
Kragujevac Journal of Mathematics
Volume 45(5) (2021), Pages 667–684.

RESULTS ON (ENGEL, SOLVABLE, NILPOTENT) FUZZY
SUBPOLYGROUPS

ELAHE MOHAMMADZADEH1 AND RAJAB ALI BORZOOEI2

Abstract. In this paper, first we define the notion of an Engel polygroup, to
get further properties on Engel fuzzy subpolygroups. Moreover, we prove that
every normal fuzzy subpolygroup of an Engel polygroup is Engel. Furthermore,
we introduce the notions of solvable and nilpotent fuzzy subpolygroups and we get
some of their properties. Finally we investigate the relations among solvable and
nilpotent fuzzy subpolygroups with Engel fuzzy subpolygroups.

1. Introduction

Researches on Engel groups have centered mainly on the question, whether n-Engel
groups are nilpotents. Clearly every 1-Engel group is Abelian. Levi [14] proved that
2-Engel groups are nilpotent of class at most 3. Heineken in [12] showed that every
3-Engel group G is nilpotent of class at most 4 if G has no element of order 2 or
5. L. Kappe and W. Kappe [13] gave a characterization of 3-Engel groups which is
analogous to Levi,s theorem on 2-Engel groups. Moreover, the study of fuzzy Engel
groups was investigated in [2, 16,17].

On the other hand, hyperstructure theory was first initiated by Marty [15] in 1934
when he defined hypergroups and started to analyze their properties. Since there are
extensive applications in many branches of mathematics and applied sciences, the
theory of algebraic hyperstructures has nowadays become a well-established branch
in algebraic theory. Fuzzy subsets have been introduced in (1965) by L. A. Zadeh
[22] as an extension of the classical notion of set. With appropriate definitions in the
fuzzy setting most of the elementary results of group theory have been superseded
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with a starling generalized effect. Specially, the study of fuzzy hyperstructures is an
interesting research topic of fuzzy sets. There is a considerable amount of work on
the connections between fuzzy sets and hyperstructures. Fuzzy hyperstructures is a
direct extension of the concept of fuzzy algebras. This approach can be extended to
fuzzy hypergroups. In [23], the concept of a fuzzy subpolygroup is introduced. In [7],
Borzooei and et. al introduced the notion of Engel (nilpotent) fuzzy subpolygroups
and various properties of Engel fuzzy subpolygroups were proved.

Now, in this paper, first we introduce and study Engel polygroups and solvable
fuzzy subpolygroups. Then, we investigate the important properties of such fuzzy
hyperstructure. Moreover, we obtain a necessary and sufficient condition between
solvable fuzzy subpolygroups and the solvable group P/ ∼, the group of equivalence
classes derived from a fuzzy subpolygroup of P . Finally, by the relation between these
notions we get some interesting results on Engel fuzzy subpolygroups.

2. Preliminary

Let X1, X2, . . . , Xn be non-empty subsets of group G. Define the commutator
subgroup of X1 and X2 by

[X1, X2] = 〈[x1, x2] | x1 ∈ X1, x2 ∈ X2〉.
More generally, define

[X1, . . . , Xn] = [[X1, . . . , Xn−1], Xn],
where n ≥ 2 and [X1] = 〈X1〉. Also, recall that XX2

1 = 〈xx2
1 | x1 ∈ X1, x2 ∈ X2〉 [19].

Let G be any group and x, y ∈ G. Define the n-commutator [x,n y], for any n ∈ N and
x, y ∈ G, by [x,0 y] = x, [x,1 y] = xyx−1y−1 and [x,n y] = [[x,n−1 y], y]. Now, a group
G is called an Engel group if for each x, y ∈ G, there is a positive integer n = n(x, y),
such that [x,n y] = e, where e is the identity of the group G. Suppose n = n(x, y) can
be chosen independently of any x, y ∈ G, then we say that G is an n-Engel group.

We recall the notion of a nilpotent group. Let G be a group. Lower central series of
G is defined by G = l1(G) ≥ l2(G) ≥ · · · , where l1(G) = G and for each integer n > 1,
ln(G) = [ln−1(G), G]. Then G is called nilpotent if there exists a non-negative integer
m, such that lm(G) = {e}. The smallest such integer is called the class of G. Also,
derived series of G is defined by · · · ⊆ Gn ⊆ · · · ⊆ G0 = G; where for each integer
n > 1, Gn = [Gn−1, Gn−1]. Now, G is called solvable if there exists a non-negative
integer m, such that Gm = {e}. The smallest such integer is called the class of G (see
[19]).

Definition 2.1 ([9]). A polygroup is an algebraic structure (P, ·,−1 , e), where ” · ” is
a hyperoperation on P , ”−1” is an unitary operation on P and e ∈ P , such that the
following axioms hold:

(i) (x · y) · z = x · (y · z);
(ii) e · x = x · e = x;
(iii) x ∈ y · z ⇒ y ∈ x · z−1 ⇒ z ∈ y−1 · x,
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for any x, y, z ∈ P .

A non-empty subset K of a polygroup P is called a subpolygroup of P , if a, b ∈ K
implies a · b ⊆ K and a ∈ K implies a−1 ∈ K. A subpolygroup N of a polygroup
P is called normal, if a−1Na ⊆ N , for any a ∈ P (see [9]). The commutator of two
elements in a polygroup 〈P, ·, e,−1 〉, is defined by [x, y] = {t | t ∈ x · y · x−1 · y−1}. If
A ⊆ P , then [A, y] = {t | t ∈ A · y · A−1 · y−1}. Therefore,

[[x, y], y] = {t | t ∈ [x, y] · y · [x, y]−1 · y−1}
and, inductively, we define

[x,n y] = [[x,n−1 y], y] = {t | t ∈ [x,n−1 y] · y · [x,n−1 y]−1 · y−1}.
Also, Ax = {t | t ∈ x · A · x−1} (see [3]).

Definition 2.2 ([1, 3]). Let P be a polygroup. For any s ∈ P and k ≥ 0, we define:
(i) L0,s(P ) = P ;
(ii) Lk+1,s(P ) = {h ∈ P | x · s ∩ h · s · x 6= φ, x ∈ Lk,s(P )};
(iii) L0(P ) = P ;
(iv) Lk+1(P ) = {h | x · y ∩ h · y · x 6= φ, x ∈ Lk(P ) and y ∈ P};
(v) l0,s(P ) = P ;
(vi) lk+1,s(P ) = 〈{h ∈ P | h ∈ [x, s], x ∈ lk,s(P )}〉;
(vii) l0(P ) = P ;
(viii) lk+1(P ) = 〈{h ∈ P | h ∈ [x, y], x ∈ lk(P ), y ∈ P}〉;
(ix) i0(P ) = P , ik+1(P ) = 〈{h ∈ P | h ∈ [x, y], x, y ∈ ik(P )}〉.

Theorem 2.1 ([3]). Let P be a polygroup. Then for any s ∈ P and k ≥ 0
Lk+1,s(P ) = {h ∈ P | h ∈ [x, s], x ∈ Lk,s(P )}.

Let P be a polygroup and ρ ⊆ P × P be an equivalence relation on P . For non-
empty subsets A and B of P , we define AρB ⇔ (for all a ∈ A and for all b ∈ B we
get aρb). Then the relation ρ is called a strongly regular on the left (on the right) if
xρy ⇒ a · xρa · y(x · aρy · a) for any x, y, a ∈ P . Moreover, ρ is called strongly regular
if it is strongly regular on the right and on the left.

Theorem 2.2 ([8]). If P is a polyrgroup and ρ is a strongly regular relation on P ,
then (P/ρ,⊗) is a group, where ρ(x)⊗ ρ(y) = ρ(z) for any z ∈ x · y.

For any n ≥ 1, we define the relation βn on a polygroup P , as follows:

aβnb⇔ (∃(x1, . . . , xn) ∈ P n) {a, b} ⊆
n∏
i=1

xi

and we let β = ∪n≥1βn. Suppose that β∗ is the transitive closure of β. Then β∗ is a
strongly regular relation on P [8].

Let (H, ·) and (H ′ , ?) be two polygroups. A function f : H → H
′ is called a

homomorphism if f(a · b) ⊆ f(a) ? f(b) for any a, b ∈ H. We say that f is a good
homomorphism if f(a · b) = f(a) ? f(b) for any a, b ∈ H.
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Definition 2.3 ([9]). A polygroup P is said to be nilpotent if there exists n ∈ N such
that ln(P ) ⊆ w or equivalently ln(P ).w = w, where w is the kernel of f : P → P

β∗
.

The smallest integer n such that ln(P ).w = w is called the nilpotency class or for
simplicity the class of P . Also, a polygroup P is said to be solvable if there exists
n ∈ N such that in(P ) ⊆ w. The smallest such integer is called the class of P .

A fuzzy subset µ of X is a function µ : X → [0, 1]. Let f be a function from X into
Y , and µ, ν be two fuzzy subsets of X, Y , respectively. Defined the fuzzy subset f(µ)
of Y , by

(f(µ))(y) =


∨

x∈f−1(y)
µ(x), f−1(y) 6= φ,

0, otherwise,
for any y ∈ Y , and fuzzy subset f−1(ν) of X by (f−1(ν))(x) = ν(f(x)) for any
x ∈ X. The intersection µ1 ∩ µ2 of fuzzy subsets µ1 and µ2 of X, is defined by
(µ1 ∩ µ2)(x) = min{µ1(x), µ2(x)} for any x ∈ X. (Note that µ1 ∩ µ2, is the largest
fuzzy subset of X contained in the both of µ1 and µ2). Also µ1×µ2 is a fuzzy subset of
X×X, which is defined by (µ1×µ2)(x1, x2) = min{µ1(x1), µ2(x2)} for any x1, x2 ∈ X
(see [20, 22]).
Definition 2.4 ([20]). Let µ be a fuzzy subset of a group G. Then µ is called a fuzzy
subgroup of G, if µ(xy) ≥ µ(x) ∧ µ(y) and µ(x−1) ≥ µ(x) for any x, y ∈ G. A fuzzy
subgroup µ of G is called normal if µ(xy) = µ(yx) for any x, y ∈ G.
Definition 2.5 ([23]). Let (P, ·) be a polygroup and µ be a fuzzy subset of P . Then
µ is called a fuzzy subpolygroup of P , when z ∈ x · y implies µ(z) ≥ min{µ(x), µ(y)}
and µ(x−1) ≥ µ(x) for any x, y ∈ P . Moreover, a fuzzy subpolygroup µ of P is called
normal if z ∈ x · y and z′ ∈ y · x, then µ(z) = µ(z′) for any x, y ∈ P .
Theorem 2.3 ([23]). Let µ be a fuzzy subpolygroup of polygroup P . Then µ(e) ≥ µ(x)
and µ(x−1) = µ(x), for any x ∈ P . Moreover, µ is a normal fuzzy subpolygroup of P
if and only if µt = {x | µ(x) ≥ t} is a normal subpolygroup of P for any t ∈ [0, µ(e)].
Theorem 2.4 ([10]). Let µ be a fuzzy subpolygroup of a polygroup P . Then the
following conditions are equivalent, for any x, y ∈ P :

(i) µ is a normal fuzzy subpolygroup of P ;
(ii) for any z ∈ y · x · y−1, µ(z) = µ(x);
(iii) for any z ∈ y · x · y−1 , µ(z) ≥ µ(x);
(iv) for any z ∈ y−1 · x−1 · y · x , µ(z) ≥ µ(x).

Theorem 2.5 ([10]). Let P and P ′ be two polygroups, µ be a fuzzy subpolygroup of
P , λ be a fuzzy subpolygroup of P ′ and f : P −→ P

′ be a function. If f is a good
homomorphism, then f−1(λ)(f(µ)) is a fuzzy subpolygroup of P (P ′).
Theorem 2.6 ([10]). Let P1 and P2 be two polygroups and µ and ν be two fuzzy
subpolygroups of P1 and P2, respectively. If µ(e1) = ν(e2) = 1 and µ × ν is a fuzzy
subpolygroup of P1×P2, then µ and ν are fuzzy subpolygroups of P1 and P2, respectively.
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Notation. From now on, in this paper we let (P, ·,−1 , e) be a polygroup and n ∈ N.
For simplicity of notations, sometimes we may write xy instead of x.y.

3. Engel Polygroups

In this section, we introduce the notion of Engel polygroup and we obtain some
results on Engel polygroups that are used in the other sections.

Definition 3.1. A polygroup P is said to be n-Engel(n ∈ N) if ln,s(P ) ⊆ ω or
equivalently ln,s(P ).ω = ω for any s ∈ P , where ω is the heart of P and

l0,s(P ) =P,
lk+1,s(P ) =〈{h ∈ P | h ∈ [x, s], x ∈ lk,s(P )}〉.

Example 3.1. Let P be a polygroup by the following table:
. e a b
e e a b
a a e b
b b b {e, a, b}

.

Then [e, a] = e, [a, a] = e, [b, a] = P and so, l1,a(P ) = 〈{h ∈ P | h ∈ [x, a], x ∈
P}〉 = P . Similarly, we see that l1,b(P ) = P = l1,e(P ). Therefore, for any s ∈ P ,
l1,s(P ) = P = ω. Consequently, P is an 1-Engel polygroup.

Theorem 3.1. Every polygroup of order less than 7 is 1-Engel.

Proof. Suppose that P is a proper polygroup of order less than 7. Then P
β∗

is an
Abelian group of order less than 6. Now, let h ∈ l1,s(P ) where s ∈ P . Then there
exists x ∈ P such that h ∈ [x, s]. Thus,

β∗(h) = β∗([x, s]) = [β∗(x), β∗(s)] = β∗(e),
which implies that h ∈ w. Therefore, P is 1-Engel. �

Theorem 3.2 ([9]). Let (G, ·) be a group and PG = G ∪ {a}, where a /∈ G. Then
(PG, ◦) is a polygroup, where operation ” ◦ ” is defined as follows

(1) a ◦ a = e;
(2) e ◦ x = x ◦ e = x for every x ∈ PG;
(3) x ◦ x−1 = {e, a}, for every x ∈ PG \ {e, a};
(4) a ◦ x = x ◦ a = x, for every x ∈ PG \ {e, a};
(5) x ◦ y = x · y, for every (x, y) ∈ G2 such that y 6= x−1.

Theorem 3.3. Let G be an 1-Engel group. Then 〈PG, ◦, e,−1〉 is an 1-Engel poly-
group.

Proof. Let G be an 1-Engel group. By (1), [a, a] = {t | t ∈ a ◦ a ◦ a−1 ◦ a−1 = e}.
Then e ∈ [a, a]. Using (3) and (4), we have e ∈ [a, y] in which a 6= y ∈ PG\{e, a}.
Hence, e ∈ [a, y] for any y ∈ G ∪ {a}.

(I) Also, by hypotheses, for any x, y ∈ G in which y 6= x−1, we have e = [x, y].
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(II) So, by (I) and (II), e ∈ [x, y] for any x, y ∈ G ∪ {a}.
(III) Now, let h ∈ l1,s(P ) where s ∈ PG. Then h ∈ [x, s] for some x ∈ PG and so by

(III), β∗(h) = [β∗(x), β∗(s)] = β∗(e), which implies that h ∈ w. Therefore, PG is an
1-Engel polygroup. �

Now, in the following theorem we give a method to construct a 1-Engel polygroup
of order n ∈ N.

Theorem 3.4. For every n ∈ N, there is a nontrivial 1-Engel polygroup of order
n+ 1.

Proof. For n ∈ N, consider the Abelian group Zn. Clearly, Zn is 1-Engel. Then by
Theorem 3.3, (PZn , ◦) is an 1-Engel polygroup of order n+ 1. �

Theorem 3.5. Let P1 and P2 be two polygroups. Then for any k ≥ 0
ik(P1 × P2) = ik(P1)× ik(P2).

Proof. We prove our claim by induction on k. For k = 0, the proof is obvious. Now
suppose that (a, b) ∈ ik+1(P1 × P2). Then there exist (u, v), (s, t) ∈ ik(P1 × P2) such
that

(a, b) ∈ [(u, v), (s, t)] = [u, s]× [v, t].
By using the hypotheses of induction, we conclude that (u, v), (s, t) ∈ ik(P1)× ik(P2).
Thus for any u, s ∈ ik(P1), we get a ∈ [u, s] and for any v, t ∈ ik(P2), we get b ∈ [v, t].
Hence (a, b) ∈ ik+1(P1)× ik+1(P2). Similarly, we obtain the converse. Therefore,

ik(P1 × P2) = ik(P1)× ik(P2). �

Theorem 3.6. Let P be a polygroup, s ∈ P and N be a normal subpolygroup of P .
Then

ln,sN

(
P

N

)
= ln,s(P )N

N
, in

(
P

N

)
= in(P )N

N
.

Proof. By induction on n we show that ln,sN
(
P
N

)
⊆ ln,s(P )N

N
and ln,sN( P

N
) ⊇ ln,s(P )N

N
.

For n = 0, the inclusions are obvious. Now, suppose that yN ∈ ln+1,sN( P
N

). Hence,
there exists aN ∈ ln,sN( P

N
) such that yN ∈ [aN, sN ]. By hypotheses of induction,

we have aN ∈ ln,s(P )N
N

. Hence, there exists a′ ∈ ln,s(P ) such that aN = a
′
N . Thus,

yN ∈ [a′N, sN ] = [a′ , s]N . So, there exist a′ ∈ ln,s(P ) and y
′ ∈ [a′ , s] such that

yN = y
′
N . Hence, yN ∈ ln+1,s(P )N

N
. Conversely, if yN ∈ ln+1,s(P )N

N
, then there exists

y
′ ∈ ln+1,s(P ) such that yN = y

′
N . Therefore, y′ ∈ [a, s], for some a ∈ ln,s(P ). Thus,

by hypotheses of induction, aN ∈ ln,s(P )N
N

= ln,sN
(
P
N

)
and yN = y

′
N ∈ [aN, sN ]

implies that yN ∈ ln+1,sN
(
P
N

)
. Therefore, ln,sN

(
P
N

)
= ln,s(P )N

N
. Similarly, we can

prove that in( P
N

) = in(P )N
N

. �

Corollary 3.1. (i) If P is an n-Engel polygroup and N is a normal subpolygroup of
P , then P

N
is n-Engel.
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(ii) If P is a solvable polygroup and N is a normal subpolygroup of P , then P
N

is
solvabel.

Theorem 3.7. Let P1 and P2 be two polygroups and φ : P1 → P2 be a good homo-
morphism. If φ is one to one and K is an n- Engel subpolygroup of P1, then φ(K) is
an n-Engel subpolygroup of P2.

Proof. By induction on n, we show that ln,y(φ(K)) = φ(ln,b(K)), where φ(b) = y and
b, y are fix elements of K and φ(K), respectively. For n = 0, the proof is obvious.
Now, let z ∈ ln+1,y(φ(K)). Then there exists x ∈ ln,y(φ(K)) such that z ∈ [x, y]. By
hypotheses of induction, x ∈ φ(ln,b(K)). Also there exist c, a ∈ K such that z = φ(c)
and x = φ(a). Hence,

φ(c) = z ∈ [φ(a), φ(b)] = φ[a, b], x = φ(a) ∈ φ(ln,b(K)).

Thus for a ∈ ln,b(K), we get c ∈ [a, b] that implies that c ∈ ln+1,b(K). Conversely,
let z ∈ φ(ln+1,b(K)). Then for some c ∈ ln+1,b(K), z = φ(c). Using hypotheses
of induction, z = φ(c) ∈ φ[a, b] = [φ(a), φ(b)], where a ∈ ln,b(K), y = φ(b) and
φ(a) ∈ ln,y(φ(K)). Therefore, z ∈ ln+1,y(φ(K)). �

4. Results on Engel Fuzzy Subpolygroups

In this section, by considering the notion of Engel fuzzy subpolygroup, which is
defined in [7], we state and prove some new related results.

Definition 4.1 ([7]). Let µ be a fuzzy subpolygroup of P and n ∈ N. If for any
x, y ∈ P and z ∈ [x,n y], we have µ(z) = µ(e), then µ is called an n-Engel fuzzy
subpolygroup of P .

Theorem 4.1 ([7]). Let P and P ′ be two polygroups with the identity elements e1 and
e2, respectively, µ and λ be two n-Engel fuzzy subpolygroup of P and P ′, respectively,
and f : P → P

′ be a function.
(i) If f is a good homomorphism, then f−1(λ) is an n-Engel fuzzy subpolygroup

of P .
(ii) If f is an onto good homomorphism, then f(µ) is an n-Engel fuzzy subpolygroup

of P ′.

Proposition 4.1 ([7]). Let µ be a normal fuzzy subpolygroup of P and relation ∼ on
P is defined as follows:

x ∼ y ⇔ (∃a ∈ xy−1) st. µ(a) = µ(e).

Then ∼ is a strongly regular relation on P .

Suppose that for any x ∈ P , µ[x] is the equivalence class containing x with respect
to strongly regular relation ∼ on P and P

∼ denoted the set of all equivalence classes
µ[x], i.e., P∼ = {µ[x] | x ∈ P}.
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Theorem 4.2 ([7]).
(
P
∼ ,�,

−1 , µ[e]
)
is a group, where

µ[x]−1 = µ[x−1], µ[x]� µ[y] = {µ[z] | z ∈ xy},

for any x, y ∈ P .

Theorem 4.3 ([7]). Let µ be a normal fuzzy subpolygroup of a polygroup P . Then µ
is a n-Engel fuzzy subpolygroup of P if and only if P

∼ is a n-Engel group.

Let µ be a normal fuzzy subpolygroup of P . Then {µ(x) | x ∈ P} is called the
order of µ.

Theorem 4.4. Any normal fuzzy subpolygroup of order less than 6, is an 1-Engel
fuzzy subpolygroup of P .

Proof. Let µ be a normal fuzzy subpolygroup of order less than 6. Then P
∼ is a group

of order less than 6. Hence it is Abelian, which implies that P
∼ is an 1-Engel group.

Now, by Theorem 4.3, µ is a 1-Engel fuzzy subpolygroup of P . �

Let µ∗ = {x | µ(x) = µ(e)}. Clearly, µ∗ is a normal subpolygroup of P .

Theorem 4.5. If P is an n-Engel polygroup, then any normal fuzzy subpolygroups of
P is n-Engel.

Proof. Let P be n-Engel and µ be a normal fuzzy subpolygroup of P . First we show
that P

∼ ≈
P
µ∗
. Define

f : P
∼
→ P

µ∗
by f(µ[x]) = µ∗x, x ∈ P.

If µ[x] = µ[y] for x, y ∈ P , then x ∼ y and so there exists r ∈ xy−1 such that
µ(r) = µ(e), where e is the identity element of P . Now, we show that for any x, y ∈ P ,
if x ∼ y, then µ(r) = µ(e) for any r ∈ xy−1. If x ∼ y, then by the definition of
∼, there exists a ∈ xy−1 such that µ(a) = µ(e). Now, let r ∈ xy−1 be an arbitrary
element of P . Since µ is normal, we have µ(e) = µ(a) = µ(r) which implies that for
any r ∈ xy−1, µ(e) = µ(r). Hence, xy−1 ⊆ µ∗. Thus, µ∗x = µ∗y.

Conversely, if µ∗x = µ∗y, then xy−1 ⊆ µ∗ and so for any r ∈ xy−1, µ(e) = µ(r),
which implies that x ∼ y. Consequently, f is an isomorphism by the fact that

µ∗x� µ∗y = {µ∗z | z ∈ xy}, µ[x]� µ[y] = {µ[z] | z ∈ xy}.

Hence, P
∼ ≈

P
µ∗
. Since P is n-Engel, by Corollary 3.1, P

µ∗
is n-Engel and so P

∼ is
n-Engel. Therefore, by Theorem 4.3, µ is n-Engel. �

Example 4.1. Let P = {e, a, b, c, d, f, g}. Then P with the following hyperoperation
is a polygroup
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. e a b c d f g
e e a b c d f g
a a e b c d f g
b b b {e, a} g f d c
c c c f {e, a} g b d
d d d g f {e, a} c b
f f f c d b g {e, a}
g g g d b c {e, a} f

.

Now, we define the fuzzy set µ on P , by

µ(x) =
{

0.75, x ∈ {e, a, f, g},
0, otherwise.

Clearly, P is not an n-Engel polygroup. But, we show that µ is a normal n-Engel
fuzzy subpolygroup of P . Since, for any t ∈ [0, 1], µt = {x | µ(x) ≥ t} is equal to
{e, a, f, g} or P , hence, by Theorem 2.3, µ is a normal fuzzy subpolygroup of P . Now,
for any z ∈ [x,n s] where x, s ∈ P we get z ∈ ln(P ) = {e, a, f, g} and so µ(z) = µ(e),
which implies that µ is a normal n-Engel fuzzy subpolygroup of P .

Theorem 4.6. Let µ be a normal fuzzy subpolygroup of (P, ·,−1 , e1). Then(
P
µ∗
, ·,−1 , e2

)
is an n-Engel polygroup if and only if µ is an n-Engel fuzzy subpolygroup

of P .

Proof. Let P
µ∗

be an n-Engel polygroup and π : P → P
µ∗

be the natural epimorphism.
Since z ∈ π−1(π(x)), we get π(z) = π(x) and so π(e1) ∈ π(z−1 · z) = π(z−1 ·x) . Thus,
there exists r ∈ z−1 ·x such that e2 = π(e1) = π(r), which implies that r ∈ kerπ = µ∗.
Therefore, µ(r) = µ(e1) and so z ∼ x. Hence, for any x ∈ P

π−1(π(µ))(x) = π(µ)(π(x)) =
∨

z∈π−1(π(x))
µ(z) =

∨
z∼x

µ(z) ≥ µ(x),

and so π−1(π(µ)) ⊇ µ. Now, since P
µ∗

is an n-Engel polygroup and π(µ) is a fuzzy
subpolygroup of P

µ∗
, by Theorem 4.5, π(µ) is n-Engel and by Theorem 4.1, π−1(π(µ))

is an n-Engel. Now, we show that µ is n-Engel. For this, let x ∈ [t,n s], where
t ∈ P , s ∈ P and f : P

∼ →
P
µ∗

be as in the proof of Theorem 4.5. Since π−1(π(µ))
is an n-Engel fuzzy subpolygroup of P , so π−1(π(µ))(x) = π−1(π(µ))(e1). Hence,∨
z∼x µ(z) = µ(e1). Then x ∼ e1 and so µ[x] = µ[e1]. Hence by f(µ[x]) = µ∗x we

have µ∗x = µ∗e1. Thus, x ∈ µ∗, which implies that µ(x) = µ(e1). Therefore, µ is an
n-Engel fuzzy subpolygroup of P .

Conversely, let µ be a normal n-Engel fuzzy subpolygroup of P . By Theorem 4.3,
P
∼ is an n-Engel group also, P∼ ∼=

P
µ∗

and so P
µ∗

is an n-Engel group. �

Example 4.2. Let D3 = 〈a, b; a3 = b2 = e, ba = a2b〉 be the dihedral group with six
elements and t0, t1 ∈ [0, 1] such that t0 > t1. Define a fuzzy subgroup µ of D3 as
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follows:
µ(x) =

{
t0, if x ∈< a >,
t1 if x 6∈< a > .

Then µ(e) = t0 and so µ∗ = {x | µ(x) = µ(e)} = 〈a〉. Thus, µ∗ is a normal subgroup
of D3. Also, D3

µ∗
≈ Z2. Since Z2 is Abelian, hence it is 1-Engel and so by Theorem

4.6, µ is an 1-Engel fuzzy subpolygroup of D3.

Theorem 4.7. Let µ and ν be two fuzzy subpolygroups of P such that µ ⊆ ν and
µ(e) = ν(e). If µ is an n-Engel fuzzy subpolygroup of P , then ν is an n-Engel fuzzy
subpolygroup of P , too.

Proof. Let µ and ν be two fuzzy subgroups of P , where µ ⊆ ν and µ(e) = ν(e). Now
let µ be an n-Engel and x ∈ [h,n s], where h ∈ P and s ∈ P . Then, µ(x) = µ(e) = ν(e)
and so by hypotheses ν(e) = µ(x) ≤ ν(x). Thus, ν(x) = ν(e), which implies that ν is
an n-Engel fuzzy subpolygroup of P . �

Definition 4.2 ([6]). Let µ be a fuzzy set on P . Then the lower level subset of µ is
defined by,

µt = {x ∈ P ;µ(x) ≤ t}, where t ∈ [0, 1].
Now the fuzzy set Aµt

is defined by

Aµt
(x) =

{
µ(x), if x ∈ µt,
0, otherwise.

Clearly, Aµt
⊆ µ.

Corollary 4.1. Let Aµt
be an n-Engel fuzzy subpolygroup of P . Then µ is an n-Engel

fuzzy subpolygroup of P , too.

Proof. Let µ be an Engel fuzzy subpolygroup of P . Clearly, Aµt
is a fuzzy supolygroup

of P . Since Aµt
⊆ µ, by Theorem 4.7, Aµt

is Engel fuzzy subpolygroup of P . �

Suppose that µ is a fuzzy subset of P . Support of µ is defined by supp(µ) =
{x ∈ P | µ(x) > 0}.

Definition 4.3 ([4]). Let µ and ν be fuzzy subpolygroups of P and H, respectively.
Then a good isomorphism f : supp(µ)→ supp(ν) is called a fuzzy good isomorphism
from µ to ν, if there exists a positive real number k such that µ(x) = kν(f(x)) for
any x ∈ supp(µ) \ {e}. In this case we write µ ' ν.

Theorem 4.8. Let µ and ν be two fuzzy subpolygroups of (P, ·,−1 , e1) and (H, ·,−1 , e2),
respectively, and µ ' ν. If µ is n-Engel, then ν is an Engel fuzzy subpolygroup of
supp(ν).

Proof. Let z ∈ [x,n y], where x, y ∈ supp(ν). Since µ ' ν, then there exists a
positive real number k such that µ(x) = kν(f(x)) for any x ∈ supp(µ) \ {e1} and
x = f(a), y = f(b) for some a, b ∈ supp(µ). So, z ∈ [x,n y] = [f(a),n f(b)] = f [a,n b].
Therefore, z = f(c), for some c ∈ [a,n b] and so, by hypotheses µ(c) = µ(e1). Thus,
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kν(z) = kν(f(c)) = µ(c) = µ(e1) = kν(f(e1)) = kν(e2) and so, ν(z) = ν(e2), which
implies that ν is n-Engel. �

5. Nilpotent Fuzzy Subpolygroups

In this section, by considering the notion of nilpotent fuzzy subpolygroup, we state
and prove some results on this structure.

Definition 5.1 ([7]). Let µ be a fuzzy subpolygroup of P . Then µ is called a nilpotent
fuzzy subpolygroup of class n (n ∈ N), if z ∈ ln(P ) implies that µ(z) = µ(e).

Theorem 5.1. Any nilpotent fuzzy subpolygroup of class n = 1 is a normal fuzzy
subpolygroup.

Proof. Let µ be a nilpotent fuzzy subpolygroup of class n = 1. Then for any z ∈ l1(P ),
µ(e) = µ(z). Now, the proof follows by Theorem 2.4. �

By the following example we see that the converse of Theorem 5.1, is not true in
general.

Example 5.1. Let P = {e, a, b, c, d, f, g}. Then P with the following hyperoperation
is a polygroup

. e a b c d f g
e e a b c d f g
a a e b c d f g
b b b {e, a} g f d c
c c c f {e, a} g b d
d d d g f {e, a} c b
f f f c d b g {e, a}
g g g d b c {e, a} f

.

We define the fuzzy set µ on P , by

µ(x) =


0.75, x ∈ {e, a},
0.5, x ∈ {f, g},
0, otherwise.

We show that, µ is a normal fuzzy subpolygroup of P which is not nilpotent of
class n = 1. First for any t ∈ [0, 1], µt = {x | µ(x) ≥ t} is equal to {e, a, f, g}, {e, a}
or P and since for any x ∈ P , x−1{e, a}x ⊆ {e, a}, by Theorem 2.3, µ is a normal
fuzzy subpolygroup of P . But for g = [c, f ] ∈ l1(P ) = {e, a, f, g} we get µ(g) 6= µ(e)
which implies that µ is not nilpotent of class n = 1.

Theorem 5.2. Let P1 and P2 be two polygroups with the identity elements e1 and e2,
respectively. Suppose that µ and λ be two nilpotent fuzzy subpolygroups of P1 and P2,
respectively, and φ : P1 → P2 be a function.

(i) If φ is a good homomorphism, then φ−1(λ) is a nilpotent fuzzy subpolygroup
of P1.
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(ii) If φ is an isohomomorphism, then φ(µ) is a nilpotent fuzzy subpolygroup of P2.

Proof. (i) The proof is clear. (ii) First note that ln(φ(P1)) = φ(ln(P1)) (see [9]). Now,
let µ be a nilpotent fuzzy subpolygroup of P1 and y ∈ ln,(P2). Then,

y ∈ ln(P2) = ln(φ(P1)) = φ(ln(P1))
and so there exists z ∈ ln(P1) such that y = φ(z). By hypotheses, µ(z) = µ(e1). Thus,

φ(µ)(y) =
∨

x∈φ(y)
µ(x) = µ(z) = µ(e1) = φ(µ)(e2).

Hence, φ(µ)(y) = φ(µ)(e2), which implies that φ(µ) is nilpotent. �

Theorem 5.3 ([7]). Let µ be a fuzzy subpolygroup of P . Then µ is a nilpotent fuzzy
subpolygroup of P if and only if P

∼ is a nilpotent group.

Note that if P is a nilpotent polygroup and N is a normal subpolygroup of P , then
P
N

is nilpotent (see [9]).

Theorem 5.4. If P is a nilpotent polygroup, then any normal fuzzy subpolygroup of
P is nilpotent.

Proof. Let P be a nilpotent of class n and µ be a fuzzy subpolygroup of P . Since
P
∼ ≈

P
µ∗

and P is nilpotent, P
µ∗

is nilpotent and so P
∼ is nilpotent. Therefore, by

Theorem 5.3, µ is nilpotent. �

Example 5.2. Let µ be as Example 4.1. We show that, P is not nilpotent and µ is a
nilpotent normal fuzzy subpolygroup of P . First note that ln(P ) = {e, a, f, g} (see
[9]) and so P is not nilpotent. Also, for any t ∈ [0, 1], µt = {x | µ(x) ≥ t} is equal to
{e, a, f, g} or P . Therefore, by Theorem 2.3, µ is a normal fuzzy subpolygroup of P .
But for any z ∈ ln(P ), µ(z) = µ(e), which implies that µ is nilpotent.

Theorem 5.5. Let µ be a normal fuzzy subpolygroup of (P, ·,−1 , e1). Then(
P
µ∗
, ·,−1 , e2

)
is a nilpotent polygroup if and only if µ is a nilpotent fuzzy subpoly-

group of P .

Proof. Let P
µ∗

be a nilpoten polygroup and π : P → P
µ∗

be the natural epimomorphism.
Since z ∈ π−1(π(x)), we have π(z) = π(x) and so π(e1) ∈ π(z−1 ·z) = π(z−1 ·x). Then,
there exists r ∈ z−1 ·x such that e2 = π(e1) = π(r), which implies that r ∈ kerπ = µ∗.
Thus, µ(r) = µ(e1) and so z ∼ x. Hence, for any x ∈ P

π−1(π(µ))(x) = π(µ)(π(x)) =
∨

z∈π−1(π(x))
µ(z) =

∨
z∼x

µ(z) ≥ µ(x),

and so π−1(π(µ)) ⊇ µ. Now since P
µ∗

is a nilpotent polygroup and π(µ) is a fuzzy
subpolygroup of P

µ∗
, then by Theorem 5.4, π(µ) is nilpotent and by Theorem 5.2,

π−1(π(µ)) is nilpotent. Now, we show that µ is nilpotent. For this, let x ∈ ln(p)
and f : P

∼ →
P
µ∗

be as in the proof of Theorem 4.5. Since π−1(π(µ)) is nilpotent,
so π−1(π(µ))(x) = π−1(π(µ))(e1). Hence, ∨z∼x µ(z) = µ(e1) and so x ∼ e1. Then
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µ[x] = µ[e1] and by f(µ[x]) = µ∗x, we have µ∗x = µ∗e1. Thus, x ∈ µ∗, which implies
that µ(x) = µ(e1). Therefore, µ is a nilpotent fuzzy subpolygroup of P .

Conversely, let µ be a normal nilpotent fuzzy subpolygroup of P . By Theorem 5.3,
P
∼ is nilpotent. Also, P∼ ∼=

P
µ∗

and so P
µ∗

is nilpotent. �

Example 5.3. In Example 4.2, µ(e) = t0 and so µ∗ = {x | µ(x) = µ(e)} = 〈a〉. Thus µ∗
is a normal subgroup of D3. Also D3

µ∗
≈ Z2. Since Z2 is Abelian, hence it is nilpotent

and so by Theorem 5.5, µ is a nilpotent fuzzy subpolygroup.
Theorem 5.6. Let µ and ν be two fuzzy subpolygroups of P such that µ ⊆ ν and
µ(e) = ν(e). If µ is a nilpotent fuzzy subpolygroup of class n, then ν is a nilpotent
fuzzy subpolygroup of class n.
Proof. Let µ and ν be two fuzzy subgroups of P such that µ ⊆ ν and µ(e) = ν(e).
Now let µ be nilpotent of class n and x ∈ ln(P ). Therefore, µ(x) = µ(e) = ν(e) and
so by hypotheses ν(e) = µ(x) ≤ ν(x). Thus, ν(x) = ν(e), which implies that ν is
nilpotent of class at most n. �

Corollary 5.1. Let Aµt
be a nilpotent fuzzy subpolygroup of P . Then µ is nilpotent,

too.
Proof. Let Aµt

be a nilpotent fuzzy subpolygroup of P . Since Aµt
⊆ µ, by Theorem

5.6, µ is nilpotent. �

6. Solvable Fuzzy Subpolygroups

In this section, we introduce the notion of solvable fuzzy subpolygroup on a poly-
group and we state and prove some new results on it. Specially, we get the relation
between solvable fuzzy subpolygroups and Engel fuzzy subpolygroups (nilpotent fuzzy
subpolygroups).
Definition 6.1. Let µ be a fuzzy subpolygroup of P . Then µ is called a solvable
fuzzy subpolygroup of P if there exists n ∈ N such that for any z ∈ in(P ), µ(z) = µ(e).

In the following example we have a solvable fuzzy subpolygroup.
Example 6.1. Let P = {e, a, b, c, d}. Then P with the following hyperoperation is a
polygroup

. e a b c d
e e a b c d
a a e b c d
b b b { e,a } d c
c c c d { e,a } b
d d d c b { e,a }

.

We define the fuzzy subset µ on P , by

µ(x) =


0.75, x ∈ {e, a},
0.5, x = b,
0, otherwise.
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Then we show that, µ is a solvable fuzzy subpolygroup. First for any t ∈ [0, 1],
µt = {x | µ(x) ≥ t} is equal to {e, a, b}, {e, a} or P . Hence, by Theorem 2.3, µ is a
normal fuzzy subpolygroup of P . Since for any x, y ∈ P , [x, y] = e or {e, a} then for
any z ∈ i1(P ), µ(z) = µ(e) and so, µ is solvable.

In the following, we are ready to obtain a necessary and sufficient condition between
solvable fuzzy subpolygroups and the solvable group P/ ∼, the group of equivalence
classes derived from the fuzzy subpolygroup of P . Now, we use notation ik(H) instead
of derived series Gk, where k ∈ N and H is a group. Also, for simplity we write
µ[x]µ[y] instead of µ[x]� µ[y].

Lemma 6.1. For any 0 ≤ k

ik

(
P

∼

)
= 〈{µ[t] | t ∈ ik(P )}〉.

Proof. We do the proof by induction on k. For k = 0, we have

i0

(
P

∼

)
= P

∼
= 〈{µ[t] | t ∈ i0(P ) = P}〉.

Now, let it is true for k. We claim that

ik+1

(
P

∼

)
⊇ 〈{µ[t] | t ∈ ik+1(P )}〉.

For this, suppose that µ[a] ∈ 〈{µ[t] | t ∈ ik+1(P )}〉. Then a ∈ ik+1(P ) and so there
exist x, s ∈ ik(P ) such that a ∈ [x, s]. By hypotheses of induction we conclude
that µ[x], µ[s] ∈ ik(P∼). Thus, µ[a] = [µ[x], µ[s]] in which µ[x], µ[s] ∈ ik(P∼). Hence,
µ[a] ∈ ik+1

(
P
∼

)
. Also,

ik+1

(
P

∼

)
⊆ 〈{µ[t] | t ∈ ik+1(P )}〉.

Since for µ[a] ∈ P
∼ ∈ ik+1(P∼), we have µ[a] = [µ[x], µ[s]] in which µ[x], µ[s] ∈ ik

(
P
∼

)
.

Using hypotheses of induction x, s ∈ ik(P ) (1). Thus µ[a] = µ[x]µ[s](µ[x])−1(µ[s])−1,
which implies that µ[x]µ[s] = µ[a]µ[s]µ[x]. Thus, there exist c ∈ xs and d ∈ asx
such that µ[c] = µ[d]. Since P is a polygroup, then there exists u ∈ P such that
c ∈ xs ∩ usx (2). Then

µ[a]µ[s]µ[x] = µ[d] = µ[c] = µ[x]µ[s] = µ[c] = µ[u]µ[s]µ[x].

Hence, µ[a] = µ[u] (3). By (2) and (1), we have u ∈ ik+1(P ). Now, using (3) and
previous relation we have

µ[a] = µ[u] ∈ 〈{µ[t] | t ∈ ik+1(P )}〉. �

Theorem 6.1. Let µ be a normal fuzzy subpolygroup of a polygroup P . Then µ is a
solvable fuzzy subpolygroup if and only if P

∼ is a solvable group.
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Proof. (⇒) Suppose that µ is a solvable fuzzy subpolygroup of P and k ∈ N. Then by
Lemmas 6.1, it is enough to show that 〈{µ[t] | t ∈ ik(P )}〉 = {µ[e]}. If t ∈ ik(P ), then
by hypotheses µ(t) = µ(e) and so t ∼ e, which implies that µ[t] = µ[e]. Therefore, P∼
is a solvable group.

(⇐) Let P
∼ is solvable. We show that if z ∈ ik(P ), then µ(z) = µ(e). If z ∈ ik(P ),

then z ∈ [x, s] where x, s ∈ ik−1(P ). Hence, µ[z] = [µ[x], µ[s]], which by hypotheses
implies that µ[z] = µ[e] and so z ∼ e. Then there exists r ∈ ze−1 such that µ(r) = µ(e)
and so µ(z) = µ(r) = µ(e). Therefore, µ is an a solvable fuzzy subpolygroup. �

Theorem 6.2. Let P be a solvable polygroup. Then any normal fuzzy subpolygroup
of P is solvable.

Proof. Let P be solvable polygroup and µ be a fuzzy subpolygroup of P . Since P
∼ ≈

P
µ∗

and P is solvable, by Corollary 3.1, P
µ∗

is solvable and so P
∼ is solvable, too. Therefore,

by Theorem 6.1, µ is solvable. �

Example 6.2. Let A5 be the alternating group of degree 5 and P = A5 ∪ {a} be a
polygroup as Theorem 3.2. We define the fuzzy subset µ on P , by µ(x) = 1, for
any x ∈ P . It is clear that P is not solvable (see [9]). But, for any t ∈ [0, 1],
µt = {x | µ(x) ≥ t} is equal to P . Hence, by Theorem 2.3, µ is a normal fuzzy
subpolygroup of P . Now, since for any z ∈ P , µ(z) = µ(e), we get that µ is solvable.

By the same manipulation of Theorem 5.2, we have the following theorem.

Theorem 6.3. Let P1 and P2 be two polygroups with the identity elements e1 and e2,
respectively. Suppose that µ and λ be two solvable fuzzy subpolygroup of P1 and P2,
respectively, and φ : P1 → P2 be a function.

(i) If φ is a good homomorphism, then φ−1(λ) is a solvable fuzzy subpolygroup of
P1.

(ii) If φ is an isohomomorphism, then φ(µ) is a solvable fuzzy subpolygroup of P2.

Theorem 6.4. Let µ be a normal fuzzy subpolygroup of (P, ·,−1 , e1). Then ( P
µ∗
, ·,−1 , e2)

is a solvable polygroup if and only if µ is a solvable fuzzy subpolygroup.

Proof. Let P
µ∗

be a solvable polygroup and π : P → P
µ∗

be the natural epimorphism.
Since z ∈ π−1(π(x)), we have π(z) = π(x) and so π(e1) ∈ π(z−1 ·z) = π(z−1 ·x). Thus,
there exists r ∈ z−1 · x such that e2 = π(e1) = π(r) which implies that r ∈ kerπ = µ∗.
Hence, µ(r) = µ(e1) and so z ∼ x. Then, for any x ∈ P ,

π−1(π(µ))(x) = π(µ)(π(x)) =
∨

z∈π−1(π(x))
µ(z) =

∨
z∼x

µ(z) ≥ µ(x),

and so π−1(π(µ)) ⊇ µ. Now, since P
µ∗

is a solvable polygroup and π(µ) is a fuzzy
subpolygroup of P

µ∗
, by Theorem 6.2, π(µ) is solvable and by Theorem 6.3, π−1(π(µ))

is solvable. Now, we show that µ is solvable. For this let x ∈ in(p) and f : P
∼ −→

P
µ∗

be as in the proof of Theorem 4.5. Since π−1(π(µ)) is solvable, so π−1(π(µ))(x) =
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π−1(π(µ))(e1). Then
∨
z∼x µ(z) = µ(e1) and so x ∼ e1. Hence, µ[x] = µ[e1]. Now, by

f(µ[x]) = µ∗x we have µ∗x = µ∗e1. Thus x ∈ µ∗ which implies that µ(x) = µ(e1).
Therefore, µ is a solvable fuzzy subpolygroup.

Conversely, let µ be a normal solvable fuzzy subpolygroup of P . By Theorem 6.1,
P
∼ is solvable also, P∼ ∼=

P
µ∗

and so P
µ∗

is solvable. �

Example 6.3. In Example 4.2, µ(e) = t0 and so µ∗ = {x | µ(x) = µ(e)} = 〈a〉. Thus
µ∗ is a normal subgroup of D3. Also, D3

µ∗
≈ Z2. Since Z2 is Abelian, it is solvable and

so by Theorem 6.4, µ is a solvable fuzzy subgroup.

Theorem 6.5. Let µ and ν be two fuzzy subpolygroups of P such that µ ⊆ ν and
µ(e) = ν(e). If µ is a solvable fuzzy subpolygroup, then ν is a solvable fuzzy subpoly-
group.

Proof. Let µ and ν be two fuzzy subgroups of P such that µ ⊆ ν and µ(e) = ν(e).
Now let µ be solvable and x ∈ in(P ). Hence, µ(x) = µ(e) = ν(e) and so by hypotheses
ν(e) = µ(x) ≤ ν(x). Therefore, ν(x) = ν(e), which implies that ν is solvable. �

Corollary 6.1. If Aµt
is a solvable fuzzy subpolygroup of P , then µ is solvable, too.

Proof. Let Aµt
be a solvable fuzzy subpolygroup of P . Since Aµt

⊆ µ, by Theorem
6.5, µ is solvable. �

Theorem 6.6. Let µ be a nilpotent fuzzy subpolygroup of P . Then µ is a solvable
fuzzy subpolygroup.

Proof. First we prove that ij(P ) ⊆ lj(P ), for any non negative integer j. We do the
proof by induction on j. The proof is clear for j = 0. Now let ij(P ) ⊆ lj(P ), for
any j ≤ n and x ∈ in(P ). Then x ∈ [a, b], for some a, b ∈ in−1(P ). By hypotheses of
induction, a ∈ ln−1(P ) and b ∈ P . Thus, x ∈ ln(P ). Hence ij(P ) ⊆ lj(P ), for any
non negative integer j. Now, let x ∈ in(P ) and µ be a nilpotnt fuzzy subpolygroup
of class n ∈ N. Since x ∈ in(P ) ⊆ ln(P ) so by hypotheses µ(x) = µ(e). Therefore, µ
is solvable. �

We recall that if G is a group and a ∈ G, then the order of a is the least positive
integer n such that an = e. Also, a group G is of exponent n ( n ∈ N), if the order of
any x ∈ G is n.

Definition 6.2. If µ is a fuzzy subpolygroup of P and a ∈ P , then the order of a
with respect to µ is the least positive integer n such that for any r ∈ an, µ(r) = µ(e).
We denote the order of a with respect to µ by ◦(µ(a)). Also, µ is of exponent n, if
the order of any a ∈ P is n.

Theorem 6.7. Let µ be a fuzzy polygroup of P and x ∈ P . If for any r ∈ xm we
have µ(r) = µ(e) for some integer m, then ◦(µ(a)) | m.

Proof. Let ◦(µ(a)) = n. By the Euclidean algorithm, there exist integers s and t
such that m = ns + t, where 0 ≤ t < n. Then for r ∈ xt = xm · (xn)−s, there exist
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h ∈ xm and g ∈ (xn)−s such that r ∈ hg and so µ(r) ≥ µ(h) ∧ µ(g) ≥ µ(e) ∧ µ(g) =
µ(g). Since g ∈ (xn)−s = (xn)−1 · (xn)−1 · · · (xn)−1, we get g ∈ p1.p2 . . . ps, in which
p1, p2, . . . , ps ∈ (xn)−1 and so by hypotheses µ(g) ≥ µ(e). Consequently, µ(r) = µ(e).
Hence, t = 0, by the minimality of n. �

Theorem 6.8 ([11,14]). (i) Every 3-Engel group of exponent 4, is solvable.
(ii) Each group of exponent 3 is 2-Engel.

Theorem 6.9. (i) Let µ be a 3-Engel normal fuzzy subpolygroup of exponent 4. Then
µ is solvable.

(ii) Each normal fuzzy subpolygroup of exponent 3 is 2-Engel.

Proof. (i) Let µ be a 3-Engel normal fuzzy subpolygroup on P such that for any z ∈ x4,
µ(z) = µ(e). Then, by Theorem 4.3, P

∼ is a 3-Engel group and µ[e] = µ[z] = (µ[x])4.
Therefore, by Theorem 6.8 (i), P∼ is solvable and so, by Theorem 6.1, µ is solvable.

(ii) By Theorem 4.2, µ[e] = µ[z] = (µ[x])3. Thus, P
∼ is of exponent 3 and so by

Theorem 6.8(ii), P∼ is 2-Engel. Therefore, by Theorem 4.3, µ is 2-Engel. �

Theorem 6.10 ([18]). Every 3-Engel solvable group with no element of order 2, is
nilpotent.

Theorem 6.11. Let µ be a 3-Engel solvabel normal fuzzy subpolygroup on P such
that for any z ∈ x2, µ(z) 6= µ(e). Then µ is nilpotent.

Proof. Let µ be a 3-Engel solvable normal fuzzy subpolygroup of P such that for any
z ∈ x2, µ(z) 6= µ(e). Then, by Theorems 4.3 and 6.1 P

∼ is a 3-Engel solvabel group
and µ(e) 6= µ(z) = (µ(x))2. Therefore, by Theorem 6.10, P

∼ is nilpotent and so, by
Theorem 5.3, µ is nilpotent. �

7. Conclusions

In this paper, we defined the notion of Engel polygroups. This help us to get usefull
results on Engel fuzzy subpolygroups. On the other hand, we prove that every normal
fuzzy subpolygroup of an Engel polygroup is Engel. Also, some connections between
Engel (nilpotent, solvable) fuzzy subpolygroups and Engel (nilpotent, solvable) groups
are stablished and studied. Finally, we prove some results on 3-Engel fuzzy subpoly-
groups. Specially, we prove that every 3-Engel normal fuzzy subpolygroup of exponent
4, is solvable.

Acknowledgements. The authors wish to express their appreciation for several
excellent suggestions for improvements in this paper made by the editor and referees.

In this research, E. Mohammadzadeh has been supported by a grant from Payame
Noor University, Iran.



684 E. MOHAMMADZADEH AND R. A. BORZOOEI

References
[1] H. Aghabozorgi, B. Davvaz and M. Jafarpour, Nilpotent groups derived from hypergroups, J.

Algebra 382 (2013) 177–184.
[2] R. Ameri, R. A. Borzooei and E. Mohammadzadeh, Engel fuzzy subgroups, Ital. J. Pure Appl.

Math. 34 (2015), 251–262.
[3] R. Ameri and E. Mohammadzadeh, Engel groups derived from hypergroups, European J. Combin.

44 (2015), 191–197.
[4] R. Ameri and H. Hedayati, Fuzzy isomorphism and quotient of fuzzy subpolygroups, Quasigroup

Related Systems 13 (2015), 175–184.
[5] S. Bachmuth and H. Y. Mochizuki, Third Engel groups and the Macdonald-Neumann conjecture,

Bull. Austral. Math. Soc. 5 (1971), 379–386.
[6] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35 (1990), 121–124.
[7] R. A. Borzooei, E. Mohammadzadeh and V. Fotea, On Engel fuzzy subpolygroups, New Math.

Nat. Comput. 13(2) (2017), 165–206.
[8] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.
[9] B. Davvaz, Polygroup Theory and Related Systems, World Scientific, Basel, 2013.

[10] B. Davvaz and I. Cristea, Fuzzy Algebraic Hyperstructures. An Introduction, Springer-Verlag,
Berlin, 2015.

[11] N. D. Gupta and K. W. Weston, On groups of exponent four, J. Algebra 17 (1971), 59–66.
[12] H. Heineken, Engelsche elemente der lange drei, Illinois J. Math. 5 (1961), 681–707.
[13] L. C. Kappe and W. P. Kappe, On three-Engle groups, Bull. Austral. Math. Soc. 7 (1972),

391–405.
[14] F. W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J.

Indian Math. Soc. 6 (1942), 87–97.
[15] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves,

Stockholm, Sweden, 1934, 45–49.
[16] E. Mohammadzadeh and R. A. Borzooei, Nilpotent fuzzy subgroups, Mathematics 6(27) (2018),

DOI 10.3390/math6020027.
[17] E. Mohammadzadeh, R. A. Borzooei and Y. B. Jun, Results on Engel fuzzy subgroups, Algebraic

Structures and Their Applications 4(2) (2017), 1–14.
[18] D. J. S. Robinson, Finitiness Conditions and Generalized Soluble Groups (Part 2), Springer-

Verlag, New York, Berlin, 1972.
[19] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1980.
[20] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.
[21] M. Suzuki, Group Theory I, Springer-Verlag, Berlin, New York, 1982.
[22] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
[23] M. Zahedi, M. Bolurian and A. Hasankhani, On polygroups and fuzzy subpolygroups, J. Fuzzy

Math. 1 (1995), 1–15.
[24] M. Zorn, Nilpotency of finite groups, Bull. Amer. Math. Soc. 42 (1936), 485–486.

1Department of Mathematics, Faculty of Science,
Payame Noor University,
193953697, Tehran, Iran
Email address: mohamadzadeh36@gmail.com

2Department of Mathematics,
Shahid Beheshti University,
Tehran, Iran
Email address: borzooei@sbu.ac.ir


	1. Introduction 
	2. Preliminary 
	3. Engel Polygroups
	4.  Results on Engel Fuzzy Subpolygroups
	5. Nilpotent Fuzzy Subpolygroups
	6. Solvable Fuzzy Subpolygroups
	7. Conclusions
	Acknowledgements.

	References

