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SUMMATION-INTEGRAL TYPE OPERATORS BASED ON
LUPAŞ-JAIN FUNCTIONS

NESIBE MANAV1 AND NURHAYAT ISPIR1

Abstract. We introduce a genuine summation-integral type operators based on
Lupaş-Jain type base functions related to the unbounded sequences. We investigated
their degree of approximation in terms of modulus of continuity and K-functional
for the functions from bounded and continuous functions space. Furthermore, we
give some theorems for the local approximation properties of functions belonging to
Lipschitz class. Also, we give Voronovskaja theorem for these operators.

1. Introduction

Inspiring by Lupaş’s paper [12], Agratini studied the following operators

Ln (f, x) = 2−nx
∞∑
k=0

(nx)k
2kk! f

(
k

n

)
,(1.1)

where f ∈ C [0,∞), C [0,∞) is the space of all real valued continuous functions on
[0,∞) in [1]. Agratini gave some estimations for rates of convergence, an asymptotic
formula and a reobtained version by using probabilistic methods at the same study.
Also, he introduced a Kantorovich and a Durrmeyer modifications of the operators
(1.1). Agratini, in [2], gave some estimations on the Kantorovich variant of the
operators (1.1) by using modulus of smoothness. Moreover, he investigated rate of
convergence by the step weight function of Lupaş operators, for local Lipschitz class
functions. Also, he gave some approximation properties of the operators given by
(1.1) using probabilistic methods.
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In [3], Erençin and Taşdelen introduced a generalization of the operators (1.1) with
the help of increasing and unbounded sequences of positive numbers (an), (bn). They
studied weighted approximation properties of these generalized operators. Later, in [4],
they studied convergence properties of the Kantorovich type version of these operators.
By using the modulus of continuity and Peetre’s K-functional, they gave the rate of
convergence of these operators. Also, they investigated convergence properties for the
functions from local Lipschitz class.

In [9], we generalized the operators (1.1) based on Lupaş base function by using
the sequences (an), (bn) as follows

(1.2) Lan,bn (f ;x) = 2−
an
bn
x
∞∑
k=0

(
an
bn
x
)
k

2kk! f

(
bn
an
k

)
,

where (an) , (bn) are unbounded and increasing sequences of positive real numbers
such that

(1.3) lim
n→∞

bn
an

= 0 and bn
an
≤ 1.

We gave and investigated some basic results for these operators. Also, using Lupaş
and Szász basis functions we defined summation-integral type operators

Dan,bn (f ;x) = an
bn

∞∑
k=0

ln,k (x)
∞∫

0

Pn,k (u) f (u) du,

where Pn,k (x) = e−
an
bn
x

(
an
bn
x
)k

k! , ln,k (x) =

(
an
bn
x
)
k

2kk! 2−
an
bn
x. Then, we gave the degree of

approximation of these operators in terms of Ditzian-Totik modulus of smoothness
and corresponding K-functional. Also, we examined the convergence by using the
Lipschitz class functions and we gave some results in weighted spaces.

Govil et al. in [5], introduced a modification of Lupaş operators with weight of
Szász basis functions. They investigated the rate of convergence for the functions
which have bounded derivatives. In addition, they gave a new modification of the
Lupaş operators as follows

Dn (f ;x) = n
∞∑
k=1

ln,k(x)
∞∫

0

pn,k−1 (u) f (u) du+ ln,0(x)f(0), x ≥ 0,

where

pn,k−1 (x) = e−nt
(nx)k−1

(k − 1)!
and

ln,k (x) = (nx)k
2kk! 2−nx.
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Jain in [10], introduced the modified form of the Szász-Mirakjan operator as follows

P β
n (f ;x) =

∞∑
k=0

pβn,k(x)f
(
k

n

)
, x ≥ 0,(1.4)

where the operators based on certain parameter 0 ≤ β < 1 and the base function

pβn,k(x) = e−nx+kβ nx (nx+ kβ)k−1

k! .

The rate of approximation of operators given by (1.4), for some values of n, is better
than the rate of approximation of operators Szász-Mirakjan.

Gupta and Greubel established the Durrmeyer variant of the operators (1.4) as
follow

Dβ
n (f ;x) =

∞∑
k=1

 ∞∫
0

pβn,k−1(u)du
−1

pβn,k(x)
∞∫

0

pβn,k−1 (u) f (u) du+ e−nxf(0)

and investigated some approximation properties in [6].
Inspiring by the previous studies, we define a genuine summation-integral type

operators by using Jain and Lupaş base functions for integrable functions as follows

D
[β]
an,bn

(f ;x)(1.5)

=
∞∑
k=1

 ∞∫
0

θβ

(
k−1,an

bn
u
)
du

−1

l∗n,k(x)
∞∫

0

θβ

(
k−1,an

bn
u
)
f(u)du+2−

an
bn
xf(0),

where f∈C[0,∞) is integrable function, l∗n,k(x)=(anbn x)k
2kk! 2−

an
bn
x, (an) and (bn) are un-

bounded and increasing sequences of positive real numbers satisfying the condition
(1.3) and the Jain-type base function is

θβ

(
k,
an
bn
x
)

=an
bn
x
(
an
bn
x+kβ

)k−1 e−(anbn x+kβ)
k! ,

for x∈[0,∞), n∈N and β∈[0,1). Here, by considering the definition of θβ we see that∑∞
k=0θβ

(
k,an

bn
x
)
=1.

In addition, if we take 〈f,g〉=
∫∞

0 f(t)g(t)dt at the definition of the operators D[β]
an,bn

,
we can write these operators as follow (see [6, 7])

D
[β]
an,bn

(f ;x)=
∞∑
k=1

〈
θβ
(
k−1,an

bn
u
)
,f(t)

〉
〈
θβ
(
k−1,an

bn
u
)
,1
〉 l∗n,k(x)+2−

an
bn
xf(0).(1.6)

In this paper, we give the degree of approximation of these operators using the
modulus of continuity and Peetre’s K-functional. Also, we give some theorems about
local approximation and Voronovskaja theorem.
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1.1. Direct results for D[β]
an,bn

operators. In this section, we give some basic prop-
erties of the operators D[β]

an,bn
operators.

Lemma 1.1. For 0≤β<1 we define

P ∗r (k−1,β)=

〈
θβ
(
k−1,an

bn
u
)
,tr
〉

〈
θβ
(
k−1,an

bn
u
)
,1
〉 ,

and we get the following
P ∗0 (k−1,β)=1,

P ∗1 (k−1,β)= bn
an

[
(1−β)k+β(2−β)

1−β

]
,

P ∗2 (k−1,β)=
(
bn
an

)2[
(1−β)2k2+(1+4β−2β2)k+β

2(3−β)
1−β

]
.

The proof is obtained by method of Lemma 2 at [6].
Lemma 1.2. ([9, Lemma 1]). For f∈C[0,∞) and x∈[0,∞), the operators Lan,bn given
by (1.2) satisfy the following conditions

Lan,bn(e0;x)=1,
Lan,bn(e1;x)=x,

Lan,bn(e2;x)=x2+2 bn
an
x,

where ei(x)=xi, i=0,1,2, and (an), (bn) are sequences of positive real numbers satisfying
the condition (1.3).

Now, we give the following equalities for the test functions of the operators defined
with (1.6).
Lemma 1.3. Let ek(x)=xk, k=0,1,2, and (an), (bn) are unbounded and increasing
sequences of positive real numbers satisfying the condition (1.3). For each x∈[0,∞),
the operators D[β]

an,bn
satisfy the following equalities

D
[β]
an,bn

(e0;x)=1,

D
[β]
an,bn

(e1;x)=x(1−β)+ bn
an

β(2−β)
(1−β) ,

D
[β]
an,bn

(e2;x)=(1−β)2x2+3 bn
an
x+
(
bn
an

)2
β2(3−β)
(1−β) ,

D
[β]
an,bn

(e3;x)=(1−β)3x3+3 bn
an

(
9−15β+9β2−3β3

)
x2

+
(
bn
an

)2(
6+14β+16β2−2β3+ 3β4

1−β

)
x+
(
bn
an

)3
β2(3−β)

1−β ,
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D
[β]
an,bn

(e4;x)=(1−β)4x4+ bn
an

(
18−28β+22β2−8β3+2β4

)
x3

+
(
bn
an

)2(
47−40β+30β2−20β3+5β4

)
x2

+
(
bn
an

)3(
42−+30β2−20β3+20β4−10β5

1−β

)
x+
(
bn
an

)4
β4(5−β)

1−β .

Proof. Considering the definition of the operator (1.6), the properties of Pochammer
symbol, and using the equality

2
an
bn
x=

∞∑
k=0

(
an
bn
x
)
k

2kk! , x∈[0,∞),

and by considering Lemma 1.1 and Lemma 1.2, we get

D
[β]
an,bn

(e0;x)=
∞∑
k=1

P ∗0 (k−1,β)l∗n,k(x)+2−
an
bn
xe0(0)=

∞∑
k=1

l∗n,k(x)=Lan,bn(e0;x)=1.

For e1 and e2 we have following results,

D
[β]
an,bn

(e1;x)=
∞∑
k=1

P ∗1 (k−1,β)l∗n,k(x)+2−
an
bn
xe1(0)

=
∞∑
k=1

l∗n,k(x)
[
bn
an

(
(1−β)k+ β

1−β+1
)]

= bn
an

(1−β)
∞∑
k=1

l∗n,k(x)(k)+ bn
an

β(2−β)
1−β

=(1−β)Lan,bn(e1;x)+ bn
an

β(2−β)
1−β Lan,bn(e0;x)

=(1−β)x+ bn
an

β(2−β)
1−β ,

D
[β]
an,bn

(e2;x)=
∞∑
k=1

P ∗2 (k−1,β)l∗n,k(x)+2−
an
bn
xe2(0)

=
(
bn
an

)2

(1−β)2
∞∑
k=1

l∗n,k(x)k2+
(
bn
an

)2

(1+4β−2β2)
∞∑
k=1

l∗n,k(x)k

+
(
bn
an

)2
β2(3−β)

1−β

∞∑
k=1

l∗n,k(x)

=(1−β)2Lan,bn(e2;x)+ bn
an

(
(1−β)2+

(
2+4β−2β2

))
Lan,bn(e1;x)

+
(
bn
an

)2
β2(3−β)
(1−β) Lan,bn(e0;x)
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=(1−β)2x2+3 bn
an
x+
(
bn
an

)2
β2(3−β)
(1−β) .

By using same method, if we keep to continue the calculations we can get the values
of other test functions. �

As a result of this lemma, we can give the central moments.

Lemma 1.4. For each x∈[0,∞) and the operators D[β]
an,bn

, we have

µn,1(x):=D[β]
an,bn

((t−x);x)=x(−β)+ bn
an

β(2−β)
(1−β) ,(1.7)

µn,2(x):=D[β]
an,bn

(
(t−x)2;x

)
=β2x2+22β2−7β+3

1−β
bn
an
x+
(
bn
an

)2
β2(3−β)
(1−β) .(1.8)

and
µn,4(x):=D[β]

an,bn

(
(t−x)4;x

)
=β4x4+ bn

an

(
32β+22β2+4β3−34β4−4β(2−β)

1−β

)
x3

+
(
bn
an

)2(
23−96β−2β2−12β3+5β4−12β4

1−β+6β2(3−β)
1−β

)
x2

+
(
bn
an

)3(
42+30β2+30β3+20β4−10β5

1−β−4β
2(3−β)
(1−β)

)
x+
(
bn
an

)2
β2(3−β)
(1−β) .

Proof of the last lemma is obvious from Lemma 1.3.

Remark 1.1. To obtain the Korovkin-type theorem we change β with the sequence
(βn) with the following property βn∈[0,1) for every n∈N and

lim
n→∞

βn=0.(1.9)

At the rest of this paper, we will use the notation D[βn]
an,bn

instead of D[β]
an,bn

. �

Remark 1.2. Using the conditions (1.3) and (1.9) for each 0≤x<∞, we get

µn,1(x)=D[βn]
an,bn

((t−x);x)→0, as n→∞,

µn,2(x)=D[βn]
an,bn

(
(t−x)2;x

)
→0, as n→∞,

and
µn,4(x)=D[βn]

an,bn

(
(t−x)4;x

)
→0, as n→∞.

Lemma 1.5. For all n∈N and x∈[0,∞), if limn→∞
an
bn
βn=ζ∈R, we have

lim
n→∞

an
bn
µn,1(x)=−ζx,(1.10)

lim
n→∞

an
bn
µn,2(x)=3x,(1.11)
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lim
n→∞

(
an
bn

)2
µn,4(x)=32ζx3+23x2.(1.12)

To satisfy the Korovkin-type theorem we consider the lattice homomorphism Ta:
C[0,∞)→C[0,a] defined as Ta(f)=f |[0,a] with a fixed a≥0. It is clear that, from Lemma
1.3 and by using the condition (1.9), we have Ta

(
D

[βn]
an,bn

(ek)
)
→Ta(ek)=xk uniformly

on [0,a], where k=0,1,2. Then, by the well-known Korovkin theorem, the following
result is proven on any compact subset of [0,∞) as n→∞.

Theorem 1.1. Let
(
D

[βn]
an,bn

)
be the sequence of linear positive operators given by

(1.6), f∈C[0,a] and (βn) be the sequence satisfying the condition (1.9). The sequence(
D

[βn]
an,bn

)
converges uniformly to f(x) on [0,a].

2. Degree of Approximation

In this section, we give an estimate the degree of approximation for the operators
D

[β]
an,bn

(f ;x) in terms of the modulus of continuity, Ditzian-Totik moduli of smoothness,
and the Peetre’s K-functional. Also, we give Voronovskaja theorem for D[β]

an,bn
(f ;x)

operators.
We begin by recalling some definitions and notations. By CB[0,∞), we denote the

class on real valued continuous and bounded functions f defined on the interval [0,∞)
with the norm ‖f‖=supx∈[0,∞)|f(x)|. For f∈CB[0,∞), δ>0, the mth order modulus
of continuity is defined as

ωm(f,δ)= sup
0<h≤δ

sup
x∈[0,∞)

|∆m
h f(x)|,

with ∆ is the forward difference.
The Petree’s K-functional is defined by

K2(f,δ)= inf
g∈C2

B [0,∞)
{||f−g||+δ‖g′′‖}, δ>0,

where C2
B[0,∞)={g∈CB[0,∞) : g′ ,g′′∈CB[0,∞)} and ||·|| is the uniform norm on

CB[0,∞). By ([8], page 10), we have the following inequality

(2.1) K2(f,δ)≤Mω2(f,
√
δ),

where M is a positive constant and ω2 is the second order modulus of smoothness for
f∈CB[0,∞) defined as

ω2(f,
√
δ)= sup

0<h≤δ
sup

x,x+2h∈[0,∞)
|f(x+2h)−2f(x+h)+f(x)|.

Now, we can give the following result.

Theorem 2.1.
(
D

[βn]
an,bn

)
denotes a sequence of linear positive operators defined by (1.6)

and let (βn) be the sequence satisfying the condition (1.9). Then, for all f∈CB[0,∞)
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and for each x∈[0,∞), the following inequality

(2.2)
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤2ω
(
f,δ

[βn]
an,bn

)
holds, where δ[βn]

an,bn
(x)={µn,2(x)}1/2 and ω is usual first moduli of continuity.

Proof. For every u,t∈[0,∞) and δ>0, considering the definition of modulus of conti-
nuity we can write

|f(u)−f(x)|≤(1+δ−1|u−x|)ω(f,δ).
Using the definition of (1.5) with the above inequality we have,∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣
≤
∞∑
k=1

 ∞∫
0

θβn

(
k−1,an

bn
u
)
du

−1

l∗n,k(x)
∞∫

0

θβn

(
k−1,an

bn
u
)(

1+δ−1|u−x|
)
du

=ω(f,δ)D[βn]
an,bn

(e0)(x)+δ−1ω(f,δ)D[βn]
an,bn

(|u−x|)(x).(2.3)
Applying Cauchy-Schwartz inequality, we have∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤ω(f,δ)+δ−1ω(f,δ)
{
D

[βn]
an,bn

(
(u−x)2

)
(x)
}1/2

.

By considering (1.8), if we choose δ:=δ[βn]
an,bn

(x) as follows

δ
[βn]
an,bn

(x)={µn,2(x)}1/2,

we obtain (2.2) for each x∈[0,∞). �

Now, we give the rate of convergence by means of Peetre’s K-functional.

Theorem 2.2. For each x∈[0,∞) and f∈CB[0,∞), the following inequalities∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣≤4K2

(
f,d

[βn]
an,bn

(x)
)
+ω1

(
f,α

[βn]
an,bn

)
(2.4)

≤Mω2

(
f ;
√
d

[βn]
an,bn

(x)
)

+ω1
(
f,α

[βn]
an,bn

(x)
)

hold, where d[βn]
an,bn

(x)=
(
δ

[βn]
an,bn

(x)
)2

+
(
α

[βn]
an,bn

(x)
)2

with δ[βn]
an,bn

(x) is given in Theorem 2.1,
α

[βn]
an,bn

(x)= bn
an

βn(2−βn)
1−βn −βnx and M is a constant independently of n and x.

Proof. Lets take auxiliary operators for D[βn]
an,bn

operators as below

(2.5) D
[βn]
an,bn(f ;x)=D[βn]

an,bn
(f ;x)+f(x)−f

(
(1−βn)x+ bn

an

βn(2−βn)
1−βn

)
.

So, it is obvious to see that for all f∈CB[0,∞)∣∣∣∣D[βn]
an,bn(f ;x)

∣∣∣∣≤∣∣∣D[βn]
an,bn

(f ;x)
∣∣∣+|f(x)|+

∣∣∣∣∣f
(

(1−βn)x+ bn
an

βn(2−βn)
1−βn

)∣∣∣∣∣(2.6)

≤3‖f‖.
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From the Lemma 1.3 we see that the new operators D[βn]
an,bn(f ;x) obtain D[βn]

an,bn(t;x)=x
and as a direct result of this they obtain D[βn]

an,bn(t−x;x)=0. For g∈C2
B[0,∞), t∈[0,∞)

by using the Taylor formula, we know

g(t)=g(x)+(t−x)g′(x)+
t∫
x

(t−u)g′′(u)du.

Now, we apply the operatorsD[βn]
an,bn to both sides of this equality and using the equality

(2.5), we get

D
[βn]
an,bn(g;x)−g(x)=D[βn]

an,bn

 t∫
x

(t−u)g′′(u)du;x


−
(1−βn)x+ bn

an

βn(2−βn)
1−βn∫

x

(
(1−βn)x+ bn

an

βn(2−βn)
1−βn

−u
)
g′′(u)du.

Now, passing absolute value and later considering the feature of norm give us following
inequalities ∣∣∣∣D[βn]

an,bn(g;x)−g(x)
∣∣∣∣

≤D[βn]
an,bn

 t∫
x

|t−u||g′′(u)|du;x


+
(1−βn)x+ bn

an

βn(2−βn)
1−βn∫

x

∣∣∣∣∣(1−βn)x+ bn
an

βn(2−βn)
1−βn

−u
∣∣∣∣∣|g′′(u)|du

≤‖g′′‖

D[βn]
an,bn

(
(t−x)2;x

)
+
(

(1−βn)x+ bn
an

βn(2−βn)
1−βn

−x
)2
.(2.7)

From Lemma 1.4, by using the (1.8) and taking (−βn)x+ bn
an

βn(2−βn)
1−βn :=α[βn]

an,bn
(x), we

get

D
[βn]
an,bn

(
(t−x)2;x

)
+
(

(1−βn)x+ bn
an

βn(2−βn)
1−βn

−x
)2

=
(
δ

[βn]
an,bn

(x)
)2

+
(
α

[βn]
an,bn

(x)
)2

=d[βn]
an,bn

(x).(2.8)

Using the inequality (2.7) and equality (2.8) we can write

(2.9)
∣∣∣∣D[βn]

an,bn(g;x)−g(x)
∣∣∣∣≤(d[βn]

an,bn
(x)
)
‖g′′‖.

For f∈CB[0,∞) and considering (1.5), we can write∣∣∣D[βn]
an,bn

(f ;x)
∣∣∣
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≤
∞∑
k=1

 ∞∫
0

θβ

(
k−1,an

bn
u
)
du

−1

l∗n,k(x)
∞∫

0

θβ

(
k−1,an

bn
u
)
|f(u)|du+2−

an
bn
x|f(0)|

≤‖f‖
∞∑
k=1

 ∞∫
0

θβ

(
k−1,an

bn
u
)
du

−1

l∗n,k(x)
∞∫

0

θβ

(
k−1,an

bn
u
)
du+2−

an
bn
x

=‖f‖D[βn]
an,bn

(e0;x)=‖f‖.(2.10)

Combining (2.9) and (2.6), for f∈CB[0,∞) and for g∈C(2)
B [0,∞), we have∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤∣∣∣∣D[βn]
an,bn((f−g);x)

∣∣∣∣+|(f−g)(x)|+
∣∣∣∣D[βn]

an,bn(g;x)−g(x)
∣∣∣∣

+
∣∣∣∣∣f
(

(1−βn)x+ bn
an

βn(2−βn)
1−βn

)
−f(x)

∣∣∣∣∣
≤4‖f−g‖+

(
d

[βn]
an,bn

(x)
)
‖g′′‖+

∣∣∣∣∣f
(

(1−βn)x+ bn
an

βn(2−βn)
1−βn

)
−f(x)

∣∣∣∣∣.
Taking the infimum over all g∈C2

B[0,∞), we reach the result (2.4) and by using the
inequality (2.1) we find, for each x∈[0,∞)∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤4Mω2
(
f,d

[βn]
an,bn

(x)
)
+ω1

(
f,α

[βn]
an,bn

(x)
)
,

which implies the proof. �

Now we give the result by using Ditzian-Totik moduli of smoothness. Let start
with reminding the some definitions which will be used.

Let function f∈C[0,∞) and if we take step weight function φ:[0,∞)→R. The first
order Ditzian-Totik modulus of smoothness and corresponding K- functional are given
by, respectively,

ωφ1 (f,
√
δ)= sup

0<h≤
√
δ

{∣∣∣∣∣f
(
x+hφ(x)

2

)
+f

(
x−hφ(x)

2

)∣∣∣∣∣ : x±hφ(x)
2 ∈[0,∞)

}
,

K1,φ(f,δ)=inf{‖f−g‖∞+δ‖φg′‖∞ : g∈C ′(φ)}, δ>0,

where C(φ)={g∈ACloc[0,∞) : ‖φg′‖∞<∞}. g∈ACloc[0,∞) shows that the function g
is differentiable and g is absolutely continuous on every closed interval [a,b]⊂[0,∞).
It is known that there exists a positive constant M>0, such that (see [8], p.68)

(2.11) 1
M
ωφ1 (f,

√
δ)≤K1,φ(f,δ)≤Mωφ1 (f,

√
δ).

Theorem 2.3. Let f∈CB[0,∞). For x∈(0,∞), we have∥∥∥D[βn]
an,bn

(f)−f
∥∥∥≤2K1,φ

(
f,δ

[βn]
an,bn

)
≤2Mωφ1

(
f,

√
δ

[βn]
an,bn

)
,(2.12)

where φ(x)=
√
x is a step function.
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Proof. For g∈C(φ), by using Taylor’s formula of g, we have

g(t)=g(x)+
t∫
x

g′(u)du=g(x)+
t∫
x

g′(u)
φ(u) φ(u)du.

Then, for the step function φ(x)=
√
x, we get

|g(t)−g(x)|≤‖φg′‖∞

∣∣∣∣∣∣
t∫
x

1
φ(u)du

∣∣∣∣∣∣=‖φg′‖∞2
∣∣∣√t−√x∣∣∣=2‖φg′‖∞

|t−x|√
t+
√
x
.

From the inequality
√
t+
√
x≥
√
x, we get

|g(t)−g(x)|≤2‖φg′‖∞
|t−x|√
x

=2‖φg′‖∞
|t−x|
φ(x) .(2.13)

Using (2.13) and (2.10), for f∈CB[0,∞) and g∈C(φ), we have∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣≤∣∣∣D[βn]

an,bn
((f−g);x)

∣∣∣+∣∣∣D[βn]
an,bn

(g;x)−g(x)
∣∣∣+|g(x)−f(x)|

≤2‖f−g‖+2‖φg
′‖∞

φ(x) D
[βn]
an,bn

(|t−x|;x).

By applying Cauchy-Schwartz inequality, we can write∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣≤2‖f−g‖+2‖φg

′‖∞
φ(x)

(
D

[βn]
an,bn

(
(t−x)2;x

))1/2

≤2‖f−g‖+2‖φg
′‖∞

φ(x) δ
[βn]
an,bn

(x).

Taking the infimum on the right hand side over all g∈C2(φ) we obtain

|Dan,bn(f ;x)−f(x)|≤2K1,φ
(
f,δ

[βn]
an,bn

)
.

Considering (2.11) we get (2.12) which is desired result. �

In this section, we obtain some pointwise estimates of rate of convergence of the
operators (1.6). The Lipschitz-type space is given as follow, in [13];

Lip∗M(η)=
{
f∈C[0,∞) : |f(t)−f(x)|≤Mf

|t−x|η

(t+x)
η
2
, x,t∈(0,∞)

}
,

where Mf is a positive constant and η∈(0,1].

Theorem 2.4. Let f∈Lip∗M(η). Then, for all x∈(0,∞), we get

(2.14)
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤M(
µn,2(x)
x

)η/2

,

where µn,2(x) is the same as in Lemma 1.4.
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Proof. For a function f∈Lip∗M(η), by using the definition, we get

|f(t)−f(x)|≤Mf
|t−x|η

(t+x)
η
2
.

Applying the operators D[βn]
an,bn

on both sides of the above inequality, we have∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣≤MfD

[βn]
an,bn

(
|t−x|η

(t+x)
η
2

;x
)
.

By using the Hölder’s inequality, with p= 2
η
, q= 2

2−η and, using the Lemma 1.4, we can
write ∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤Mf

(
D

[βn]
an,bn

(
(t−x)2

(t+x) ;x
)) η

2 (
D

[βn]
an,bn

(1;x)
) 2−η

2

≤Mf
1
xη/2

(
D

[βn]
an,bn

(
(t−x)2;x

)) η
2 .

So, we obtain (2.14). �

Now we give an estimate for the rate of convergence by the means of the general
space of the Lipschitz-type maximal functions. Let C̃B[0,∞) be the space of bounded,
uniformly continuous real valued functions on [0,∞). The Lipschitz-type maximal
function of order η of f∈C̃B[0,∞) is introduced by Lenze [11] as

f̃η(x)= sup
t6=x,t∈[0,∞)

|f(t)−f(x)|
|t−x|η

, x∈[0,∞),

and η∈(0,1].

Theorem 2.5. Let
(
D

[βn]
an,bn

)
be a sequence of linear positive operators defined by (1.6).

Then, for all f∈C̃B[0,∞), we get∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣≤f̃η(x)

(
δ

[βn]
an,bn

(x)
)η
,

where δ[βn]
an,bn

is the same as in Theorem 2.1.

Proof. Using the definition of maximal function, we get
|f(t)−f(x)|≤f̃η(x)|t−x|η,

and applying the operators D[βn]
an,bn

on both sides of this equation, we get∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣ ≤ f̃η(x)D[βn]

an,bn
(|t−x|η;x).

Applying the Hölder’s inequality with p= 2
η
and q= 2

2−η , using Lemma 1.3, it follows
that

D
[βn]
an,bn

(|t−x|η;x)≤f̃η(x)
(
D

[βn]
an,bn

(|t−x|2;x)
) η

2
(
D

[βn]
an,bn

(1
2−η

2 ;x)
) 2−η

2

≤f̃η(x)
(
D

[βn]
an,bn

((t−x)2;x)
) η

2
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≤f̃η(x)
(
δ

[βn]
an,bn

(x)
)η
.

Hence, the proof is completed. �

3. Voronovskaja Theorem

We prove a Voronoskaja type theorem for the operators D[βn]
an,bn

(f ;x) .

Theorem 3.1. For every f∈CB[0,∞) such that f ′,f ′′∈CB[0,∞), and for every fixed
x∈[0,∞), we have

lim
n→∞

an
bn

(
D

[βn]
an,bn

(f ;x)−f(x)
)
=−ζxf ′(x)+3

2xf
′′(x),

where ζ is the same with the Lemma 1.5.

Proof. Let x∈[0,∞) be a fixed point. For all t∈[0,∞), by using Taylor expansion we
have

f(t)=f(x)+(t−x)f ′(x)+1
2(t−x)2f ′′(x)+R(t,x)(t−x)2,

where R(t,x) is the remainder term, R(t,x)∈CB[0,∞), and R(t,x)→0 as t→x . Apply-
ing the operatorD[βn]

an,bn
to both sides of Taylor expansion and consideringD[βn]

an,bn
(e0;x)=

1, we get
an
bn

(
D

[βn]
an,bn

(f ;x)−f(x)
)
=an
bn
D

[βn]
an,bn

((t−x);x)f ′(x)+1
2
an
bn
D

[βn]
an,bn

(
(t−x)2;x

)
f ′′(x)

+an
bn
D

[βn]
an,bn

(
R(t,x)(t−x)2;x

)
=A1+A2+A3.

Thus, we immediately have

A1=an
bn
µn,1(x)f ′(x),

A2=1
2
an
bn
µn,2(x)f ′′(x).

Now, we estimate A3. From Cauchy-Schwartz inequality, we have

A3=an
bn
D

[βn]
an,bn

(
R(t,x)(t−x)2;x

)

≤
{
D

[βn]
an,bn

(
(R(t,x))2;x

)}1/2
{(

an
bn

)2
D

[βn]
an,bn

(
(t−x)4;x

)}1/2

.

The properties of the function R(t,x) implies that R2(x,x)=0 and R2(x,x)∈CB[0,∞).
Hence, we obtain

lim
n→∞

D
[βn]
an,bn

(
(R(t,x))2;x

)
=R2(x,x)=0, x∈[0,∞).

Furthermore, by applying equation (1.12) from Lemma 1.5, we get

lim
n→∞

D
[βn]
an,bn

(
R(t,x)(t−x)2;x

)
=0.
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Moreover, if we take limits as n→∞ over A1 and A2, from the equalities (1.10) and
(1.11), this implies the desired result. �

References
[1] O. Agratini, On a sequence of linear and positive operators, Facta Univ. Ser. Math. Inform. 14

(1999), 41–48.
[2] O. Agratini, On the rate of convergence of a positive approximation process, Nihonkai Math. J.

11 (2000), 47–56.
[3] A. Erençin and F. Taşdelen, On a family of linear and positive operators in weighted spaces,

Journal of Inequalities in Pure and Applied Mathematics 8(6) (2007), 2–39.
[4] A. Erençin and F. Taşdelen, On certain Kantorovich type operators, Fasc. Math. 41 (2009),

65–71.
[5] N. K. Govil, V. Gupta, and D. Soybaş, Certain new classes of Durrmeyer type operators, Appl.

Math. Comput. 225 (2013), 195–203.
[6] V. Gupta and G. C. Greubel, Moment Estimations of new Szász-Mirakyan-Durrmeyer operators,

Appl. Math. Comput. 271 (2015), 540–547.
[7] V. Gupta and G.Tachev, Approximation with Positive Linear Operators and Linear Combinations,

Springer, Cham, 2017.
[8] V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, USA,

New York, 2014.
[9] N. Ispir and N. Manav, Approximation by the summation integral type operators based on

Lupaş-Szász basis functions, Journal of Science and Art 4(45), 2018, 853–868.
[10] G. C. Jain, Approximation of functions by a new class of linear operators, J. Aust. Math. Soc.

13(3) (1972), 271–276.
[11] B. Lenze, Bernstein-Baskakov-Kantorovich operators and Lipschitz-type maximal functions,

Colloq. Math. Soc. János Bolyai 58 (1990), 469–496.
[12] A. Lupaş, The approximation by some positive linear operators, in: M. W. Müller et al., (Eds.),

Proceedings of the International Dortmund Meeting on Approximation Theory, Akademie Verlag,
Berlin, 1995, 201–229.

[13] M. A. Özarslan and O. Duman, Local approximation behavior of modified SMK operators,
Miskolc Math. Notes 11(1) (2010), 87–89.

1Department of Mathematics,
Gazi University,
06500 Teknikokullar, Ankara, Turkey
Email address: nmanav@gazi.edu.tr

Email address: nispir@gazi.edu.tr


	1. Introduction
	1.1. Direct results for Dan,bn[ ]  operators 

	2. Degree of Approximation
	3. Voronovskaja Theorem
	References

