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RANDIĆ INDEX OF A GRAPH WITH SELF-LOOPS

HARSHITHA A1, SABITHA D’SOUZA1∗, AND PRADEEP G. BHAT1

Abstract. Let G(n, m) be a simple graph with vertex set V and S ⊆ V with
|S| = σ. The graph GS is obtained by adding a self-loop to each vertex of the graph
G in the set S. The Randić index of a graph is one of the important topological
indices which has its application in chemistry. In this manuscript, the Randić index
of a graph with self-loops is defined and are obtained some bounds for the same.

1. Introduction

Let GS(n, m + σ) be a graph obtained by attaching a self-loop to each vertices in
the set S ⊆ V (G) of a simple graph G(n, m), where |S| = σ. Degree of a vertex in a
graph G is the number of edges incident on a vertex. The notation degG(v) represents
the degree of a vertex v in the graph G. A self-loop contributes 2 to the number of
edges incident on a vertex. The Randić index is one of the most studied degree-based
topological index in the literature which has various applications in chemistry and
pharmacology. Randić index was introduced by M. Randić [1] in 1976 and it is defined
as

R(G) =
∑

vivj∈E(G)

1√
degG(vi) degG(vj)

.

For more studies on Randić index, one can refer the papers [2–6]. All the results
with regards to Randić index are obtained for a simple graphs. In this paper, the
authors define Randić index of a graph with self-loops. Let GS be a graph obtained
by attaching a self-loop to each vertices in the set S ⊆ V of vertices of the graph
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G(V, E), where |S| = σ. The Randić index of GS is defined as

R(GS) =
∑

vivj∈E(GS)

1√
degGS

(vi) degGS
(vj)

=
∑

vivj∈E(G)
∧ vi,vj∈V −S

1√
degG(vi) degG(vj)

+
∑

vivj∈E(G)
∧ vi∈S,vj∈V −S

1√
(degG(vi) + 2) degGS

(vj)

+
∑

vivj∈E(G)
∧ vi,vj∈S

1√
(degG(vi) + 2)(degG(vj) + 2)

+
∑
vi∈S

1
degG(vi) + 2 .

A graph is a tree if it is connected and acyclic. In a tree, the vertex with degree 1
is called a pendant vertex and the vertex with degree 2 or more is called an internal
vertex. The notation ⟨S⟩ represents the graph induced by the vertices of the set S.

For all notations and terminology, the reader is directed to the references [7, 8].

2. Main Results

The Randić index of a graph GS may increase, decrease or equal to the Randić
index of the graph G. For instance, consider a path graph P4 with path v1v2v3v4. Let
S = {v1} . Then, R((P4)S) = 1.9486, which is more than R(P4) = 1.9142. For the
same graph P4, if S = {v2}, then R((P4)S) = 1.8106 which is less than Randić index
of P4. For the path graph P2 = {v1, v2} with S = {v1, v2}, R(P2) = R((P2)S) = 1.

Theorem 2.1. Let G(V, E) be a r-regular graph and S ⊆ V with |S| = σ. For the
graph GS, obtained by attaching a self-loops to each vertices of S,

R(GS) = mS + σ

r + 2 + mV −S

r
+ m − mS − mV −S√

r(r + 2)
,

where m = |E(G)|, mS = |E(⟨S⟩)| and mV −S = |E(⟨V − S⟩)|.

Proof. Let GS be a graph obtained by attaching a self-loop to each vertex in the set
S ⊆ V of a r-regular graph G(V, E). Consider,

R(GS) =
∑

vivj∈E(G)
∧ vi,vj∈S

1√
(r + 2)2

+
∑

vivj∈E(G)
∧ vi∈S,vj ̸∈S

1√
r(r + 2)

+
∑

vivj∈E(G)
∧ vi,vj ̸∈S

1√
r2

+
∑
vi∈S

1√
(r + 2)2

.

Let |E| = m, mS be the number of edges of ⟨S⟩, and mV −S be the number of edges
of ⟨V − S⟩. Therefore,

R(GS) = mS + σ

r + 2 + mV −S

r
+ m − mS − mV −S√

r(r + 2)
. □



RANDIĆ INDEX OF A GRAPH WITH SELF-LOOPS 761

Theorem 2.2. Let G be a r-regular graph of order n and size m and GS be a graph
obtained by attaching a self-loop to all the vertices of G. Then,

R(GS) = R(G) = n

2 .

Proof. Let GS be a graph obtained by attaching a self-loop to all the vertices of the
graph G. Then,

R(GS) = m + σ

r + 2 .

But σ = n and m = nr
2 for r-regular graph. Therefore,

R(GS) = nr + 2n

2(r + 2) = n

2 .

Also,

R(G) = m

r
= nr

2r
= n

2 .

Therefore, if σ = n,

R(GS) = R(G) = n

2 . □

Theorem 2.3. Let GS be a graph obtained by attaching a self-loop to each vertices
in the set S ⊆ V of a graph G(n, m). If |S| = σ = n, then

m + n

∆ + 2 ≤ R(GS) ≤ m + n

δ + 2 .

Upper and lower bound sharpness occur for the regular graph.

Proof. Let G be a graph and GS be a graph obtained by attaching a self-loop to all
the vertices of G. Then,

R(GS) =
∑

vivj∈E(G)

1√
(degG(vi) + 2)(degG(vj) + 2)

+
n∑

i=1

1
degG(vi) + 2 .

But,√
(degG(vi) + 2)(degG(vj) + 2) =

√
degG(vi) degG(vj) + 2(degG(vi) + degG(vj)) + 4

≤
√

∆2 + 4∆ + 4
= ∆ + 2.

This implies,
1√

(degG(vi) + 2)(degG(vj) + 2)
≥ 1

∆ + 2 .

Also,
1

degG(vi) + 2 ≥ 1
∆ + 2 .
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Therefore,

R(GS) ≥ m

∆ + 2 + n

∆ + 2 ≥ m + n

∆ + 2 .

Similarly,

1√
(degG(vi) + 2)(degG(vj) + 2)

≤ 1
δ + 2

and
1

degG(vi) + 2 ≤ 1
δ + 2 .

Therefore,

R(GS) ≤ m

δ + 2 + n

δ + 2 ≤ m + n

δ + 2 .

If G is a regular graph, then degG(vi) = ∆ = δ = r, for each i = 1, 2, . . . , n and
therefore,

R(GS) = m + n

r + 2 . □

Theorem 2.4. Let T be a tree of order n having k-pendant vertices and TS be a graph
obtained by adding a self-loop to each pendant vertex. Then,

n − 1
3 + n − 1√

3(n − 1)
≤ R(TS) ≤ k

3 + k√
6

+ n + k − 1
2 .

Lower bound sharpness occurs for a star graph and upper bound sharpness occurs for
a path graph.

Proof. Let TS be a graph obtained by adding a self-loop to all k-pendant vertices of
a tree of order n. Now,

R(TS) =
∑

vivj∈E(T )
vi,vj ̸∈S

1√
degT (vi) degT (vj)

+
k∑

i=1

1√
degT (vi)(degT (vk) + 2)

+
k∑

i=1

1√
(degT (vk) + 2)2

≤n − k − 1
2 + k√

6
+ k

3 .

Equality holds for a path graph since each internal vertex of a path graph is of degree 2.
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Now, for upper bound, degT (vi) ≤ n − 1 and therefore 1√
degT (vi)

≥ 1
n−1 . Consider,

R(TS) =
∑

vivj∈E(T )
vi,vj ̸∈S

1√
degT (vi) degT (vj)

+
k∑

i=1

1√
degT (vi)(degT (vk) + 2)

+
k∑

i=1

1√
(degT (vk) + 2)2

≥ n − 1√
3(n − 1)

+ n − 1
3 .

Equality holds for a star graph since maximum degree of an internal vertex of a star
graph is n − 1. □

Theorem 2.5. Let T be a tree of order n having k-pendant vertices and TS be a graph
obtained by adding a self-loop to each internal vertex. Then,

√
n + 1 + (n − 1)

n + 1 ≤ R(TS) ≤ 2n − 1
4 .

Lower bound sharpness occurs for a star graph and upper bound sharpness occurs for
a path graph.

Proof. Let T be a tree of order n having k-pendant vertices and TS be a graph obtained
by adding a self-loop to each internal vertex. Let vk and vi represent pendant vertex
and internal vertex, respectively. Now, consider

R(TS) =
∑

vivj∈E(T )

1√
(degT (vi) + 2)(degT (vj) + 2)

+
n−k∑
i=1

1√
(degT (vi) + 2) degT (vk)

+
n−k∑
i=1

1√
(degT (vi) + 2)2

≤n − k − 1
4 + k

2 + n − k

4
=2n − 1

4 .

Equality holds for a path graph since each internal vertex of a path graph is of degree 2.
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For upper bound, degT (vi) ≤ n − 1 and therefore 1√
degT (vi)+2

≥ 1
n+1 . Consider

R(TS) =
∑

vivj∈E(T )

1√
(degT (vi) + 2)(degT (vj) + 2)

+
n−k∑
i=1

1√
(degT (vi) + 2) degT (vk)

+
n−k∑
i=1

1√
(degT (vi) + 2)2

≥ 1
n + 1 + n − 1√

n + 1
.

Equality holds for a star graph since maximum degree of an internal vertex of a star
graph is n − 1. □

Theorem 2.6. Let G be a bipartite graph with partition V = {V1, V2} and GS be a
graph obtained by adding a self-loop to each vertex of S in G. Let S1, S2 ⊆ S with
S1 ∪ S2 = S, S1 ∩ V2 = ∅, S2 ∩ V1 = ∅, |S1| = σ1 and |S2| = σ2. Then,

R(GS) ≥ m⟨S1 ∪ S2⟩√
(m + 2)(n + 2)

+ m⟨V − (S1 ∪ S2)⟩√
mn

+ m⟨S1 ∪ (V2 − S2)⟩√
m(n + 2)

+ m⟨S2 ∪ (V1 − S1)⟩√
n(m + 2)

+ σ1

n + 2 + σ2

m + 2 .

The bound sharpness occurs for the complete bipartite graph.

Proof. Let GS be a graph obtained by adding a self-loop to each vertex in the set
S ⊆ V of a bipartite graph G with partition V = {V1, V2}. Also, let S = S1 ∪ S2, with
S1 ∩ V2 = S2 ∩ V1 = ∅. Then,

R(GS) =
∑

vivj∈E(G) ∧
vi,vj ̸∈S

1√
degG(vi) degG(vj)

+
∑

vivj∈E(G) ∧
vi,vj∈S

1√
(degG(vi) + 2)(degG(vj) + 2)

+
∑

vivj∈E(G) ∧
vi∈S,vj ̸∈S

1√
(degG(vi) + 2) degG(vj)

+
∑

vivj∈E(G) ∧
vi ̸∈S,vj∈S

1√
degG(vi)(degG(vj) + 2)

+
∑

vi∈S1

1√
(degG(vi) + 2)2

+
∑

vj∈S2

1√
(degG(vj) + 2)2

.
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But, degG(vi) degG(vj) ≤ mn, degG(vi) ≤ n if vi ∈ S1 and degG(vj) ≤ m if vj ∈ S2.
Therefore,

R(GS) ≥ m⟨S1 ∪ S2⟩√
(m + 2)(n + 2)

+ m⟨V − (S1 ∪ S2)⟩√
mn

+ m⟨S1 ∪ (V2 − S2)⟩√
m(n + 2)

+ m⟨S2 ∪ (V1 − S1)⟩√
n(m + 2)

+ σ1

n + 2 + σ2

m + 2 .

Equality holds for a complete bipartite graph since degG(vi) degG(vj) = mn,
degG(vi) = n if vi ∈ S1 and degG(vj) = m if vj ∈ S2. □

Theorem 2.7. Let Km,n, m ≤ n, be a complete bipartite graph with partition V =
{V1, V2}, (Km,n)S

′ be a graph obtained by attaching a self-loop to each vertex of V1
and (Km,n)S

′′ be a graph obtained by attaching a self-loop to each vertex of V2. Then,

R(Km,n)S
′ ≤ R((Km,n)S

′′).

Equality holds if and only if m = n.

Proof. Let (Km,n)S
′ be a graph obtained by attaching a self-loop to each vertex of

V1 and (Km,n)S
′′ be a graph obtained by attaching a self-loop to each vertex of V2

of a complete bipartite graph Km,n, m ≤ n, with partition V = {V1, V2} . Now,
R((Km,n)S

′) = mn√
m(n+2)

+ m
n+2 and R((Km,n)S

′′) = mn√
n(m+2)

+ n
m+2 . From this, one can

easily observe that

R(Km,n)S
′ ≤ R((Km,n)S

′′).

If m = n, then m(n + 2) = n(m + 2), m + 2 = n + 2 and therefore R((Km,n)S
′′) =

R((Km,n)S
′). Conversely, if m ̸= n, then R((Km,n)S

′′) ̸= R((Km,n)S
′) since m(n+2) ̸=

n(m + 2) and m + 2 ̸= n + 2. □

3. Future Scope

(a) Characterize the class of graphs for which Randić index of a graph with self-
loops is more than the Randić index of a simple graph and vice versa.

(b) Obtain the minimum and maximum Randić index for the class of graphs of
given order.

4. Conclusion

The Randić index of a graph with self-loop is defined and bounds for Randić index
of regular graph, tree and complete bipartite graph with self-loops are obtained.
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