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DUAL HYBRID NUMBERS WITH HORADAM NUMBER
COEFFICIENTS

FURKAN SEÇGİN1, ELİF TAN1, AND İSMAİL GÖK1

Abstract. In this paper, we present a new class of dual hybrid numbers that
incorporate Horadam numbers into their components. We explore some fundamen-
tal properties associated with these numbers. In particular, we obtain recurrence
relations, generating function, Binet formula of these sequences and, by using Binet
formula, we derive Vajda, Cassini, Catalan and d’Ocagne identities. By studying
this new class of hybrid numbers, we express many dual hybrid numbers with co-
efficient special integer sequences such as Fibonacci, Lucas, Pell, etc. in a unified
way.

1. Introduction

Dual, complex, and hyperbolic numbers are among the most prominent classes of
two-dimensional number systems as extensions of the real numbers. These number
systems have many applications on mechanics, robotics, computer graphics, geometry,
physics and rigid body motion [38,57,63].

In 2018, Ozdemir [28] defined the hybrid numbers as a generalization of complex,
dual, and hyperbolic numbers. The set of hybrid numbers denoted by K is defined as

K :=
{
p = a + bi + cϵ + dh : i2 = −1, ϵ2 = 0, h2 = 1 and a, b, c, d ∈ R

}
.

It is well-known that the hybrid number multiplication is non-commutative.
There have been extensive investigations into various forms of hybrid numbers,

which incorporate components from elements sourced from specific integer sequences.
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In particular, in 2018 Szynal-Liana defined Horadam hybrid numbers by taking com-
ponents of hybrid numbers as Horadam numbers. The Horadam sequence, named
after A. F. Horadam [19,20], is a generalization of many significant and well-known
number sequences, including Fibonacci, Lucas, and Jacobsthal sequences etc. In the
Appendix, we present a succinct yet comprehensive overview of the relevant literature
concerning specific classes of hybrid number sequences, highlighting key developments
and contributions in the field (Table 5).

In this paper, we introduce a new class of hybrid number sequence called dual
Horadam hybrid numbers. First, we give some basic concepts and notions.

2. Basic Concepts and Notions

The sets of dual, complex and hyperbolic numbers are respectively defined as
D = {λ = λ + λ∗ε : λ, λ∗ ∈ R} ,

C = {ẑ = z1 + z2i : z1, z2 ∈ R} ,

P = {a = a1 + a2h : a1, a2 ∈ R} ,

where ε is the dual unit with ε2 = 0, ε ̸= 0, i is the complex unit with i2 = −1 and h
is the hyperbolic unit with h2 = 1, h ̸= 1. The addition, subtraction, multiplication
with scalar and multiplication operations of the dual numbers λ and γ are respectively
defined as

λ ± γ = (λ + λ∗ε) ± (γ + γ∗ε) = (λ ± γ) + (λ∗ + γ∗) ε,

tλ = t (λ + λ∗ε) = tλ + tλ∗ε, t ∈ R,

λγ = (λ + λ∗ε) (γ + γ∗ε) = λγ + (λγ∗ + λ∗γ) ε.

For the integers p, q, the Horadam numbers Hn = Hn (H0,H1; p, q) are defined by
Horadam in [19] by the recursive relation
(2.1) Hn = pHn−1 + qHn−2, n ≥ 2,

with initial values H0 = a, H1 = b. It is well known that for special cases, the
Fibonacci and the Lucas numbers are Hn (0, 1; 1, 1) and Hn (2, 1; 1, 1), respectively.

Let α and β be the roots of the characteristic equation t2 − pt − q = 0 associated to
(2.1). By solving this equation we get two distinct characteristic roots for p2 + 4q > 0
as

(2.2) α = p + ∆
2 and β = p − ∆

2 ,

where ∆ =
√

p2 + 4q. Moreover, Hn = Aαn+Bβn is the Binet formula of the Horadam
numbers, where

(2.3) A = H1 − H0β

∆ and B = H0α − H1

∆ ,

for details see [19].
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Let denote nth dual Horadam number as Hn = Hn (H0,H1; p, q). For n ≥ 0, dual
Horadam numbers satisfy the following recursive relation
(2.4) Hn = pHn−1 + qHn−2, n ≥ 2,

with initial values H0 = a + bε and H1 = b + (pb + qa) ε. By using the relation (2.4),
we have

H2 = pb + qa +
(
(p2 + q)b + pqa

)
ε,

H3 = (p2 + q)b + pqa +
(
(p2 + q) (qa + pb) + pqb

)
ε,(2.5)

H4 = (p2 + q) (qa + pb) + pqb +
(
p(p2 + q)(qa + pb) + pq ((2p + 1)b + qa)

)
ε.

It is well known that the dual Fibonacci Hn (ε, 1 + ε; 1, 1) and dual Lucas numbers
Hn (2 + ε, 1 + 3ε; 1, 1) are studied in [16].

The Horadam hybrid numbers are defined by Szynal-Liana [43] as
(2.6) Qn = Hn + Hn+1i + Hn+2ϵ + Hn+3h.

The author gave the Binet formula, generating function and its characters as in the
hybrid numbers. Some important results on Horadam hybrid numbers were also given
in [48].

Let n be a non-negative integer. The equation
(2.7) Qn = Aαnα̃ + Bβnβ̃

holds, where
(2.8) α̃ = 1 + αi + α2ϵ + α3h, β̃ = 1 + βi + β2ϵ + β3h,

and A, B are defined by (2.3).
The generating function for the Horadam hybrid number sequence {Qn} is given by

(2.9) GFQn (t) = Q0 + (Q1 − pQ0) t

1 − pt − qt2 .

The recurrence relation of the Horadam hybrid numbers is
(2.10) Qn = pQn−1 + qQn−2,

with initial conditions
Q0 = a + bi + (pb − qa) ϵ +

(
(p2 + q)b + pqa

)
h,

Q1 = b + (pb − qa) i +
(
(p2 + q)b + pqa

)
ϵ +

(
(p2 + q) (qa + pb) + pqb

)
h.

The set of dual hybrid numbers are defined by Seçgin et al. in [37] as

DK :=
{
a + bi + cϵ + dh : a, b, c, d ∈ D, i2 = −1, ϵ2 = 0, h2 = 1

}
,

where ε is the dual unit, i, ϵ and h are the hybrid units. It is known that the
algebra of dual hybrid numbers is commutative. Moreover, a basis of this algebra is
{1, i, ϵ, h, ε, εi, εϵ, εh}. The dual hybridian product is as in the hybridian product. It
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means that for Q = a + bi + cϵ + dh and P = x + yi + zϵ + th, the dual hybridian
product is

QP = ax + (c − b) y + bz + dt +
(
bx + (a − d) y + bt

)
i

+
(
cx − dy + (a + d) z + (b − c) t

)
ϵ +

(
dx + cy − bz + at

)
h.

The products of two dual hybrid units are given by Table 1 below.

Table 1. The product of dual hybrid units

· 1 i ϵ h ε εi εϵ εh
1 1 i ϵ h ε iε ϵε hε
i i −1 1 − h ϵ + i iε −ε (1 − h) ε (ϵ + i) ε
ϵ ϵ h + 1 0 −ϵ ϵε (h + 1) ε 0 −ϵε
h h −ϵ − i ϵ 1 hε (−ϵ − i) ε ϵε ε
ε ε iε ϵε hε 0 0 0 0
εi iε −ε (1 − h) ε (ϵ + i) ε 0 0 0 0
εϵ ϵε (h + 1) ε 0 −ϵε 0 0 0 0
εh hε (−ϵ − i) ε ϵε ε 0 0 0 0

The conjugate of a dual hybrid number Q, denoted by Q, is defined as Q =
S (Q) − V (Q) or Q = a − bi − cϵ − dh. The conjugate of the sum of dual hybrid
numbers is equal to the sum of their conjugates. There is also QQ = QQ depending
upon the dual hybrid product.

The dual number
(2.11) C (Q) = QQ = QQ = a2 + (b − c) − c2 − d2

is called the character of the dual hybrid number Q. The vector VQ = (a, b − c, c, d)
is called the vector representation of the dual hybrid number Q. The norm of the
hybrid number is the dual number

√
|QQ| which is denoted by ρ = ∥Q∥.

For more details related to dual hybrid numbers, we refer to [37].

3. Dual Horadam Hybrid Numbers

In this section, we define dual Horadam hybrid numbers. Through an examination
of this novel category of hybrid numbers, we were able to represent numerous dual
hybrid numbers utilizing coefficient special integer sequences like Fibonacci, Lucas,
Pell, and others.

Definition 3.1. The set of dual Horadam hybrid numbers is defined as
(3.1) DKH = {Qn = Hn + Hn+1i + Hn+2ϵ + Hn+3h : i, ϵ, h are hybrid units} ,

where Hn = Hn + Hn+1ε is the nth dual Horadam number with dual unit ε.
Table 2 presents several noteworthy special cases of dual Horadam hybrid numbers.
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Table 2. Notable special cases of dual hybrid Horadam numbers ob-
tained by particular choices of H0, H1, p, and q

Dual Horadam Hybrid Numbers Qn = Hn (H0,H1; p, q)
Dual Generalized Fibonacci Hn (ε, 1 + ε; p, q)
Dual Generalized Lucas Hn (2 + ε, 1 + 3ε; p, q)
Dual Fibonacci Hn (ε, 1 + ε; 1, 1)
Dual Lucas Hn (2 + ε, 1 + 3ε; 1, 1)
Dual Jacobsthal Hn (ε, 1 + ε; 1, 2)
Dual Jacobsthal-Lucas Hn (2 + ε, 1 + 5ε; 1, 2)
Dual Pell Hn (ε, 1 + 2ε; 2, 1)
Dual Pell-Lucas Hn (2 + 2ε, 2 + 6ε; 2, 1)
Dual Padovan Hn (1 + ε, 1 + ε; 1, 1)
Dual Perrin Hn (3, 2ε; 1, 1)
Dual Mersenne Hn (ε, 1 + 3ε; 3, 2)
Dual Gibonacci Hn (a + bε, b + (a + b) ε; 1, 1)
Dual Gaussian Fibonacci Hn

(
i
2 + ε, 1 + (3 + i) ε; 3, 2

)
Dual Balancing Hn (ε, 1 + 6ε; 6, 1)
Dual Lucas-Balancing Hn (1 + 3ε, 3 + 17ε; 6, 1)
Dual Oresme Hn

(
1
2ε, 1

2 − 1
6ε; 1, 1

4

)
The nth dual Horadam hybrid number Qn consists of two hybrid elements and can

be represented as
(3.2) Qn = Qn + Qn+1ε,

where Qn = Hn + Hn+1i + Hn+2ϵ + Hn+3h is the nth Horadam hybrid number. The
scalar and vector part of the dual Horadam hybrid number Qn are given, respectively,
by

S (Qn) = Hn and V (Qn) = Hn+1i + Hn+2ϵ + Hn+3h.

Let Qn = Qn + Qn+1ε and Pn = Pn + Pn+1ε be two dual Horadam hybrid numbers
and λ = λ + λ∗ε be a dual number. Then, the addition, subtraction, multiplication
with scalar and multiplication operations are defined as in the dual hybrid numbers.
So, following equations can be given by

Qn ± Pn = (Qn ± Pn) + (Qn+1 ± Pn+1) ε,

λPn = λPn + (λPn+1 + λ∗Pn) ε,

QnPn = QnPn + (QnPn+1 + Qn+1Pn) ε.

The hybrid, dual and total conjugates of the dual Horadam hybrid number Qn are,
respectively, defined as follows:

Q†1
n = Hn − Hn+1i − Hn+2ϵ − Hn+3h = Qn + Qn+1ε = S (Qn) − V (Qn) ,

Q†2
n = Hn + Hn+1i + Hn+2ϵ + Hn+3h = Qn − Qn+1ε = S (Qn) + V (Qn),
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Q†3
n = Hn − Hn+1i − Hn+2ϵ − Hn+3h = Qn − Qn+1ε = S (Qn) − V (Qn).

Let Qn be a dual Horadam hybrid number. We state the following two corollaries.

Corollary 3.1. The following identities hold: Qn +Q†1
n = 2Hn, Qn +Q†2

n = 2Qn and
Qn + Q†3

n = 2 (Hn + V (Hn+1) ε).

Corollary 3.2. The following equations are satisfied:

QnQ
†1
n =H2

n + H2
n+1 − 2Hn+1Hn+2 − H2

n+3,

QnQ
†2
n =H2

n − H2
n+1 + H2

n+3 + Hn+1Hn+2 + 2HnV (Qn)

+ 2
[(
Hn+2Hn+3 + Hn+1Hn+4

)
i

+
(
(Hn+2 − Hn+3)Hn+3 + (Hn+2 − Hn+1)Hn+4

)
ϵ

+
(
Hn+1Hn+3 − H2

n+1

)
h

]
ε,

QnQ
†3
n =

[
(Hn − Hn+3)2 + Hn+1 (Hn+1 − 2Hn+2) + Hn+3 (Hn+1 + Hn+2) − 2H2

n+2

+2
(
−H2

n+1 + HnHn+2Hn+1Hn+4 − Hn+2Hn+3
)

i

+
(

2
(
HnHn+3 − Hn+1Hn+2 + Hn+1Hn+4 − Hn+2Hn+4

)
− Hn+2Hn+3 + H2

n+3

)
ϵ + 2

(
H2

n+2 − 2Hn+1Hn+3HnHn+4
)

h
]
ε.

Theorem 3.1. The character of dual Horadam hybrid numbers is

C (Qn) =H2
n

(
1 − p2q2

)
+ 2HnHn+1

(
p + p3q − pq2

)
+ H2

n+1

(
1 − 2p − p4 + 2p2q − q2

)
+

[
−H2

nq + 2HnHn+1
(
1 − 4p2q2 + p2 + p3q − q + 2pq + p4 + q3

)
+H2

n+1

(
3p + 5p3q + pq2 − 4p2 − 2p5

)]
ε.

Proof. Let Hn+2 = pHn+1 − qHn, Hn+3 = (p2 − q)Hn+1 − pqHn, Hn+1Hn+2 =
pH2

n+1 − qHnHn+1 and C (Qn) = H2
n + H2

n+1 − 2Hn+1Hn+2 − H2
n+3. Then,

C (Qn) =H2
n + H2

n+1 − 2Hn+1 (pHn+1 − qHn) −
((

p2 − q
)
Hn+1 − pqHn

)2

= (Hn + Hn+1ε)2
(
1 − p2q2

)
+ 2 (Hn + Hn+1ε) (Hn+1 + Hn+2ε)

(
q + p3q − pq2

)
+ (Hn+1 + Hn+2ε)2

(
1 − 2p − p4 + 2p2q − q2

)
=

(
H2

n + 2HnHn+1ε
) (

1 − p2q2
)
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+ 2
(
HnHn+1 + HnHn+2ε + H2

n+1ε
) (

p + p3q − pq2
)

+
(
H2

n+1 + 2Hn+1Hn+2ε
) (

p + p3q − pq2
)

=
(
H2

n + 2HnHn+1ε
) (

1 − p2q2
)

+ 2
(
HnHn+1 +

(
pHnHn+1 − qH2

n + H2
n+1

)
ε
) (

p + p3q − pq2
)

+
(
H2

n+1 + 2
(
pH2

n+1 − qHnHn+1
)

ε
) (

1 − 2p − p4 + 2p2q − q2
)

=H2
n

(
1 − p2q2

)
+ 2HnHn+1

(
p + p3q − pq2

)
+ H2

n+1

(
1 − 2p − p4 + 2p2q − q2

)
+

[
−H2

nq + 2HnHn+1
(
1 − 4p2q2 + p2 + p3q − q + 2pq + p4 + q3

)
+H2

n+1

(
3p + 5p3q + pq2 − 4p2 − 2p5

)]
ε.

□

Remark 3.1. Let n ≥ 0 be integer. Then,

C (Qn) =Aα2n
(
1 + α2 − 2α3 − α6

)
+ B2β2n

(
1 + β2 − 2β3 − α6

)
+ 2ABαnβn

(
1 + αβ − α2β2 − α2β − α3β3

)
+ 2

[
A2α2n+1

(
1 + α2 − 2α3 − α6

)
+ B2β2n+1

(
1 + β2 − 2β3 − α6

)
+ (ABαnβn) (α + β)

(
1 + αβ − αβ2 − α2β − α3β3

)]
ε.

Theorem 3.2. The dual Horadam hybrid numbers satisfy the recurrence relation
(3.3) Qn = pQn−1 + qQn−2, n ≥ 2,

with initial conditions Q0 = H0 +H1i+H2ϵ+H3h and Q1 = H1 +H2i+H3ϵ+H4h,
where the conditions of Hn for n ∈ {0, 1, 2, 3, 4} are given in (2.5).

Proof. It can be easily proven by using the equations (2.1) and (2.5). □

Theorem 3.3. The Binet formula for dual Horadam hybrid numbers is
(3.4) Qn = Aα∗αn + Bβ∗βn,

where α∗ = α̃ (1 + αε), β∗ = β̃ (1 + βε), and A, B, and α̃, β̃ are defined by (2.3) and
(2.8), respectively.

Proof. By using the Binet formula of Horadam hybrid numbers given in (2.7), we
obtain

Qn = Qn + Qn+1ε

= Aαnα̃ + Bβnβ̃ +
(
Aαn+1α̃ + Bβn+1β̃

)
ε
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= Aα̃ (1 + αε) αn + Bβ̃ (1 + βε) βn

= Aα∗αn + Bβ∗βn.

□

From the definitions of α∗ and β∗, we give the following multiplicative relationship
in Table 3.

Table 3. Multiplicative relationship between α∗ and β∗

α∗ β∗

α∗
(
2α̃ − C (α̃)

)
(1 + 2αε)

(
2β̃ − ϑ + ∆ (V0 + qξ)

)
(1 + pε)

β∗
(
2α̃ − ϑ − ∆ (V0 + qξ)

)
(1 + pε)

(
2β̃ − C(β̃)

)
(1 + 2βε)

Here, Fn = αn−βn

∆ , ϑ = 1 + q − pq − q3, ξ = −F2 + (qF1 − F2) ϵ + F1h and
V0 = F1i + F2ϵ + F3h, where Fn = Hn(0, 1; p, q) is the generalized Fibonacci number
(for details, see [48]).

Theorem 3.4. The generating function for the dual Horadam hybrid numbers is

(3.5) GFQn (t) = Q0 + (Q1 − pQ0) t

1 − pt − qt2 .

Proof. Let GFHn (t) be the generating function for dual Horadam hybrid numbers
such that
(3.6) GFHn (t) = Q0 + Q1t + Q2t

2 + · · · + Qntn + · · · .

Multiplying both sides of (3.6) by −pt and −qt2, we have

−ptGFHn (t) = −p
(
Q0t + Q1t

2 + Q2t
3 + · · · + Qntn+1 + · · ·

)
,

−qt2GFHn (t) = −q
(
Q0t

2 + Q1t
3 + Q2t

4 + · · · + Qntn+2 + · · ·
)

.

We have anticipated result (3.5) by using the relation (3.2). □

Theorem 3.5. For non-negative integers n, r and s, the Vajda’s identity for the dual
Horadam hybrid numbers is
Qn+rQn+s − QnQn+r+s = ABqn∆2

[
− 2HF,n + ϑFs + (V0 + qξ) (αs + βs)

]
(1 + pε)Fr,

where HF,n is the nth Fibonacci hybrid number.
Proof. By using the Binet formula for dual Horadam hybrid numbers, we obtain

Qn+rQn+s − QnQn+r+s

=
(
Aα∗αn+r + Bβ∗βn+r

) (
Aα∗αn+s + Bβ∗βn+s

)
−

(
Aα∗αn + Bβ∗βn) (

Aα∗αn+r+s + Bβ∗βn+r+s
)

= (Aα∗)2 α2n+r+s + ABα∗β∗αn+rβn+s + ABβ∗α∗αn+sβn+r + (Bβ∗) β2n+r+s
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− (Aα∗)2 α2n+r+s − ABα∗β∗αnβn+r+s − ABβ∗α∗αn+r+sβn − Bβ∗βn+r+s

=ABα∗β∗ (αβ)n
(
αrβs − βr+s

)
+ ABβ∗α∗ (αβ)n

(
αsβr − αr+s

)
=AB (αβ)n

[
α∗β∗βs (αr − βr) + β∗α∗αs (βr − αr)

]
=AB (αβ)n [

α∗β∗βs − β∗α∗αs]
(αr − βr)

=ABqn
[(

2β̃ − ϑ + ∆ (V0 + qξ)
)

(1 + pε) βs −
(
2α̃ − ϑ − ∆ (V0 + qξ)

)
(1 + pε) αs

]
∆Fr

=ABqn∆
[(

2β̃ − ϑ + ∆ (V0 + qξ)
)
βs −

(
2α̃ − ϑ − ∆ (V0 + qξ)

)
αs

]
(1 + pε)Fr

=ABqn∆
[
2β̃βs − ϑβs + ∆ (V0 + qξ) βs − 2α̃αs + ϑαs + ∆ (V0 + qξ) αs

]
(1 + pε)Fr

=ABqn∆
[
2(β̃βs − α̃αs) + ϑ (αs − βs) + ∆ (V0 + qξ) (αs + βs)

]
(1 + pε)Fr

=ABqn∆
[
−2∆HF,n + ∆

(
ϑFs + (V0 + qξ) (αs + βs)

)]
(1 + pε)Fr

=ABqn∆2
[
−2HF,n + ϑFs + (V0 + qξ) (αs + βs)

]
(1 + pε)Fr,

where HF,n is the nth Fibonacci hybrid number. □

We have the particular cases from Vajda’s identity in the following corollaries.

Corollary 3.3 (Catalan’s identity). For non-negative integers n and s, such that
n ≥ s, we have
Qn−sQn+s −Q2

n = (−1)s+1 ABqn∆2
(

−2HF,n +ϑFs +(V0 + qξ) (αs + βs)
)

(1 + pε)Fs.

It is clear that if we take m = 1 in the Catalan identity, then we obtain the following
result.

Corollary 3.4 (Cassini’s identity). For positive integer n, we have

Qn−1Qn+1 − Q2
n = ABqn∆2

(
− 2HF,n + ϑ + (V0 + qξ) (αs + βs)

)
(1 + pε) .

It is clear that if we take s = m − n and r = 1 in Theorem 3.5, then we obtain the
following result.

Corollary 3.5 (d’Ocagne’s identity). For non-negative integers n and m, such that
m ≥ n, we have
Qn+1Qm − QnQm+1 = ABqn∆2

(
− 2HF,n + ϑ + (V0 + qξ) (αm−n + βm−n)

)
(1 + pε) .

4. Conclusions

Dual hybrid numbers, as defined by [3, 37], have been given for a special case by
replacing real number coefficients by Horadam number coefficients. We first define
elementary operations on the set of dual Horadam hybrid numbers. Then we give the
definitions of the character and the norm of a dual hybrid number. We then investigate
recurrence relations and the Binet formula of dual Horadam hybrid numbers. We
also provide the generating function. We finally investigate Vajda’s identity and give
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some corollaries for special cases such as Catalan, Cassini and d’Ocagne’s identities.
Note that if we let the dual part of each coefficient of a dual Horadam hybrid number
approach zero, then the dual Horadam hybrid numbers reduce to the Horadam hybrid
numbers and our results reduce to the results of [43].

In Table 4, we present the numbers mentioned in this paper.

Table 4. An overview of the number systems considered in this paper

Set Number Definition
K Hybrid Numbers [28] Q = a + bi + cϵ + dh

where a, b, c and d are real numbers
DK Dual Hybrid Numbers [37] Q = a + bi + cϵ + dh

where a, b, c and d are dual numbers
Hn Horadam Numbers [20] Hn = pHn−1 − qHn−2

where Hn (H0,H1; p, q)
Hn Dual Horadam Numbers Hn = pHn−1 − qHn−2

where Hn (H0,H1; p, q)
KH,n Horadam Hybrid Numbers [43] Qn = Hn + Hn+1i + Hn+2ϵ + Hn+3h
DKH,n Dual Horadam Hybrid Numbers Qn = Hn + Hn+1i + Hn+2ϵ + Hn+3h

5. Appendix

In Table 5, we give a brief literature review related to special type of hybrid number
sequences:

Table 5: Timeline of published articles related to the
theory and applications of special types of hybrid number
sequences

Year Articles
2018 The Horadam hybrid numbers [43]

On Pell and Pell-Lucas hybrid numbers [44]
2019 On Jacobsthal and Jacobsthal-lucas hybrid numbers [45]

On k-Pell hybrid numbers [10]
Tribonacci and Tribonacci-Lucas hybrid numbers [50]

2020 Hybrid numbers with Fibonacci and Lucas hybrid number coefficients
[33]
A new generalization of Fibonacci hybrid and Lucas hybrid numbers [25]
A note on generalized hybrid tribonacci numbers [59]
On J (r, n)-Jacobsthal hybrid numbers [8]
On generalized Mersenne hybrid numbers [46]
The hybrid numbers of Padovan and some identities [36]
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On the Horadam hybrid quaternions [Dağdeviren et al.,
arXiv:2012.08277]
A study on Horadam hybrid numbers [48]

2021 A note on ratios of Fibonacci hybrid and Lucas hybrid numbers [34]
More identities on Fibonacci and Lucas hybrid numbers [61]
Investigation of generalized Fibonacci hybrid numbers and their proper-
ties [11]
On k-Fibonacci hybrid numbers and their matrix representations [6]
Generalized hybrid Fibonacci and Lucas p-numbers [27]
Generalized k-order Fibonacci and Lucas hybrid numbers [4]
Generalized tetranacci hybrid number [39]
Pentanacci and pentanacci-Lucas hybrid numbers [21]
On k-Kacobsthal and k-Jacobsthal-Lucas hybrid numbers [24]
Some properties between Mersenne, Jacobsthal and Jacobthal-Lucas hy-
brid numbers [51]
Mersenne-Lucas hybrid numbers [29]
Hybrid leonardo numbers [2]
A combined approach to Perrin and Padovan hybrid sequences [32]
Padovan and Perrin hybrid number identities [56]
Unrestricted Gibonacci hybrid numbers [7]

2022 On the generalized Gaussian Fibonacci numbers and Horadam hybrid
numbers: A unified approach [62]
An introduction to harmonic complex numbers and harmonic hybrid
Fibonacci numbers: A unified approach [22]
Introduction to k-Horadam hybrid numbers [23]

2023 On a new generalization of Fibonacci hybrid numbers [52]
A new class of Leonardo hybrid numbers and some remarks on Leonardo
quaternions over finite fields [53]
Hybrid hyper-Fibonacci and hyper-Lucas numbers [1]
On hybrid hyper k-Pell, k-Pell-Lucas, and modified k-Pell numbers [40]
On hybrid numbers with Gaussian Mersenne coefficients [60]
Balancing and Lucas-balancing hybrid numbers and some identities [55]
On some k-Oresme hybrid numbers [17]
On Horadam finite operator hybrid numbers [58]

2024 Oresme hybrid number [47]
Cobalancing hybrid numbers [35]
On a new generalization of Pell hybrid numbers [9]
On Vietoris’ hybrid number sequence [15]
Introduction to generalized Leonardo-Alwyn hybrid numbers [Cerda-
Morales, arXiv:2405.13074]
On the linear recurrence of (generalized) hybrid numbers sequences and
moment problems [49]
A note on hybrid hyper-Leonardo numbers [41]
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Fibonacci-Lucas spinors obtained from hybrid numbers [Özçevik et al.,
arXiv:2406.15393]
On the Mersenne and Mersenne-Lucas hybrid quaternions [30]
Hybrid numbers with hybrid Leonardo number coefficients [42]
The (s, t)-Jacobsthal hybrid numbers and (s, t)-Jacobsthal-Lucas hybrid
numbers [31]
On higher order Lucas hybrid quaternions [5]

2025 On Higher-Order Generalized Fibonacci Hybrid Numbers with q-Integer
Components: New Properties, Recurrence Relations, and Matrix Repre-
sentations [26]
On the Lichtenberg hybrid quaternions [14]
On some k-Oresme hybrid numbers including negative indices [18]
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