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NEW UPPER AND LOWER BOUNDS FOR SOME
DEGREE-BASED GRAPH INVARIANTS

A. GHALAVAND1, A. ASHRAFI1, AND I. GUTMAN2

Abstract. For a simple graph G with vertex set V (G) and edge set E(G), let
deg(u) be the degree of the vertex u ∈ V (G). The forgotten index of G and its
coindex are defined as F (G) =

∑
v∈V (G) deg3(v) and F (G) =

∑
uv 6∈E(G)

[
deg2(u) +

deg2(v)
]
. New bonds for the first Zagreb indexM1(G) =

∑
v∈V (G) deg(v)2, forgotten

index, and its coindex are obtained.

1. Introduction

Throughout this paper, all graphs considered are assumed to be simple, i.e., without
directed, weighted, or multiple edges, without self-loops and with a finite number of
vertices. Let G be such a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set
E(G). A graph with n vertices and m edges will be referred to as an (n,m)-graph.

By deg(v) or degG(v) is denoted the degree of the vertex v ∈ V (G). Let D(G) =
{deg(v1), deg(v2), . . . , deg(vn)}. If D(G) = {r}, then G is said to be r-regular. If
D(G) = {r, s}, then we say that G is (r, s)-biregular. This includes the case of regular
graphs if r = s. Analogously, if D(G) ={r, s, t}, then the graph G will be said to be
(r, s, t)-triregular. Let, in addition, ∆ = maxv∈V (G) deg(v) and δ = minv∈V (G) deg(v).

The first Zagreb index M1(G) is defined as [13]

M1 = M1(G) =
∑

v∈V (G)
deg2(v) =

∑
uv∈E(G)

[deg(u) + deg(v)] .

It is the oldest and most studied degree-based graph invariant; details of its mathe-
matical theory and chemical applications can be found in the surveys [5, 11,17].
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In the paper [13], M1 was used for designing approximate expressions for total
π-electron energy. In the same paper, also the sum of cubes of vertex degrees (F ) was
used for the same purpose. However, whereas M1 eventually gained much popularity
[5,11,17], no attention was paid to F . Only more than forty years later, the invariant
F attracted some interest, thanks to the discovery of its applicability in physical
chemistry [4]. For this reason it was named forgotten index and is defined as [4]:

F = F (G) =
∑

v∈V (G)
deg(v)3 =

∑
uv∈E(G)

[
deg(u)2 + deg(v)2

]
.

In the last few years, numerous mathematical studies of the forgotten index have
been published, see [1–3,6, 7, 10,12,16].

Some of pharmacological applications of the F -index were also attempted [15].
Both M1 and F are special cases of the so-called first general Zagreb index , defined

as

Mα
1 = Mα

1 (G) =
∑

u∈V (G)
deg(u)α =

∑
uv∈E(G)

[
deg(u)α−1 + deg(v)α−1

]
,

where α is an arbitrary real number [15,18].
The coindex of Mα

1 is defined as [18]

Mα
1 (G) =

∑
uv 6∈E(G)
u6=v

[
deg(u)α−1 + deg(v)α−1

]
.

The special case of this expressions for α = 3 is the coindex of the forgotten index
[8, 14]

F (G) =
∑

uv 6∈E(G)
u6=v

[
deg(u)2 + deg(v)2

]
.

2. Main Results

We first state results that improve those reported in [12]. Denote by G the comple-
ment of the graph G.

Theorem 2.1. Let G be an (n,m)-graph. Then

F (G) + F (G) = n4 +M1(G)(3n− 3)− 2m(3n2 − 6n+ 3)− n(3n2 − 3n+ 1)

and

F (G)× F (G) =n4F (G) + (3n− 3)F (G)M1(G)− 2m(3n2 − 6n+ 3)F (G)
− n(3n2 − 3n+ 1)F (G)− F (G)2.
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Proof. By definition of a graph complement, we have

F (G) =
∑

u∈V (G)
degG(u)3 =

∑
u∈V (G)

[
n− 1− degG(u)

]3
=

∑
u∈V (G)

[
n3 + degG(u)2(3n− 3)− degG(u)(3n2 − 6n+ 3)

−3n2 + 3n− 1− degG(u)3
]

=n4 +M1(G)(3n− 3)− 2m(3n2 − 6n+ 3)− n(3n2 − 3n+ 1)− F (G). �

Theorem 2.2. Let G be an (n,m)-graph. Then
F (G) ≤ n∆3 + 3∆M1(G)− 6m∆2 and F (G) ≥ nδ3 + 3δM1(G)− 6mδ2,

with equalities if and only if G is regular.

Proof. Define an auxiliary function Y1(G) = ∑
u∈V (G) [deg(u)− k]3, where k is a real

number. Then,

Y1(G) =
∑

u∈V (G)

[
deg(u)3 − k3 − 3 deg(u)2k + 3 deg(u)k2

]
=F (G)− nk3 − 3kM1(G) + 6mk2.

If k = ∆, then Y1(G) ≤ 0 and F (G) ≤ n∆3 +3∆M1(G)−6m∆2. For k = δ, Y1(G) ≥ 0
and F (G) ≥ nδ3 +3δM1(G)−6mδ2. The equalities hold if and only if G is regular. �

Theorem 2.3. Let G be an (n,m)-graph. Then
F (G) ≥M1(G)(δ + 2∆)−∆2(2m− nδ)− 4m∆δ

and
F (G) ≤M1(G)(∆ + 2δ)− δ2(2m− n∆)− 4mδ∆

with equalities if and only if G is (∆, δ)-biregular.

Proof. Define Y2(G) = ∑
u∈V (G) [deg(u) − k]2 [deg(u) − h], where k and h are real

numbers. Then,

Y2(G) =
∑

u∈V (G)

[
deg(u)2 + k2 − 2 deg(u)k

]
[deg(u)− h]

=
∑

u∈V (G)

[
deg(u)3 − deg(u)2h+ deg(u)k2 − k2h− 2 deg(u)2k + 2 deg(u)kh

]
=F (G)−M1(G)(h+ 2k) + k2(2m− nh) + 4mkh.

If k = ∆ and h = δ, then Y2(G) ≥ 0 and F (G) ≥ M1(G)(δ+ 2∆)−∆2(2m−nδ)−
4m∆δ. For k = δ and h = ∆, we have Y2(G) ≤ 0 and F (G) ≤ M1(G)(∆ + 2δ) −
δ2(2m− n∆)− 4mδ∆. The equalities hold if and only if G is (∆, δ)-biregular. �

Theorem 2.4. Let G be an (n,m)-graph. Then F (G) ≥ 2[M1(G) +m− n]. If G is
connected, then equality holds if and only if G ∼= Pn or G ∼= Cn.
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Proof. Define the auxiliary function Y3(G) = ∑
u∈V (G) [deg(u)2 − 1][deg(u) − 2] and

note that Y3(G) = 0 if and only if ∆(G) ≤ 2. In case of connected graphs, this will
occur if either G ∼= Pn or G ∼= Cn.

Now,

Y3(G) =
∑

u∈V (G)

[
deg(u)3 − 2 deg(u)2 − deg(u) + 2

]
=F (G)− 2M1(G)− 2m+ 2n.

Since Y3(G) ≥ 0, F (G) ≥ 2[M1(G) +m−n] with equality for connected graphs if and
only if G ∼= Pn or G ∼= Cn. �

Theorem 2.5. Let G be an (n,m)-graphs. Then

F (G) ≤ (3∆− 3)M1(G)− 2m(3∆2 − 6∆ + 2) + n∆(∆− 1)(∆− 2)

and
F (G) ≥ (3δ + 3)M1(G)− 2m(3δ2 + 6δ + 2) + nδ(δ + 1)(δ + 2) .

The equalities holds if and only if G is (δ, δ + 1, δ + 2)-triregular.

Proof. Define Y4(G) = ∑
u∈V (G) [deg(u)− a] [deg(u)− b] [deg(u)− c], where a, b, and

c are real numbers. Then,

Y4(G) =
∑

u∈V (G)

[
deg(u)3 − deg(u)2(a+ b+ c) + deg(u)(ab+ ac+ bc)− abc

]
=F (G)− (a+ b+ c)M1(G) + 2m(ab+ ac+ bc)− nabc.

If a = ∆, b = ∆− 1 and c = ∆− 2, then Y4(G) ≤ 0 and F (G) ≤ (3∆− 3)M1(G)−
2m(3∆2− 6∆ + 2) +n∆(∆− 1)(∆− 2). For a = δ, b = δ+ 1 and c = δ+ 2, Y4(G) ≥ 0
and F (G) ≥ (3δ + 3)M1(G) − 2m(3δ2 + 6δ + 2) + nδ(δ + 1)(δ + 2). The equalities
hold if and only if G is (δ, δ + 1, δ + 2)-triregular. �

For the sake of completeness, we mention here a result from [18].

Theorem 2.6. [18] Let G be an (n,m)-graph. Then for α ≥ 1,

Mα+1
1 (G) = (n− 1)Mα

1 (G)−Mα+1
1 (G) .

Theorem 2.7. Let G be an (n,m)-graph. Then

F (G) ≥ 2m[2∆(n− 1) + 3∆2]− n[(n− 1)∆2 + ∆3]− 3∆M1(G) .

The equality holds if and only if G is regular.

Proof. Define

Y5(G) = (n− 1)
∑

u∈V (G)
[deg(u)−∆]2 −

∑
u∈V (G)

[deg(u)−∆]3 .
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Then,

Y5(G) =(n− 1)
∑

u∈V (G)

[
deg(u)2 + ∆2 − 2∆ deg(u)

]
−

∑
u∈V (G)

[
deg(u)3 −∆3 − 3∆ deg(u)2 + 3∆2 deg(u)

]
=(n− 1)M1(G)− F (G) + n

[
(n− 1)∆2 + ∆3

]
− 2m

[
2∆(n− 1) + 3∆2

]
+ 3∆M1(G).

Since Y5(G) ≥ 0, one can see that

(n− 1)M1(G)− F (G) ≥ 2m
[
2∆(n− 1) + 3∆2

]
− n

[
(n− 1)∆2 + ∆3

]
− 3∆M1(G).

The equality holds if and only if G is a regular graph. Therefore, by Theorem 2.6,

F (G) ≥ 2m
[
2∆(n− 1) + 3∆2

]
− n

[
(n− 1)∆2 + ∆3

]
− 3∆M1(G)

with equality if and only if G is regular. �

Theorem 2.8. Let G be an (n,m)-graph. Then

F (G) ≥2m
[
(n− 1)(2∆− 1) + ∆2 + 2∆(∆− 1)

]
−M1(G)(3∆− 1)

− n
[
(n− 1)∆(∆− 1) + ∆2(∆− 1)

]
.

The equality holds if and only if G is (∆,∆− 1)-biregular.

Proof. We define the auxiliary function

Y6(G) =(n− 1)
∑

u∈V (G)
[deg(u)−∆] [deg(u)− (∆− 1)]

−
∑

u∈V (G)
[deg(u)−∆]2 [deg(u)− (∆− 1)] .

Then,

Y6(G) =(n− 1)
∑

u∈V (G)

[
deg(u)2 − deg(u)(2∆− 1) + ∆(∆− 1)

]
−

∑
u∈V (G)

[
deg(u)3 − deg(u)2(3∆− 1) + deg(u)∆2

−∆2(∆− 1) + 2 deg(u)∆(∆− 1)
]

=(n− 1)M1(G)− 2m(n− 1)(2∆− 1) + n(n− 1)∆(∆− 1)
− F (G) +M1(G)(3∆− 1)− 2m∆2 + n∆2(∆− 1)− 4m∆(∆− 1)

=(n− 1)M1(G)− F (G)− 2m
[
(n− 1)(2∆− 1) + ∆2 + 2∆(∆− 1)

]
+ n

[
(n− 1)∆(∆− 1) + ∆2(∆− 1)

]
+M1(G)(3∆− 1) .
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Since Y6(G) ≥ 0,

(n− 1)M1(G)− F (G) ≥2m
[
(n− 1)(2∆− 1) + ∆2 + 2∆(∆− 1)

]
− n

[
(n− 1)∆(∆− 1) + ∆2(∆− 1)

]
− (3∆− 1)M1(G),

with equality if and only if G is a (∆,∆− 1)-biregular graph. We now apply Theorem
2.6 to show that

F (G) ≥2m
[
(n− 1)(2∆− 1) + ∆2 + 2∆(∆− 1)

]
− n

[
(n− 1)∆(∆− 1) + ∆2(∆− 1)

]
− (3∆− 1)M1(G)

with equality if and only if G is (∆,∆− 1)-biregular. �

Theorem 2.9. Let G be an (n,m)-graph. Then

F (G) ≤ 2m
[
(n− 1)(δ + ∆) + ∆2 + 2∆δ

]
− n

[
(n− 1)∆δ + ∆2δ

]
− (δ + 2∆)M1(G).

The equality holds if and only if G is (∆, δ)-biregular.

Proof. Define the function
Y7(G) = (n− 1)

∑
u∈V (G)

[deg(u)−∆] [deg(u)− δ]−
∑

u∈V (G)
[deg(u)−∆]2 [deg(u)− δ] .

Then,

Y7(G) =(n− 1)
∑

u∈V (G)

[
deg(u)2 − deg(u)(δ + ∆) + ∆δ

]
−

∑
u∈V (G)

[
deg(u)3 − deg(u)2(δ + 2∆) + deg(u)∆2 −∆2δ + 2 deg(u)∆δ

]
=(n− 1)M1(G)− 2m(n− 1)(δ + ∆) + n(n− 1)∆δ
−F (G) +M1(G)(δ + 2∆)− 2m∆2 + n∆2δ − 4m∆δ

=(n− 1)M1(G)− F (G)− 2m
[
(n− 1)(δ + ∆) + ∆2 + 2∆δ

]
+ n

[
(n− 1)∆δ + ∆2δ

]
+ (δ + 2∆)M1(G).

Since Y7(G) ≤ 0,

(n− 1)M1(G)− F (G) ≤2m
[
(n− 1)(δ + ∆) + ∆2 + 2∆δ

]
− n

[
(n− 1)∆δ + ∆2δ

]
− (δ + 2∆)M1(G),

and the equality holds if and only if G is a (∆, δ)-biregular graph. We now apply
Theorem 2.6 to show that,

F (G) ≤ 2m
[
(n− 1)(δ + ∆) + ∆2 + 2∆δ

]
− n

[
(n− 1)∆δ + ∆2δ

]
− (δ + 2∆)M1(G),

with equality holding if and only if G is (∆, δ)-biregular. �

Theorem 2.10. Let G be an (n,m)-graph. Then the following holds.
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(a) M1(G) ≤ 2m(δ + ∆)− n∆δ, with equality if and only if G is (∆, δ)-biregular.
(b) M1(G) ≥ 2m(2∆− 1)−n∆(∆− 1) and M1(G) ≥ 2m(2δ+ 1)−nδ(δ+ 1). The

equalities holds if and only if G is (δ, δ + 1)-biregular.
(c) Let r be a real number. Then M1(G) ≥ 4ma− n r2, with equality if and only

if G is an r-regular graph.

Proof. Consider the function Y8(G) = ∑
u∈V (G)

[
deg(u)− a

][
deg(u)− b

]
, where a and

b are real numbers. Then we have,

Y8(G) =
∑

u∈V (G)

[
deg(u)2 − deg(u)b− deg(u)a+ ab

]
=M1(G)− 2m(a+ b) + nab.

If a = ∆ and b = δ, then Y8(G) ≤ 0 andM1(G) ≤ 2m(δ+∆)−n∆δ. Now the equality
holds if and only if G is a (∆, δ)-biregular graph. This completes the part (a).

Suppose that a = ∆ and b = ∆− 1. Then Y8(G) ≥ 0 and M1(G) ≥ 2m(2∆− 1)−
n∆(∆− 1). For a = δ and b = δ+ 1, Y8(G) ≥ 0 and M1(G) ≥ 2m(2δ+ 1)−nδ(δ+ 1).
The equalities hold if and only if G is (δ, δ + 1)-biregular, which completes the proof
of part (b).

Finally, assume that a = b = r. Then Y8(G) ≥ 0 and M1(G) ≥ 4ma − n r2. The
equality holds if and only if G is r-regular. �
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