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SUMMATION-INTEGRAL TYPE OPERATORS BASED ON
LUPAS-JAIN FUNCTIONS

NESIBE MANAV! AND NURHAYAT ISPIR!

ABSTRACT. We introduce a genuine summation-integral type operators based on
Lupasg-Jain type base functions related to the unbounded sequences. We investigated
their degree of approximation in terms of modulus of continuity and X-functional
for the functions from bounded and continuous functions space. Furthermore, we
give some theorems for the local approximation properties of functions belonging to
Lipschitz class. Also, we give Voronovskaja theorem for these operators.

1. INTRODUCTION

Inspiring by Lupag’s paper [12], Agratini studied the following operators

oz = (n) k
(1.1) L,(f,r)=2 ];)M!k <n>

where f € C'[0,00), C'[0,00) is the space of all real valued continuous functions on
[0,00) in [1]. Agratini gave some estimations for rates of convergence, an asymptotic
formula and a reobtained version by using probabilistic methods at the same study.
Also, he introduced a Kantorovich and a Durrmeyer modifications of the operators
(1.1). Agratini, in [2], gave some estimations on the Kantorovich variant of the
operators (1.1) by using modulus of smoothness. Moreover, he investigated rate of
convergence by the step weight function of Lupag operators, for local Lipschitz class
functions. Also, he gave some approximation properties of the operators given by
(1.1) using probabilistic methods.
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In [3], Erengin and Tagdelen introduced a generalization of the operators (1.1) with
the help of increasing and unbounded sequences of positive numbers (a,), (b,). They
studied weighted approximation properties of these generalized operators. Later, in [4],
they studied convergence properties of the Kantorovich type version of these operators.
By using the modulus of continuity and Peetre’s K-functional, they gave the rate of
convergence of these operators. Also, they investigated convergence properties for the
functions from local Lipschitz class.

In [9], we generalized the operators (1.1) based on Lupas base function by using

the sequences (a,), (b,) as follows
oo (4no
(bn )k f (bn k‘) ,
an

(1.2) Loy (Fi2) = 27007 3 20

k=0

where (ay,), (b,) are unbounded and increasing sequences of positive real numbers
such that

b, b,
(1.3) lim — =0 and — <1.
n—o0 an an
We gave and investigated some basic results for these operators. Also, using Lupas
and Szasz basis functions we defined summation-integral type operators

b (f37) = % i g () /Pn,k (u) f (u) du,

n k=0
an (22 . dn g
where P, () = e o” <b7}€!> s Ik (2) = <;nkk?k
approximation of these operators in terms of Ditzian-Totik modulus of smoothness
and corresponding K-functional. Also, we examined the convergence by using the
Lipschitz class functions and we gave some results in weighted spaces.

Govil et al. in [5], introduced a modification of Lupag operators with weight of
Szész basis functions. They investigated the rate of convergence for the functions
which have bounded derivatives. In addition, they gave a new modification of the
Lupas operators as follows

27, Then, we gave the degree of

D, (f;x) = nkioj lnx(x) /pmk,l (w) f (u)du+ 1, o(x)f(0), x>0,

where

and
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Jain in [10], introduced the modified form of the Szdsz-Mirakjan operator as follows

14 P i) =Y siar () ez

where the operators based on certain parameter 0 < § < 1 and the base function

kg T (N + KB ht
P () = et i )

The rate of approximation of operators given by (1.4), for some values of n, is better
than the rate of approximation of operators Szasz-Mirakjan.

Gupta and Greubel established the Durrmeyer variant of the operators (1.4) as
follow

be (fiz) = kf: (/ pg,k—l(“ﬂ“) ng(x) /pg,k—l (u) f(u) du+e ™ f(0)

and investigated some approximation properties in [6].
Inspiring by the previous studies, we define a genuine summation-integral type
operators by using Jain and Lupag base functions for integrable functions as follows

(1.5) DY, (fix)

(/eﬁ( 1u> ) /95< 1u)f(u)du+2‘52xf(0),

where feC[0,00) is integrable function, ,’;7,6(:6):(*’21,6,)’“2*71, (an) and (b,) are un-
bounded and increasing sequences of positive real numbers satisfying the condition

(1.3) and the Jain-type base function is

a,, a, (G k-1 (§2o+ks)
65<k bnx>:bnx<bnx+kﬁ> £
for x€]0,00), neN and 5€[0,1). Here, by considering the definition of 85 we see that
o0 (k) =1,

In addition, if we take (f,g)=[;"f(t)g(t)dt at the definition of the operators D([li] by
we can write these operators as follow (see [6,7])

= (Os(k-1820) S1))

(16) Dyl (fim)=3 Jy a2 O,

o (0s(k—1,2u

In this paper, we give the degree of approximation of these operators using the
modulus of continuity and Peetre’s K-functional. Also, we give some theorems about
local approximation and Voronovskaja theorem.
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1.1. Direct results for ng},bn operators. In this section, we give some basic prop-

erties of the operators Dgi],bn operators.

Lemma 1.1. For 0<p<1 we define

P:(k—l,ﬁ)_ <66 (k_l’%u) ’t7“>

(O (k-Lgeu) 1)

and we get the following

R(h-15)=12 |-kt

5(2—5)1
=5 |
b") l(1—6)2k2+(1+45—252)k+

a

Pz*(k—l,ﬂ):( 52;3_‘55)]

The proof is obtained by method of Lemma 2 at [6].

Lemma 1.2. ([9, Lemma 1]). For feC0,00) and z€[0,00), the operators L, p, given
by (1.2) satisfy the following conditions

1
La, b, (e1;7)=m,

)

by,
L, b, (eg;a:):x2+2—:v,
a

where e;(x)=x", i=0,1,2, and (a,), (b,) are sequences of positive real numbers satisfying
the condition (1.3).

Now, we give the following equalities for the test functions of the operators defined
with (L.6).
Lemma 1.3. Let e(x)=2*, k=0,1,2, and (a,), (by) are unbounded and increasing
sequences of positive real numbers satisfying the condition (1.3). For each x€[0,00),

the operators D[ ]  satisfy the following equalities

D([zm bn (60;‘7:):17

B (o b, B(2—5)
Dan,bn< 1 ) (1 5)+an (1_5) ’

CI by B*(3-8)
Dai,bn(€27x)_(1 B)’x +3a +<an> 1=p)

by
Dy (esiw)=(1=B)a"+3. " (9-15p+95°~35")a*

n

2 3
+<b:> <6+14B+1662 258+ 20 ;) +<> 621(:6)
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by
Dyopa(esi)=(1=5)"s"+ 2 (18-286+226° 85" +25")a”

n

b\’ 104° ba " B4(5-B)
+<n> (42—+3052—2063+2054—1_ﬁ>x+<an> 15

Proof. Considering the definition of the operator (1.6), the properties of Pochammer
symbol, and using the equality

2
+<b”> (47—40B+30B2—2063+5B4)x2

2%””:5% (Z:x)k, x€[0,00),

£ R

and by considering Lemma 1.1 and Lemma 1.2, we get
Dy, (eose ZP* (k=L B)I5 () +27 7 eo (0)= 317 1 (2)=La, b, (c0:)=1.
For e; and e, we have following results,

DY, (er;z) ZP* (k—1,8)I% 4 (x)+27 "1 (0)

:lel’k(:c) li( 1%+1>]
S 202

an an ﬁ

—(1-8) Lo (erie >+U 2

bn B(2—P)
=(1-pB)z +a 15
K@

DY, (ega ZP*k LA () +27 0 %eq(0)

a

L, b, (€0;7)

:<bn) (1o () (4523 2o

(7% n

() DS

an, 1-5 =

—(1=5)La, 5, (e2; )+bl((1 —B3)?+(2+48-26)) La, b, (e1;2)

ba\ " B2(3-B) .
+ <an> (1_76)[/(1”71,” (60,1’)
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2
=(1-8)*2*+32 2+ <> = 2
( ) Qp, n (1_6)
By using same method, if we keep to continue the calculations we can get the values
of other test functions. U

As a result of this lemma, we can give the central moments.

Lemma 1.4. For each x€[0,00) and the operators DY we have

A, b ?
b, B(2—
(7) paaei=DEL, (t-alie)=a (=g 2 )
282—T73+3 b, b, \>B2(3—
19 koDl (0ot T e () 500
and
MnA(!E)i:nglbn ((t—x)4;x>
—B4x4+2” (32B+2262+453—34g4_ 451(:5) ) .
bn 2 1254 6/@2(3_6)

b\ 108°  B*(3—0) b\’ B2(3—5)
+<an> (42+3052+3053+2054—1_ 6_4 17) >x+<an> 5

Proof of the last lemma is obvious from Lemma 1.3.

Remark 1.1. To obtain the Korovkin-type theorem we change § with the sequence
(B,) with the following property 3,€[0,1) for every n€N and

(1.9) lim 3, =0.

n—oo

At the rest of this paper, we will use the notation D instead of DY

an,bn Qn,bn*

U
Remark 1.2. Using the conditions (1.3) and (1.9) for each 0<z<oo, we get

o () =D ((t=2)ia) =0,  as nos,

anybn
pna(2)=DL") ((t=2)%2)—0,  as n—oo,
and

Mn,4(ZL’):D['Bn] ((t—x)4;x)—>0, as n—00.

Qn,bn

Lemma 1.5. For all n€N and x€[0,00), if limy, 00 3™ 8,=CER, we have
a

(1.10) I (3=
(1.11) lim o™ 1y 0 (2)=32,

n—00 bn
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2
(1.12) lim (Zn> fna(2)=32¢x +232°.

n—o0
n

To satisfy the Korovkin-type theorem we consider the lattice homomorphism T,:
C[0,00)—=C[0,a] defined as T,(f)=f(0,a) with a fixed a>0. It is clear that, from Lemma,
1.3 and by using the condition (1.9), we have T, (Dgf:;)n(ek))%Ta(ek):a:k uniformly
on [0,a], where k=0,1,2. Then, by the well-known Korovkin theorem, the following
result is proven on any compact subset of [0,00) as n—o0.

Theorem 1.1. Let (Dﬁ'iin) be the sequence of linear positive operators given by
(1.6), feC0,a] and (5,) be the sequence satisfying the condition (1.9). The sequence
Dai’f;)n) converges uniformly to f(x) on [0,a].

2. DEGREE OF APPROXIMATION

In this section, we give an estimate the degree of approximation for the operators
Dc[filbn (f;x) in terms of the modulus of continuity, Ditzian-Totik moduli of smoothness,

and the Peetre’s K-functional. Also, we give Voronovskaja theorem for Dﬂbn( fiz)
operators.

We begin by recalling some definitions and notations. By Cz[0,00), we denote the
class on real valued continuous and bounded functions f defined on the interval [0,00)
with the norm || f||=sup,c(o )| f(7)]. For f€CE[0,00), >0, the mth order modulus
of continuity is defined as

win(f,0)=sup sup |A}f(z)],
0<h<éz€[0,00)
with A is the forward difference.
The Petree’s K-functional is defined by

Ko(f,0)= inf —g||+d1lg” §>0
2(f9) 9601]2;1[0700){||f gll+ollg" (I3, :
where C%[0,00)={g€Cp[0,00) : ¢ ,9"€Cp[0,00)} and ||-|| is the uniform norm on
Cp[0,00). By ([8], page 10), we have the following inequality
(2.1) Ko (f.6)<Mewn(fV0),

where M is a positive constant and w, is the second order modulus of smoothness for
feCp[0,00) defined as

wo(fV8)=sup  sup | f(a+2h)—=2f (x+h)+f(z)].

0<h<dzx,x+2h€[0,00)

Now, we can give the following result.

Theorem 2.1. (D([i";,n) denotes a sequence of linear positive operators defined by (1.6)
and let (B3,) be the sequence satisfying the condition (1.9). Then, for all feCg[0,00)
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and for each £€[0,00), the following inequality
(2.2) DI (F)— f ()| <20 (1017

holds, where 62&”})“ (2)={ptn2(x)}"* and w is usual first moduli of continuity.

Proof. For every u,te[0,00) and 6>0, considering the definition of modulus of conti-
nuity we can write

|f ()= f(@)|<(1+0" u—z)w(f,).
Using the definition of (1.5) with the above inequality we have,

DI (fr)—f ()]
-1

gz (/eﬁn <k:—1,znu) du> z;;y,ﬂ(:c)/eﬁn (k—l,znu) (140 fu—z|)du
(23)  =w(£.6)DL", (eo)(@)+5 w(£,0) D (Ju—a])(x).
Applying Cauchy-Schwartz inequality, we have

DI (Fi0)— ()| <w(f,0)+7 w(£.6){ D, ((u—2)?) ()}
By considering (1.8), if we choose § ::5([5 ", (1) as follows

S (2)={pim2(2)}'*,
we obtain (2.2) for each z€[0,00). O

1/2

Now, we give the rate of convergence by means of Peetre’s K-functional.

Theorem 2.2. For each :UE[O o0) and feCg[0,00), the following inequalities
(2.4) DI (F)— f(2)| <4 (£, ()4 (£.020)

<Muws (f \/7>+w1 fali (@)

hold, where d([i”;) (x)= (5[ﬂ"] (x ))2—|—<oz[ﬁ"’}bn(x))2 with 5Li”in(x) is given in Theorem 2.1,

an,bn an

Oéanybn 1—pn

—Bpx and M is a constant independently of n and x.

[Bn]

Proof. Lets take auxiliary operators for D, ",

_ operators as below

by (2 m))

@5 D (s DL'B"in(f;:v)Jrf(x)—f((1—ﬁn)$ s

So, it is obvious to see that for all feCg[0,00)
26) DL, ()| <[Pl () |+ |+‘f< ~B)e
<3I£1l-

b Bn(Q_Bn)
]-_Bn
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From the Lemma 1.3 we see that the new operators 526:;)”( f;z) obtain Egi"in (tx)=x

and as a direct result of this they obtain 551”;7” (t—x;2)=0. For geC%[0,00), t€[0,00)

by using the Taylor formula, we know
t
g(0)=g(@)+(t=a)g @)+ [ (t=u)g’ (u)du

Now, we apply the operators D[ﬂ 1, to both sides of this equality and using the equality
(2.5), we get

t
) 671, n
DY) (g:w)—g(zx)=DL"), ( / (t—u)g”(u)du;x)

(l_ﬂn)x"!‘b*z 5n(i—/3n)

— /“ o ((1—&)1’ a:ﬁnf ﬁfn) u)g”(u)du.

Now, passing absolute value and later considering the feature of norm give us following
inequalities

xT

(Bn]
DL, (gi0)=9()

<l ( [1t=ullg"(w)|du; )

(1 Bn)x"l‘bn Bn(2—PBn)

1-Bn
+

e <l (D,Ei’:%,n(<t—x>2;x)+<<1—@n>x+”W‘ﬁ”)—x) )

9" (u)|du

Qp, 1_571

From Lemma 1.4, by using the (1.8) and taking (—Bn)x+2—zﬁ”ﬁ;f”):— [Bn";)n(:p), we
get

2
(e (A G R R = )}
(2.8) =d’ (2).

Qn,bn

Using the inequality (2.7) and equality (2.8) we can write

(2.9) DL, (gso)—g(@) | < (42}, ) g1
For feCg[0,00) and considering (1.5), we can write
‘D([zinbn e x)‘
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Ski(/ %(’“ ", ) ) /Gﬂ(k Lo ) | (w)|du+2757| £(0)
<||f||2(/95<k L )du) L i ( x/%( — ,bnu>du+2_(§f«f$

(210) =D, (eor)=[ £1]
Combining (2.9) and (2.6), for feC3[0,00) and for geC[0,00), we have

D, (f30)= 1 )| <[P (7 =g)iw) |+ =g @)+ DEZ, (i) —g(a)

Hr(-ges B0 )

b n n
<l gl (@ )"+ (=g 2 P20 ) f<x>|.

Taking the infimum over all geC%[0,00), we reach the result (2.4) and by using the
inequality (2.1) we find, for each z€[0,00)

’Dﬁ";}" (f;x) ’<4Mw2 (f d[ﬂ"] ( ))—i—wl (f,a([i’t;)"(x)>,
which implies the proof. 0

Now we give the result by using Ditzian-Totik moduli of smoothness. Let start
with reminding the some definitions which will be used.

Let function fe€C[0,00) and if we take step weight function ¢:[0,00)—R. The first
order Ditzian-Totik modulus of smoothness and corresponding K- functional are given

by, respectively,
wi(fV6)= sup { <x+h¢($)>+f (x—lw(a:)) xihqb(x)e[o,oo)},
0<h<vV/§ 2 2 2
Kio(f,0)=mt{|[f =gl +dll¢g'll - 9€C'(9)},  0>0,
where C(¢)={9€AC},c[0,00) : ||¢¢'|| <00}, g€AC),[0,00) shows that the function g

is differentiable and g is absolutely continuous on every closed interval [a,b]C[0,00).
It is known that there exists a positive constant M >0, such that (see [8], p.68)

(2.11) A (VE) <Ko £ 9) <M (£.V5).

Theorem 2.3. Let feCp[0,00). For x€(0,00), we have

(2.12) | DU ()= f|| <251 6 (£00, ) <2Mw? (f \Mfﬁbn),

where ¢(x)=+/x is a step function.
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Proof. For geC(¢), by using Taylor’s formula of g, we have

o)+ o wdu=g(o)+ [ o)

Then, for the step function Qﬁ(x):\/f, we get

|1 =]

—du )

l9(H)—g(2)|<ll6g || =[l6g' | 2| Vi—Vz|=2]l 7'l

From the inequality \/f+\/52\/5, we get
|i—z| |i—z|

(2.13) l9(t)—g(2)|<2l69' |l —= . :
VT ¢(z)
Using (2.13) and (2.10) for feCp[0,00) and gEC(qb) we have
DI (i) @) <[ DV, (1 —g)sa) || DL ()=o) la(e)— 1)
<2 f—gl+21% "wDai"ant—xm).
¢(z)
By applying Cauchy-Schwartz inequality, we can write

Lt sl st A 0 ()

=264l

o)
s2nf—gu+2”ﬁf ”;°6ai"bn< )

Taking the infimum on the right hand side over all geC?(¢) we obtain

|Day b (f12) = f ()| <2516 (.67,
Considering (2.11) we get (2.12) which is desired result. O

In this section, we obtain some pointwise estimates of rate of convergence of the
operators (1.6). The Lipschitz-type space is given as follow, in [13];

|t—x["

Lz‘pm:{fec[o,o@ : rf<t>—f<x>\sté+;;, w,tem,oo)},

where M is a positive constant and ne(0,1].

Theorem 2.4. Let feLip},(n). Then, for all x€(0,00), we get

n/2
214) DY (f52) —f(x)\§M<“"’2<x)> |

T

where i, 2(x) is the same as in Lemma 1.4.
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Proof. For a function f€Lipy,;(n), by using the definition, we get

0-s@l=M

: Bn
Applying the operators Dgn;,n

t— n
DV (f0) ) <My D), (' x’n;x).
’ (t+x)2

By using the Holder’s inequality, with p:%, q:ﬁ and, using the Lemma 1.4, we can
write

on both sides of the above inequality, we have

DB ()= f @]y (Dgifin((t‘”;x))Q(DLi’finu;x))?’

(t+x)

<M %/Q(D[B"]n«t—x)%x)) .
So, we obtain (2.14). O

Now we give an estimate for the rate of convergence by the means of the general
space of the Lipschitz-type maximal functions. Let Cp [0,00) be the space of bounded,
uniformly continuous real valued functions on [0,00). The Lipschitz-type maximal
function of order n of feC3[0,00) is introduced by Lenze [11] as

o) S0 (@)

, 2€[0,00),
troeloes)  [t—zl” |
and ne(0,1].

Theorem 2.5. Let (Dﬁ”iﬂ) be a sequence of linear positive operators defined by (1.6).
Then, for all feCpl0,00), we get

n r n n
DI (F)—f (@) |< Falw) (84, (),
where 5Li"l],n is the same as in Theorem 2.1.

Proof. Using the definition of maximal function, we get

()= f(@)|<fy(w)[t—a]",

and applying the operators D[B ”}

DI (fim)— f<x>\ < fol@) DI (jt—a|"a).

Applying the Holder’s inequality with p:% and q:ﬂ, using Lemma 1.3, it follows
that

. on both sides of this equation, we get

n 2—n
2

(DY) (17 ) *

DI ([t—=["2) < () (DL (It—2]*2))
<folx) (DL, ((t—2)57))

NS
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— : "
<fol@) (874, (x))".
Hence, the proof is completed. U
3. VORONOVSKAJA THEOREM
We prove a Voronoskaja type theorem for the operators D([l'i ";,n( fiz) .
Theorem 3.1. For every feCg[0,00) such that f',f"€Cg[0,00), and for every fized
x€[0,00), we have
(Bn] o _ ! § 1"
gﬁngobf(Da b (fi)=f (@) ) == f () +5a f" (),
where C is the same with the Lemma 1.5.

Proof. Let x€[0,00) be a fixed point. For all t€[0,00), by using Taylor expansion we
have

f(t)Zf(JfH(t—ﬂf)f'(m)Jr;(t )* f"(2)+R(t,2)(t—z)?,

where R(t,z) is the remainder term, R(t,x)€Cg[0,00), and R(t,x)—0 as t—x . Apply-

ing the operator Dw ”}, to both sides of Taylor expansion and considering D[B "] 5, (€0i)=

1, we get

n 1 n "
o (DL, (F5)= () =3 D, (=) £ o) gy DU, (=) £ )
+Z£Dgi’j§,n (R(t.2)(t—x)*)

:A1+A2—|—A3.

Thus, we immediately have

AlIZZMn,l(I)f/(x)’

1 n "
=g 3" (@) ().

Now, we estimate Az. From Cauchy-Schwartz inequality, we have

_CLn [Bn] 2.
Ag_apambn (R(t.2)(t—2)%x)

<{olt (o)} (52 Dl (1)}

The properties of the function R(¢,z) implies that R*(z,z)=0 and R?*(z,z)€Cp[0,00).
Hence, we obtain

Jim DU ((R(t2)ie) =R (a.0) =0, 2€[0,00).
Furthermore, by applying equation (1.12) from Lemma 1.5, we get
: (Bn] 2.\ —
dim D"y (R(t,x)(t—a:) ,J:) =0.
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Moreover, if we take limits as n—o00 over A; and A,, from the equalities (1.10) and
(1.11), this implies the desired result. O

REFERENCES

[1] O. Agratini, On a sequence of linear and positive operators, Facta Univ. Ser. Math. Inform. 14
(1999), 41-48.

[2] O. Agratini, On the rate of convergence of a positive approximation process, Nihonkai Math. J.
11 (2000), 47-56.

[3] A. Eren¢in and F. Tagdelen, On a family of linear and positive operators in weighted spaces,
Journal of Inequalities in Pure and Applied Mathematics 8(6) (2007), 2-39.

[4] A. Erengin and F. Tagdelen, On certain Kantorovich type operators, Fasc. Math. 41 (2009),
65-71.

[5] N. K. Govil, V. Gupta, and D. Soybag, Certain new classes of Durrmeyer type operators, Appl.
Math. Comput. 225 (2013), 195-203.

[6] V. Gupta and G. C. Greubel, Moment Estimations of new Szdsz-Mirakyan-Durrmeyer operators,
Appl. Math. Comput. 271 (2015), 540-547.

[7] V. Gupta and G.Tachev, Approzimation with Positive Linear Operators and Linear Combinations,
Springer, Cham, 2017.

[8] V. Gupta and R. P. Agarwal, Convergence Estimates in Approzimation Theory, Springer, USA,
New York, 2014.

[9] N. Ispir and N. Manav, Approzimation by the summation integral type operators based on
Lupas-Szdsz basis functions, Journal of Science and Art 4(45), 2018, 853-868.

[10] G. C. Jain, Approzimation of functions by a new class of linear operators, J. Aust. Math. Soc.
13(3) (1972), 271-276.

[11] B. Lenze, Bernstein-Baskakov-Kantorovich operators and Lipschitz-type mazimal functions,
Collog. Math. Soc. Janos Bolyai 58 (1990), 469-496.

[12] A. Lupas, The approxzimation by some positive linear operators, in: M. W. Miiller et al., (Eds.),
Proceedings of the International Dortmund Meeting on Approximation Theory, Akademie Verlag,
Berlin, 1995, 201-229.

[13] M. A. Ozarslan and O. Duman, Local approzimation behavior of modified SMK operators,
Miskole Math. Notes 11(1) (2010), 87-89.

IDEPARTMENT OF MATHEMATICS,

GAZzI UNIVERSITY,

06500 TEKNIKOKULLAR, ANKARA, TURKEY
Email address: nmanavQgazi.edu.tr

Email address: nispir@gazi.edu.tr



	1. Introduction
	1.1. Direct results for Dan,bn[ ]  operators 

	2. Degree of Approximation
	3. Voronovskaja Theorem
	References

