M̃−1
[
K̃P T

m0−1(z)Em0+2(z) − M̃P T
m0−2(z)Em0+1(z)

]
,

respectively. The function Jn(z) is called the Jost solution of (1.1)–(1.3). We define
the Jost function of (1.1)–(1.3) by applying the boundary condition (1.2) to the Jost
solution Jn(z) of the operator L

J̃(z) = (γ0 + γ1λ) J1(z) + (ν0 + ν1λ) J0(z) = (γ0 + γ1λ) θ1(z) + (ν0 + ν1λ) θ0(z).

It is easily seen that the function J̃ is analytic in C+ and continuous up to the real
axis.

For z ∈
[
−π

2 ,
3π
2

]
\{0, π}, (1.1) has another solution F (z) := {Fn(z)} represented

by

Fn(z) =

ψn(z), if n ∈ {0, 1, . . . ,m0 − 1} ,
En(z)θ3(z) + En(−z)θ4(z), if n ∈ {m0 + 1,m0 + 2, . . . } .
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By using the transmission conditions (1.3), it is easy to write
(3.3) Em0+1(z)θ3(z) + Em0+1(−z)θ4(z) = K̃ψm0−1(z)
and
(3.4) Em0+2(z)θ3(z) + Em0+2(−z)θ4(z) = M̃ψm0−2(z).

Since W
[
E(z), ET (z)

]
= 0 and W

[
E(−z), ET (z)

]
= −2 sin z, by making some calcu-

lations in equations (3.3) and (3.4), we find

θ3(z) = − 1
2i sin z

[
K̃ET

m0+2(−z)ψm0−1(z) − M̃ET
m0+1(−z)ψm0−2(z)

]
,

θ4(z) = 1
2i sin z

[
K̃ET

m0+2(z)ψm0−1(z) − M̃ET
m0+1(z)ψm0−2(z)

]
,

for all z ∈
[
−π

2 ,
3π
2

]
\{0, π}.

Corollary 3.1. The coefficients θ3 and θ4 have the following relation between the Jost
function J̃

(3.5) θT
4 (z) = θT

3 (−z) = − K̃M̃

2i sin z J̃(z), z ∈
[
−π

2 ,
3π
2

]
\{0, π}.

Theorem 3.1. For all z ∈
[
−π

2 ,
3π
2

]
\{0, π}, det J̃(z) ̸= 0.

Proof. We assume that there exists a z0 ∈
[
−π

2 ,
3π
2

]
\{0, π}, such that det J̃(z0) = 0.

In accordance with (3.5), we get

det θT
4 (z0) = det θT

3 (−z0) = 1
4 sin2 z

det K̃ det M̃ det J̃(z)

and
det θ4 (z0) = det θ3 (z0) = 0.

It follows from that Fn(z0) = 0, that is, F is a trivial solution of (1.1)–(1.3). This gives
a contradiction with our assumption, i.e., for all z ∈

[
−π

2 ,
3π
2

]
\{0, π}, det J̃(z) ̸= 0.

The proof is completed. □

Theorem 3.1 says that the inverse of the function J̃ exists and we give the following
definition.

Definition 3.1. The matrix function

S(z) = J̃−1(z)J̃(z), z ∈
[
−π

2 ,
3π
2

]
\{0, π},

is called the scattering matrix of (1.1)–(1.3).

Theorem 3.2. For all z ∈
[
−π

2 ,
3π
2

]
\{0, π}, the matrix function S(z) satisfies

S(−z) = S−1(z) = S∗(z),
and it is an uniter matrix, where ”*“ denotes the adjoint operator.
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Proof. By the help of definition of scattering matrix, for all z ∈
[
−π

2 ,
3π
2

]
\{0, π}, we

obtain
S(−z) = J̃−1(−z)J̃(z),

and it concludes

S(z)S(−z) = S(−z)S(z) = I, z ∈
[
−π

2 ,
3π
2

]
\{0, π}.

From the last equality, we find

S(−z) = S−1(z), z ∈
[
−π

2 ,
3π
2

]
\{0, π}.

Now, let us consider the solutions Jn(z), Jn(−z) and Fn(z), to prove S∗(z) = S(−z).
Hence, we write

Fn(z) =Jn(z)η + Jn(−z)α,
Fn+1(z) =Jn+1(z)η + Jn+1(−z)α,(3.6)

where η and α are matrices not depending on n. By making some calculations in (3.6),
η and α are obtained as follows:

η = W−1
[
J̃(z), J̃∗(z)

] {
J∗

n+1(z)Fn(z) − J∗
n(z)Fn+1(z)

}
and

α = W−1
[
J̃(−z), J̃∗(−z)

] {
J∗

n+1(−z)Fn(z) − J∗
n(−z)Fn+1(z)

}
,

respectively. Because of the characteristic features of the transmission conditional
equations, we find that W−1 [J(z), J∗(z)] = −W−1 [J(−z), J∗(−z)] . Then, letting
n = 0 in η and α, the following expressions are obtained

η = W−1 [J(z), J∗(z)] J∗(z), α = −W−1 [J(z), J∗(z)] J∗(−z).
When we substitute η and α in (3.6), we get

Fn(z) = W−1 [J(z), J∗(z)] {Jn(z)J∗(z) − Jn(−z)J∗(−z)} .
By taking n = 0 and n = 1 in last equation, we find the following equations

(γ0 + γ1λ) =W−1 [J(z), J∗(z)] {J0(z)J∗(z) − J0(−z)J∗(−z)} ,(3.7)
(ν0 + ν1λ) = −W−1 [J(z), J∗(z)] {J1(z)J∗(z) − J1(−z)J∗(−z)} .(3.8)

By making some calculations in (3.7) and (3.8), we obtain
(3.9) J̃(z)J̃∗(z) = J̃(−z)J̃∗(−z).
Using (3.9), we easily find

J̃∗(z) = J̃−1(z)J̃(−z)J̃∗(−z)
and

J̃∗(z)
[
J̃∗(−z)

]−1
= J̃−1(z)J̃(−z).

Finally, it is clear that S∗S = SS∗ = I, ||S|| = I, i.e., S is unitary. □
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Lemma 3.1. For all z ∈
[
−π

2 ,
3π
2

]
\{0, π}, the following equation holds

W [J(z), F T (z)](n) =

J̃(z), if n ∈ {0, 1, . . . ,m0 − 1} ,
−K̃M̃J̃(z), if n ∈ {m0 + 1,m0 + 2, . . . } .

Proof. From (2.1), we obtain

W
[
J(z), F T (z)

]
(n) = F T

0 (z)J1(z) − F T
1 (z)J0(z),

for n = 0, 1, . . . ,m0 − 1. Since it is known that P0(z) = 0, P1(z) = I, Q0(z) = I and
Q1(z) = 0, the following Wronskian is easily found

W [J(z), F T (z)](n) = J̃(z), n = 0, 1, . . . ,m0 − 1.
Similarly, for n = m0 + 1,m0 + 2, . . . , we find W [J(z), F T (z)](n) = 2i sin zθT

4 (z). In
view of (3.5), the Wronskian can be arranged

W [J(z), F T (z)](n) = −K̃M̃J̃(z), n = m0 + 1,m0 + 2, . . .
The proof is completed. □

4. Resolvent Operator, Eigenvalues, Spectral Singularities And
Continuous Spectrum

In the following, we will define the other solution of (1.1)–(1.3) for all z ∈ B0

Gn(z) =

ψn(z), if n ∈ {0, 1, . . . ,m0 − 1} ,
En(z)θ5(z) + Ên(z)θ6(z), if n ∈ {m0 + 1,m0 + 2, . . . } .

By using the transmission condition (1.3) to Gn(z), we get
Em0+1(z)θ5(z) + Êm0+1(z)θ6(z) = K̃ψm0−1(z),
Em0+2(z)θ5(z) + Êm0+2(z)θ6(z) = M̃ψm0−(z).

To get the coefficients θ5(z) and θ6(z), we will use same way as finding θ1(z) and
θ2(z). Since

W
[
E(z), ET (z)

]
= 0, W

[
Ê(z), ET (z)

]
= −2i sin z

and
W

[
Ê(z), ÊT (z)

]
= 0, W

[
E(z), ÊT (z)

]
= 2i sin z,

θ5(z) and θ6(z) must be as follows:

θ5(z) = 1
2i sin z

[
K̃ÊT

m0+2(z)ψm0−1(z) − M̃ÊT
m0+1(z)ψm0−2(z)

]
and

θ6(z) = 1
2i sin z

[
K̃ET

m0+2(z)ψm0−1(z) − M̃ET
m0+1(z)ψm0−2(z)

]
.

Note that
θ6(z) = − K̃M̃

2i sin z J̃
T (z).
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Similar to Lemma 3.1, the following Wronskian equation is obtained

C̃(z) := W [J(z), GT (z)](n) =

J̃(z), if n ∈ {0, 1, . . . ,m0 − 1} ,
−K̃M̃J̃(z), if n ∈ {m0 + 1,m0 + 2, . . . } ,

for z ∈ B0.

Theorem 4.1. The resolvent operator of L has the representation

(Rλ (L)φ)n :=
∞∑

k=0
Hn,k(z)φ(k), φ := {φk} ∈ l2

(
N,Ch

)
,

where

Hn,k =

Jn(z)C̃−1(z)GT
k (z), if k < n,

Gn(z)
[
C̃−1(z)

]T
JT

k (z), if k ≥ n,

is the Green function of L for z ∈ B0 and k, n ̸= m0.

Proof. To obtain the resolvent operator and Green function of L, we need to find the
solutions of the following equation
(4.1) ▽ (△Yn) +MnYn − λYn = ψn,

where Mn = 2In + Dn. Using J(z) and G(z), we can write the general solution of
(4.1) as

Yn(z) = Jn(z)Rn +Gn(z)Tn,

where R := {Rn}n∈N and T := {Tn}n∈N are self-adjoint diagonal matrices in Cµ. By
the help of the method of variation of parameters, the coefficients R and T can be
written

Rn = R0 +
n∑

k=1

GT
k (z)φk(z)
C̃(z)

, Tn = ζ +
∞∑

k=n+1

JT
k (z)φk(z)
C̃T (z)

,

where R0 and ζ are self-adjoint diagonal matrices in Cµ. Since the solution Yn(z) in
l2 (N,Cµ), ζ is zero. By the help of the boundary condition (1.2), we find that R0 is
equal to zero. It completes the proof of Theorem 4.1. □

Now, from Theorem 4.1, we define the sets of eigenvalues and spectral singularities
of L as follows:

σd (L) =
{
λ = 2 cos z : z ∈ D, det J̃(z) = 0

}
,

σss (L) =
{
λ = 2 cos z : z ∈

[
−π

2 ,
3π
2

]
\{0, π}, det J̃(z) = 0

}
,

respectively.

Theorem 4.2. Assume (1.4). Then the Jost function J̃ satisfies the following asymp-
totic equation

J̃(z) = ν1
(
K̃M̃

)−1 (
K̃ − M̃

)
[I + o(1)]

(
e5iz + e3iz

)
, z ∈ B0, |z| → +∞.
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Proof. Since the polynomial function Pn(z) is of (n− 1) . degree and polynomial
function Qn(z) is of (n− 2) . degree with respect to λ, we get
(4.2) (ν0 + ν1λ)P T

n (z)ei(n−1)z = ν1 [I + o(1)] , |z| → +∞, z ∈ B0.

It is clear that
J̃(z) =K̃−1M̃−1 (ν0 + ν1λ)

[
K̃P T

m0−1(z)ei(m0−2)ze−i(m0−2)zEm0+2(z)e−i(m0+2)zei(m0+2)z

−M̃P T
m0−2(z)ei(m0−3)ze−i(m0−3)zEm0+1(z)e−i(m0+1)zei(m0+1)z

]
.

By using (2.2) and (4.2), we write the following asymptotic equation

J̃(z) = ν1
(
K̃M̃

)−1 (
K̃ − M̃

)
[I + o(1)]

(
e5iz + e3iz

)
, z ∈ B0, |z| → +∞.

Theorem 4.3. If the condition (1.4) satisfies, then σc (L) = [−2, 2] , where σc (L)
denotes the continuous spectrum of L.

Proof. Let us introduce the operators L1 and L2 generated by the following difference
expression in l2 (N,Cµ) with (1.2) and (1.3)

(L0y)n =Yn−1 + Yn+1, n ∈ N\{m0 − 1,m0 + 1},
(L1Y )n =DnYn, n ∈ N\{m0},

respectively. Under the condition (1.4), it is clear to see the compactness of L1 [24].
On the other hand, we write L = L1

0 + L2
0 + L1, where L1

0 is a selfadjoint operator
with σc (L1

0) = [−2, 2] and L2
0 is a finite dimensional operator in l2 (N,Cµ) . Then,

by the help of Weyl theorem of a compact perturbation [19], we find the continuous
spectrum of L. □
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