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A NOTE ON PAIR OF LEFT CENTRALIZERS IN PRIME RING
WITH INVOLUTION

MUZIBUR RAHMAN MOZUMDER1, ADNAN ABBASI1, NADEEM AHMAD DAR2,
AND AFTAB HUSSAIN SHAH3

Abstract. The purpose of this paper is to study pair of left centralizers in prime
rings with involution satisfying certain identities.

1. Introduction

In the present article, R will represent an associative ring with centre Z(R). Qmr
and C represents the maximal ring of quotient and the extended centroid of a prime
ring, respectively. For the explanation of Qmr and C refer to [4]. R is said to be
n-torsion free if na = 0 (where a ∈ R) implies a = 0. R is called prime if aRb = (0)
(where a, b ∈ R) implies a = 0 or b = 0. We write [x, y] for xy − yx and xoy for
xy + yx, respectively. An additive map x 7→ x∗ of R into itself is called an involution
if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x holds, for all x, y ∈ R. A ring R together with
an involution ∗ is said to be a ring with involution or ∗-ring. An element x in a ring
with involution ∗ is said to be hermitian if x∗ = x and skew-hermitian if x∗ = −x.
The sets of all hermitian and skew-hermitian elements of R will be denoted by H(R)
and S(R), respectively. The involution is said to be of the first kind if Z(R) ⊆ H(R),
otherwise it is said to be of the second kind. In the latter case, S(R)∩Z(R) 6= (0). A
description of such rings can be found in [7], where further references can be found.

Following [17], an additive mapping T : R → R is said to be a left (resp. right)
centralizer (multiplier) of R if T (xy) = T (x)y (resp. T (xy) = xT (y)) for all x, y ∈ R.
An additive mapping T is called a centralizer in case T is a left and a right centralizer
of R. Considerable work has been done on left (resp. right) centralizers in prime and
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semiprime rings during the last few decades (see for example [3,6,10,11,14–17]) where
further references can be found. The first result studying the commutativity of prime
ring involving a special mapping was due to Divinsky [5], who proved that a simple
artinian ring is commutative if it has a commuting non-trivial automorphism. This
result was later refined and extended by a number of authors in various directions
(see [2, 3, 8, 9, 12, 13]). Moreover in [3] some related results involving left centralizers
have also been discussed. In [10] Oukhtite established similar problems for certain
situations involving left centralizers acting on Lie ideals. Recently Ali and Dar [1]
proved that if a prime ring with involution of the second kind such that char(R) 6= 2
admits a left centralizer T : R→ R satisfying any one of the following conditions:

(i) T ([x, x∗]) = 0;
(ii) T (xox∗) = 0;
(iii) T ([x, x∗])± [x, x∗] = 0;
(iv) T (xox∗)± (xox∗) = 0,

for all x ∈ R, then R is commutative. In this paper, we shall consider similar problems
involving pair of centralizers. We shall restrict our attention on left centralizers, since
all results presented in this article are also true for right centralizers because of
left-right symmetry.

Lemma 1.1 ([7], p. 20-23). Suppose that the elements ai, bi in the central closure of
a prime ring R satisfy ∑

aixbi = 0 for all x ∈ R. If bi 6= 0 for some i, then a′is are
C-dependent.

2. Main Results

Theorem 2.1. Let R be a prime ring with involution ∗ of the second kind such that
char(R) 6= 2. If R admit two nonzero left centralizer T1 and T2 from R to R such that
[T1(x), T2(x∗)] ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have

(2.1) [T1(x), T2(x∗)] ∈ Z(R), for all x ∈ R.

Linearizing (2.1), we get

(2.2) [T1(x), T2(y∗)] + [T1(y), T2(x∗)] ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.2) and using (2.2), we get 2([T1(y), T2(x∗)])k ∈ Z(R) for
all x, y ∈ R and k ∈ S(R) ∩ Z(R), since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0).
This implies that [T1(y), T2(x∗)] ∈ Z(R) for all x, y ∈ R. Taking x = x∗, we have
[T1(y), T2(x)] ∈ Z(R) for all x, y ∈ R. This can be further written as

(2.3) [[T1(y), T2(x)], r] = 0, for all x, y, r ∈ R.

Replacing y by ym, where m ∈ R in (2.3) and using (2.3) we get

T1(y)[[m,T2(x)], r] + [T1(y), r][m,T2(x)] + [T1(y), T2(x)][m, r] = 0,
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for all x, y,m, r ∈ R. Replacing m by T2(x) we get

(2.4) [T1(y), T2(x)][T2(x), r] = 0, for all x, y, r ∈ R.

Replacing r by ru, where u ∈ R in (2.4) and using (2.4) we get

[T1(y), T2(x)]r[T2(x), u] = 0, for all x, y, r, u ∈ R.

Then by primeness of R, for each fixed x ∈ R, we get either [T1(y), T2(x)] = 0 for all
y ∈ R or [T2(x), u] = 0 for all u ∈ R. Define A = {x ∈ R | [T2(x), u] = 0 for all u ∈ R}
and B = {x ∈ R | [T1(y), T2(x)] = 0 for all y ∈ R}. Clearly, A and B are additive
subgroups of R whose union is R. Hence, by Brauer’s trick, either A = R or B = R.
If A = R

(2.5) [T2(x), u] = 0, for all x, u ∈ R.

Then taking x = xy in (2.5), where y ∈ R and using (2.5) we get T2(x)[y, u] = 0 for
all x, y, u ∈ R. Now take x = xm, where m ∈ R, then as T2 is nonzero, applying the
primeness of R, we obtain R is commutative. If B = R

(2.6) [T1(y), T2(x)] = 0, for all x, y ∈ R.

Then replacing y by yv, where v ∈ R in (2.6) and using (2.6) we get T1(y)[v, T2(x)] = 0
for all x, y, v ∈ R. Now replace y by yr, where r ∈ R. Then as T1 is nozero, by
primeness of R, we have [v, T2(x)] = 0 for all v, x ∈ R. With similar steps as we did
before we get R is commutative. �

Theorem 2.2. Let R be a prime ring with involution ∗ of the second kind such that
char(R) 6= 2. If R admits two nonzero left centralizer T1 and T2 from R to R such
that T1(x) ◦ T2(x∗) ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have

(2.7) T1(x) ◦ T2(x∗) ∈ Z(R), for all x ∈ R.

Linearizing (2.7), we get

(2.8) T1(x) ◦ T2(y∗) + T1(y) ◦ T2(x∗) ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.8) and using (2.8), we get

2(T1(y) ◦ T2(x∗))k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that T1(y) ◦ T2(x∗) ∈ Z(R)
for all x, y ∈ R. Replacing x by x∗ we get T1(y) ◦ T2(x) ∈ Z(R) for all x, y ∈ R. This
can be further written as

[T1(y) ◦ T2(x), r] = 0,
[T1(y)T2(x), r] + [T2(x)T1(y), r] = 0,
T1(y)[T2(x), r] + [T1(y), r]T2(x) + T2(x)[T1(y), r] + [T2(x), r]T1(y) = 0,(2.9)
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for all x, y, r ∈ R. Replacing y by yT2(x) in (2.9), we get
T1(y)T2(x)[T2(x), r] + T1(y)[T2(x), r]T2(x) + [T1(y), r](T2(x))2(2.10)

+T2(x)T1(y)[T2(x), r] + T2(x)[T1(y), r]T2(x) + [T2(x), r]T1(y)T2(x) = 0,
for all x, y, r ∈ R. Left multiplying (2.9) by T2(x) and subtracting it from (2.10), we
get
(2.11) (T1(y)T2(x) + T2(x)T1(y))[T2(x), r] = 0, for all x, y, r ∈ R.
Replacing r by rm, where m ∈ R in (2.11) and using (2.11), we get

(T1(y)T2(x) + T2(x)T1(y))r[T2(x),m] = 0, for all x, y, r,m ∈ R.
Then by primeness of R, for each fixed x ∈ R, we get either [T2(x),m] = 0 for all
m ∈ R or T1(y)T2(x)+T2(x)T1(y) = 0 for all y ∈ R. Define A = {x ∈ R | [T2(x),m] =
0 for all m ∈ R} and B = {x ∈ R | T1(y)T2(x) + T2(x)T1(y) = 0 for all y ∈ R}.
Clearly, A and B are additive subgroups of R whose union is R. Hence by Brauer’s
trick, either A = R or B = R. If A = R, then we consider [T2(x), r] = 0 for all
x, r ∈ R, proceeding similarly as we did after (2.5), we get R is commutative. Now,
consider B = R, in this situation
(2.12) T1(y)T2(x) + T2(x)T1(y) = 0, for all x, y ∈ R.
Then replacing y by yu, where u ∈ R in (2.12) and using (2.12), we get T1(y)[u, T2(x)]
= 0 for all x, y, u ∈ R. Replacing y, where v ∈ R by yv, we get T1(y)v[u, T2(x)] = 0
for all x, y, v, u ∈ R. Then as T1 is nonzero, by primeness we get [u, T2(x)] = 0 for
all x, u ∈ R. Now, following same line of proof as we did after (2.5), we get R is
commutative. �

Theorem 2.3. Let R be a noncommutative 6-torsion free prime ring with involution
∗ of the second kind. If R admit two nonzero left centralizers T1 and T2 from R to R,
such that [T1(x), T2(x∗)]± [x, x∗] ∈ Z(R) for all x ∈ R, then T1 = λT2.

Proof. We have
(2.13) [T1(x), T2(x∗)]± [x, x∗] ∈ Z(R), for all x ∈ R.
Linearizing (2.13), we get
(2.14) [T1(x), T2(y∗)] + [T1(y), T2(x∗)]± [x, y∗]± [y, x∗] ∈ Z(R), for all x, y ∈ R.
Replacing y by ky in (2.14) and using (2.14), we get

2([T1(y), T2(x∗)]± [y, x∗])k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).
This further implies that

6([T1(y), T2(x∗)]± [y, x∗])k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).
Since R is 6-torsion free and S(R) ∩ Z(R) 6= (0), we have

[T1(y), T2(x∗)]± [y, x∗] ∈ Z(R), for all x, y ∈ R.



A NOTE ON PAIR OF LEFT CENTRALIZERS IN PRIME RING WITH INVOLUTION 229

Replacing x by x∗, we get
[T1(y), T2(x)]± [y, x] ∈ Z(R), for all x, y ∈ R.

Taking y = x, we have
(2.15) [T1(x), T2(x)] ∈ Z(R), for all x ∈ R.
This further implies that
(2.16) [[T1(x), T2(x)], r] = 0, for all x, r ∈ R.
On linearization, we get
(2.17) [[T1(x), T2(y)], r] + [[T1(y), T2(x)], r] = 0, for all x, y, r ∈ R.
Replacing y by yT1(x) in (2.17) and using (2.16) and (2.17), we obtain
(2.18) [T1(x), T2(y)][T1(x), r] + [T1(y), r][T1(x), T2(x)] + [T1(y), T2(x)][T1(x), r] = 0,
for all x, y, r ∈ R. Taking y = x in (2.18) and using (2.15), we arrive at

3[T1(x), T2(x)][T1(x), r] = 0, for all x, r ∈ R.
This further implies that

6[T1(x), T2(x)][T1(x), r] = 0, for all x, r ∈ R.
Since R is 6-torsion free ring, we have
(2.19) [T1(x), T2(x)][T1(x), r] = 0, for all x, r ∈ R.
Replacing r by rm, where m ∈ R in (2.19) and making use of (2.19), we get

[T1(x), T2(x)]r[T1(x),m] = 0, for all x,m, r ∈ R.
Using the primeness of R, for each fixed x ∈ R, we have either [T1(x), T2(x)] = 0
or [T1(x),m] = 0. Define B = {x ∈ R | [T1(x), T2(x)] = 0} and A = {x ∈ R |
[T1(x),m] = 0 for all m ∈ R}. Clearly, A and B are additive subgroups of R whose
union is R. Hence by Brauer’s trick, either B = R or A = R. If B = R,
(2.20) [T1(x),m] = 0, for all x,m ∈ R.
Replacing x by xy, where y ∈ R and using (2.20), we get

T1(x)[y,m] = 0, for all x, y,m ∈ R.
This further implies that

T1(x)w[y,m] = 0, for all x,w, y,m ∈ R.
Using the primeness, we get T1(x) = 0 for all x ∈ R or [y,m] = 0 for all y,m ∈ R.
Since T1 is nonzero, therefore we get R is commutative, which is a contradiction to
our assumption. Therefore we are left with B = R

(2.21) [T1(x), T2(x)] = 0, for all x ∈ R.
Linearizing (2.21), we get
(2.22) [T1(x), T2(y)] + [T1(y), T2(x)] = 0, for all x, y ∈ R.
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Replacing x by xz, where z ∈ R in (2.22) and using (2.22), we get
(2.23) T1(x)[z, T2(y)] + T2(x)[T1(y), z] = 0, for all x, y, z ∈ R.
Again taking x = xw, where w ∈ R in (2.23), we get
(2.24) T1(x)w[z, T2(y)] + T2(x)w[T1(y), z] = 0, for all x, y, z, w ∈ R.
In view of Lemma 1.1, we have [z, T2(y)] = 0 for all y, z ∈ R or T1(x) = λ(x)T2(x),
where λ(x) ∈ C. But since T2 6= 0, [z, T2(y)] = 0 implies R is commutative, a
contradiction. Hence we get T1(x) = λ(x)T2(x), where λ(x) ∈ C. Using this in (2.24),
we have

λ(x)T2(x)w[z, T2(y)] + T2(x)w[λ(y)T2(y), z] = 0,
(λ(x)T2(x)− λ(y)T2(x))w[z, T2(y)] = 0,

for all x, y, z, w ∈ R. Using the primeness of R and Brauer’s trick we finally get
T1 = λT2. This completes the proof. �

Theorem 2.4. Let R be a prime ring with involution ∗ of the second kind such
that char(R) 6= 2. If R admits two nonzero left centralizer T1 and T2 from R to R
such that T1(x)x∗ ± x∗T2(x) ∈ Z(R) for all x ∈ R, then either R is commutative or
T1(y) = ∓T2(y) for all y ∈ R.

Proof. We have
(2.25) T1(x)x∗ ± x∗T2(x) ∈ Z(R), for all x ∈ R.
Linearaizing (2.25), we get
(2.26) T1(x)y∗ + T1(y)x∗ ± x∗T2(y)± y∗T2(x) ∈ Z(R), for all x, y ∈ R.
Replacing y by ky in (2.26) and using (2.26), we have

2(T1(y)x∗ ± x∗T2(y))k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).
Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that

T1(y)x∗ ± x∗T2(y) ∈ Z(R), for all x, y ∈ R.
Taking x = x∗, we get

T1(y)x± xT2(y) ∈ Z(R), for all x, y ∈ R.
Replacing x by z, where z ∈ Z(R) and using the primeness of R and the fact that
S(R)∩Z(R) 6= (0), we obtain T1(y)±T2(y) ∈ Z(R) for all y ∈ R. This can be further
written as
(2.27) [T1(y), r]± [T2(y), r] = 0, for all y, r ∈ R.
Replacing y by yw, where w ∈ R and using (2.27), we have
(2.28) (T1(y)± T2(y))[w, r] = 0, for all y, w, r ∈ R.
Replacing w by wm, where m ∈ R in (2.28) and using (2.28), we obtain

(T1(y)± T2(y))w[m, r] = 0, for all m, y, w, r ∈ R.
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In view of the primeness of R we get either R is commutative or T1(y) = ∓T2(y) for
all y ∈ R. �

Theorem 2.5. Let R be a prime ring with involution ∗ of the second kind such that
char(R) 6= 2. If R admit two nonzero left centralizer T1 and T2 from R to R, such
that T1(x)T2(x∗) ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have
(2.29) T1(x)T2(x∗) ∈ Z(R), for all x ∈ R.
Linearizing (2.29), we get
(2.30) T1(x)T2(y∗) + T1(y)T2(x∗) ∈ Z(R), for all x, y ∈ R.
Replacing y by ky in (2.30), where k ∈ S(R) ∩ Z(R) and using (2.30), we have

2T1(y)T2(x∗)k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).
Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that

T1(y)T2(x∗) ∈ Z(R), for all x, y ∈ R.
Taking x = x∗, we obtain

T1(y)T2(x) ∈ Z(R), for all x, y ∈ R.
This can be further written as
(2.31) T1(y)[T2(x), r] + [T1(y), r]T2(x) = 0, for all x, y ∈ R.
Replacing x by xw, where w ∈ R in (2.31) and using (2.31), we get

T1(y)T2(x)[w, r] = 0, for all x, y, w, r ∈ R.
Replacing y by ym, where m ∈ R, we get

T1(y)RT2(x)[w, r] = (0), for all x, y, w, r ∈ R.
This implies in view of the primeness of ring R, either T1(y) = 0 for all y ∈ R
or T2(x)[w, r] = 0 for all x,w, r ∈ R. Since T1 6= 0, we get T2(x)[w, r] = 0 for all
x,w, r ∈ R. This further implies that T2(x)y[w, r] = 0 for all x, y, w, r ∈ R. Since
T2 6= 0, using the primeness of R, we get R is commutative. �

Theorem 2.6. Let R be a prime ring with involution ∗ of the second kind such that
char(R) 6= 2. If R admit two nonzero left centralizer T1 and T2 from R to R such that
T1(x)x± x∗T2(x) ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have
T1(x)x± x∗T2(x) ∈ Z(R), for all x ∈ R.

Linearizing (2.48), we get
(2.32) T1(x)y + T1(y)x± x∗T2(y)± y∗T2(x) ∈ Z(R), for all x, y ∈ R.
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Replacing y by ky in (2.32) and using (2.32), we arrive at
2(T1(x)y + T1(y)x± x∗T2(y))k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that
(2.33) T1(x)y + T1(y)x± x∗T2(y) ∈ Z(R), for all x, y ∈ R.
Again, replacing x by kx in(2.33) and using (2.33), we get

2(T1(x)y + T1(y)x)k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).
Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), we have

T1(x)y + T1(y)x ∈ Z(R), for all x, y ∈ R.
This can be further written as T1(x ◦ y) ∈ Z(R) for all x, y ∈ R. Taking y = z, where
z ∈ Z(R), we get T1(x) ∈ Z(R) for all x ∈ R. This further implies that [T1(x), y] = 0
for all x, y ∈ R. Replacing x by xw, where w ∈ R, we get T1(x)[w, y] + [T1(x), y]w = 0
for all x, y, w ∈ R. That is, T1(x)[w, y] = 0 for all x, y, w ∈ R. Replacing x by xm,
where m ∈ R and using the facts that T1 6= 0 and the primeness of R, we obtain
[w, y] = 0 for all w, y ∈ R. That is, R is commutative. �

Theorem 2.7. Let R be a noncommutative prime ring with involution ∗ of the second
kind such that char(R) 6= 2. If R admit two nonzero left centralizer T1 and T2 from R
to R such that xT1(x∗)± T2(x)x∗ ∈ Z(R) for all x ∈ R, then T1 = ∓T2.

Proof. We have
(2.34) xT1(x∗)± T2(x)x∗ ∈ Z(R), for all x ∈ R.
Linearizing (2.34), we get
(2.35) xT1(y∗) + yT1(x∗)± T2(x)y∗ ± T2(y)x∗ ∈ Z(R), for all x, y ∈ R.
Replacing y by ky in (2.35) and using (2.35), we get

2(yT1(x∗)± T2(y)x∗)k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).
Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that

yT1(x∗)± T2(y)x∗ ∈ Z(R), for all x, y ∈ R.
Taking x = x∗, we get

yT1(x)± T2(y)x ∈ Z(R), for all x, y ∈ R.
This further implies that

[yT1(x), r]± [T2(y)x, r] = 0, for all x, y, r ∈ R.
That is,
(2.36) y[T1(x), r] + [y, r]T1(x)± T2(y)[x, r]± [T2(y), r]x = 0, for all x, y, r ∈ R.
Replacing x by xw, where w ∈ R in (2.36) and using (2.36), we obtain
(2.37) (yT1(x)± T2(y)x)[w, r] = 0, for all x, y, w, r ∈ R.
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Replacing w by wm, where m ∈ R in (2.37) and using (2.37), we get

(2.38) yT1(x)± T2(y)x = 0, for all x, y ∈ R,

since R is noncommutative. Replacing y by yx in (2.38) and using (2.38), we get

y(xT1(x)− T1(x)x) = 0, for all x, y ∈ R.

Using the primeness of R, we get

(xT1(x)− T1(x)x) = 0, for all x ∈ R.

Linearizing the above equation, we get

(2.39) xT1(y) + yT1(x)− T1(x)y − T1(y)x = 0, for all x, y ∈ R.

Replacing y by yu, where u ∈ R in (2.39) and using (2.39), we arrive at

(2.40) y[T1(x), u] + T1(y)[u, x] = 0, for all x, y, u ∈ R.

Replacing x by xm, where m ∈ R in (2.40) and using (2.40), we get

(2.41) (yT1(x)− T1(y)x)[m,u] = 0, for all x, y,m, u ∈ R.

Replacing m by wm, where m ∈ R in (2.41) and using (2.41), we have T1 is centralizer,
since R is noncommutative. Hence in view of (2.38), we get (T1(y)± T2(y))x = 0 for
all x, y ∈ R. Using the primeness of R, we obtain T1(y) = ∓T2(y) for all y ∈ R. �

Theorem 2.8. Let R be a prime ring with involution ∗ of the second kind such that
char(R) 6= 2. If R admits two left centralizer T1 and T2 from R to R such that
T1(x)T2(x∗)± xx∗ ∈ Z(R) for all x ∈ R, then either R is commutative or T1 and T2
centralizer.

Proof. We have

(2.42) T1(x)T2(x∗)± xx∗ ∈ Z(R), for all x ∈ R.

If either T1 or T2 is zero, then we get ±xx∗ ∈ Z(R) for all x ∈ Z(R). Replacing x by
x+ y, where x, y ∈ R, we get xy∗+ yx∗ ∈ Z(R) for all x, y ∈ R. Taking y = yk where
k ∈ Z(R)∩S(R) and adding with the previous equation, we get 2yx∗k ∈ Z(R) for all
x, y ∈ Z(R) and k ∈ S(R) ∩ Z(R). Since char(R) 6= 2, this implies that yx∗k ∈ Z(R)
for all x, y ∈ R and k ∈ S(R)∩Z(R). Use primeness and the fact that S(R)∩Z(R) 6= 0,
we have yx∗ ∈ Z(R) for all x, y ∈ R. This further implies that yx ∈ Z(R) for all
x, y ∈ R. Thus xz ∈ Z(R) for all x ∈ R and z ∈ Z(R). Use primeness and the fact
that S(R) ∩ Z(R) 6= (0), we obtain R is commutative. Now consider neither T1 nor
T2 is zero. Linearizing (2.42), we get

(2.43) T1(x)T2(y∗) + T1(y)T2(x∗)± xy∗ ± yx∗ ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.43) and using (2.43), we get 2(T1(y)T2(x∗)±yx∗)k ∈ Z(R) for
all x, y ∈ R. Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), this implies that T1(y)T2(x∗)±
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yx∗ ∈ Z(R) for all x, y ∈ R. This can be written as
[T1(y)T2(x∗), r]± [yx∗, r] = 0,
T1(y)[T2(x∗), r] + [T1(y), r]T2(x∗)± y[x∗, r]± [y, r]x∗ = 0,

for all x, y, r ∈ R. Taking x = x∗, we obtain
(2.44) T1(y)[T2(x), r] + [T1(y), r]T2(x)± y[x, r]± [y, r]x = 0, for all x, y, r ∈ R.
Replacing x by xw, where w ∈ R in (2.44) and using (2.44), we get (T1(y)T2(x) ±
yx)[w, r] = 0 for all x, y, w, r ∈ R. Replacing w by wm, where m ∈ R and using the
previous equation, we get (T1(y)T2(x)± yx)w[m, r] = 0 for all x, y, w,m, r ∈ R. Now
using the primeness we get either T1(y)T2(x) ± yx = 0 for all x, y ∈ R or [m, r] = 0
for all m, r ∈ R. If [m, r] = 0 for m, r ∈ R, this implies that R is commutative. Now
suppose
(2.45) T1(y)T2(x)± yx = 0, for all x, y ∈ R.
Replacing y by yT1(w) in (2.45), we get
(2.46) T1(y)T1(w)T2(x)± yT1(w)x = 0, for all x, y, w ∈ R.
Taking y = w in (2.45) and left multiplying by T1(y), we get
(2.47) T1(y)T1(w)T2(x)± T1(y)wx = 0, for all x, y, w ∈ R.
Subtracting (2.47) from (2.46), we have (±yT1(w)∓ T1(y)w)x = 0 for all x, y, w ∈ R.
Since R 6= (0) and using primeness of R we get (±yT1(w) ∓ T1(y)w) = 0 for all
y, w ∈ R. This implies that T1 is a centralizer. Similarly, we can show that T2 is a
centralizer. �

Theorem 2.9. Let R be a prime ring with involution ∗ of the second kind such that
char(R) 6= 2. If R admits two nonzero left centralizer T1 and T2 from R to R such
that T1(x)x∗ ± xT2(x) ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have
(2.48) T1(x)x∗ ± xT2(x) ∈ Z(R), for all x ∈ R.
Linearizing (2.48), we have
(2.49) T1(x)y∗ + T2(y)x∗ ± xT2(y)± yT2(x) ∈ Z(R), for all x, y ∈ R.
Replacing x, y by kx, ky in (2.49) where k ∈ S(R) ∩ Z(R) and subtracting it from
(2.49), we get

−2(T1(x)y∗ + T2(y)x∗)k2 ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).
This implies that

2(T1(x)y∗ + T2(y)x∗)k2 ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).
Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), we get
(2.50) T1(x)y∗ + T2(y)x∗ ∈ Z(R), for all x, y ∈ R.
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Replacing y by yk in (2.50), where k ∈ S(R) ∩ Z(R) and using (2.50), we get

2T2(y)x∗k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Taking x = h, where h ∈ H(R) ∩ Z(R), we get 2T2(y)hk ∈ Z(R) for all y ∈ R,
h ∈ H(R) ∩ Z(R) and k ∈ S(R) ∩ Z(R). Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0),
we get T2(y) ∈ Z(R) for all y ∈ R. This can be further written as

[T2(y), r] = 0, for all y, r ∈ R.

Replacing y by ym, where m ∈ R, we get T2(y)[m, r] = 0 for all y,m, r ∈ R. Further,
replacing y by yw, where w ∈ R, we get T2(y)w[m, r] = 0 for all y, w,m, r ∈ R. Then
by primeness, we get either T2 = 0 or [m, r] = 0 for all m, r ∈ R. Since T2 6= 0,
therefore we only have [m, r] = 0 for all m, r ∈ R. That is, R is commutative. �
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