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A STUDY OF COUPLED SYSTEMS OF NONLINEAR ψ-HILFER
HYBRID FRACTIONAL DIFFERENTIAL EQUATIONS WITH

INTEGRO-MULTIPOINT BOUNDARY CONDITIONS

MOHAMED EL FADOUAKI1, HAMID LMOU1, KHALID HILAL1, AND AHMED KAJOUNI1

Abstract. This work establishes existence and uniqueness of solutions for a novel
coupled system with ψ-Hilfer fractional hybrid differential derivatives under integro-
multi-point boundary conditions. We introduce essential definitions related to ψ-
Hilfer fractional derivatives and employ Dhage’s fixed point theorem for our main
proofs. Furthermore, we explore various stability aspects, including Ulam-Hyers
stability and its generalized form. An illustrative example is included to demonstrate
the correctness of the proposed results.

1. Introduction

We consider a nonlinear system of ψ-Hilfer hybrid fractional differential equations:

(1.1)


HDα1,β1;ψ

(
x(t)

l1(t,x(t),y(t))

)
= s(t, x(t), y(t)), t ∈ [t, t̄],

HDp1,q1;ψ
(

y(t)
l2(t,x(t),y(t))

)
= r(t, x(t), y(t)), t ∈ [t, t̄].

Supplemented by coupled mixed boundary conditions involve sums of fractional inte-
grals and point evaluations of the functions x(t) and y(t).

(1.2)


x(t) = 0, Iσ;ψ

(
x(t̄)

l1(t̄,x(t̄),y(t̄))

)
=

n1∑
j=1

ajy(bj),

y(t) = 0, Iν;ψ
(

y(t̄)
l2(t̄,x(t̄),y(t̄))

)
=

n2∑
i=1

ǎix(b̌i),
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where HDα1,β1;ψ and HDp1,q1;ψ are the ψ-Hilfer fractional derivative of order α1, p1,
such that 0 < α1, p1 < 1 and parameter β1, q1, with 0 < β1, q1 < 1, 0 ≤ t < t̄ < +∞,
s, r ∈ C([t, t̄] × R × R,R), l1, l2 ∈ C([t, t̄] × R × R,R \ {0}) and Iν;ψ, Iσ;ψ represents
the ψ-Riemann-Liouville fractional integral of order ν, σ, respectively, with ν, σ > 0,
bj, b̌i ∈ [t, t̄], where i = 1, 2, . . . , n, and j = 1, 2, . . . ,m, and aj, ǎi ∈ R.

Fractional differential equations (FDEs) are a modeling and analytical tool that has
become pervasive in the way we perceive and use systems, showing distinct advantages
over classical integer order differential equations. Differential equations with fractional
derivatives can generalize the evolution of a system while improving their accuracy and
versatility to inexplicit behaviors.This allows FDEs to describe and capture certain
dynamics they exhibited, similar to viscoelastic materials, anomalous diffusion, and
generally systems with memory and the effects of non-locality. Having found great
applications in diverse fields of science and engineering, FDEs have become versatile
in nature. They have served successfully to model phenomena in physics, chemistry,
thermo-elasticity, population dynamics, aerodynamics, and electrodynamics. To know
more about these applications, we refer the reader to [5, 9, 12,19,21].

Fractional derivatives analyze a function’s behavior up to a specific time t, making
them ideal for modeling systems with memory effects. This unique property has
driven significant progress in fractional calculus, as shown by numerous recent studies
[2–4]. Several definitions of fractional derivatives have been introduced, such as the
Riemann-Liouville [16], Caputo [1], and Caputo-Fabrizio [8] derivatives. In this work,
we focus on the ψ-Hilfer fractional derivative, introduced by Sousa and Oliveira [17],
which generalizes the Hilfer derivative by including a function ψ. By choosing an
appropriate ψ, this derivative offers a more precise way to model memory effects
and non-local behaviors, making it a valuable tool for both theoretical and applied
research.

On the other side, the concept of Ulam-Hyers (U-H) stability has been extensively
studied in the literature. The stability analysis presented in this work follows a
straightforward approach within this framework. Ulam [18] originally introduced this
type of stability, which was subsequently expanded and formalized by Hyers [15]-[20].

Therefore, in this paper, the nonlinear FDEs involving the most generalized frac-
tional differential ψ-Hilfer. Consequently, the results obtained also apply to nonlinear
FDEs with multipoint integral boundary conditions involving well-known fractional de-
rivative operators, including RL, Caputo, ψ-RL, ψ-Caputo, Hadamard, Katugampola,
Riesz, Erdélyi-Kober, Hilfer and others. For different values of function ψ (ψ(x) = x,
ψ(x) = log(x), . . .) and parameter βi, i = 1, 2.

In 2015, K. Hilal and A. Kajouni [13] explored boundary value problems for hybrid
differential equations involving the Caputo differential derivative of order 0 < q < 1

D
q
(

x(t)
l(t,x(t))

)
= k(t, x(t)), t ∈ J = [0, T ],

a x(0)
l(0,x(0)) + b x(T )

l(T,x(T )) = c,
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where l ∈ C (J × R,R \ {0}), k ∈ C (J × R,R) and a, b, c are real constants with
a+ b ̸= 0.

Next in 2021, Boutiara, Abdellatif, et al. [7] proved an existence and uniqueness of
solutions to a coupled system of the hybrid fractional integro-differential equations
involving ϖ-Caputo fractional operators.

cDν;φ
a+

[
y(t)−

∑m

k=1 I
σk;φ
a+ Fk(t,y(t),x(t))

l1(t,y(t),x(t))

]
= H1(t, y(t), x(t)),

cDµ;φ
a+

[
x(t)−

∑n

k=1 I
ξk;φ
a+ Gk(t,y(t),x(t))

l2(t,y(t),x(t))

]
= H2(t, y(t), x(t)),

t ∈ [a, b],

with the initial conditions
y(a) = 0, x(a) = 0,

where Dβ;φ
a+ is the φ-Caputo FOD of order β ∈ {ν, µ} ⊆ (0, 1), I

θ;φ
a+ is the φ-RL-

integral of order θ > 0, θ ∈ {σ1, σ2, . . . , σm, ξ1, ξ2, . . . , ξn}, σk, k = 1, 2, 3, 4, . . . ,m,
ξj > 0, j = 1, 2, 3, 4, . . . , n, the nonlinear functions l1, l2 : [a, b] × R × R → R\{0} and
the functions Fk,Gj, H1, H2 : [a, b] × R × R → R are continuous.

The study of coupled fractional differential systems has become increasingly sig-
nificant in recent years [6, 14], playing a vital role in modeling complex phenomena,
including those in bioengineering, fractional dynamics, and financial economics. In
this paper, our objective is to contribute to the growing research on coupled ψ-Hilfer
fractional systems by introducing and analyzing novel boundary value problems for
a new class of equations: nonlinear ψ-Hilfer hybrid fractional differential equations.
Specifically, we establish the existence and uniqueness of solutions. Furthermore,
we investigate the Ulam-Hyers (U-H) stability and generalized Ulam-Hyers stability
(G-U-H) stability properties of the proposed coupled system with intergro-multipoint
boundary conditions (1.1)–(1.2).

The structure of this research work is as follows. Section 2 we provides fundamental
concepts related to fractional calculus and fixed point theory, which are essential for
the discussions throughout this paper. Section 3 we presents the primary findings
of the study, demonstrating the existence via Dhag’s hybrid fixed point theorem,
uniqueness, U-H, and G-U-H stability of solutions for the given coupled system of
nonlinear ψ-Hilfer hybrid fractional differential equations. Moreover, this paper is
finished with an example is provided to illustrate the main results and conclusion.

2. Preliminaries

In this section, we present some fundamental concepts related to fractional calculus
and fixed point theory, which are essential for the discussions throughout this paper.
Let E = C([t, t̄],R) be the space with the norm defined by

∥x∥ = sup{|x(t)| | t ∈ [t, t̄]}.



132 M. EL FADOUAKI, H. LMOU, K. HILAL, AND A. KAJOUNI

The pair (E, ∥ · ∥) forms a Banach space. Furthermore, the product space (E×E, ∥ · ∥)
is also a Banach space, with the norm

∥(x, y)∥E×E = ∥x∥ + ∥y∥, (x, y) ∈ E × E.

Definition 2.1 ([16]). Let α > 0, f an integral function defined on [a, b] and ψ ∈
Cn([a, b]) is an increassing function such that ψ′(t) ̸= 0 for all t ∈ [a, b]. The ψ-
Riemann-Liouville fractional integral of order α for f is defined as follows

(2.1) Iα,ψa+ f(t) := 1
Γ(α)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))α−1f(τ)dτ,

where Γ is the gamma function defined by Γ(z) =
∫+∞

0 e−ttz−1dt, Re(z) > 0.
Note that (2.1) is reduced to the Riemann-Liouville and Hadamard fractional

integrals when ψ(t) = t and ψ(t) = log(t), respectively.

Definition 2.2 ([16]). Let n ∈ N, f : [a, b] → R be an integrable function and
ψ ∈ Cn([a, b]) is an increassing function such that ψ′(t) ̸= 0 for all t ∈ [a, b]. The
ψ-Riemann-Liouville fractional derivative of order α for f is defined by

Dα;ψ
a+ f(t) =

(
1

ψ′(t) · d
dt

)n
In−α;ψ
a+ f(t)(2.2)

= 1
Γ(n− α)

(
1

ψ′(t) · d
dt

)n ∫ t

a
ψ

′(t)(ψ(t) − ψ(s))n−α−1f(s)ds,(2.3)

where n = [α] + 1 and [α].

Definition 2.3 (ψ-Hilfer fractional derivative [17]). Let n ∈ N, [a, b] is the interval
such that −∞ ≤ a < b ≤ +∞ and f, ψ ∈ Cn([a, b],R) two functions such that ψ
is increasing and ψ

′(t) > 0 for all t ∈ [a, b]. The ψ-Hilfer fractional derivative of a
function f of order α and type 0 ≤ β ≤ 1, is defined by

HDα,β;ψ
a+ f(t) = I

β(n−α);ψ
a+

(
1

ψ′(t) · d
dt

)n
I

(1−β)(n−α);ψ
a+ f(t)(2.4)

= Iγ−α;ψ
a+ Dγ;ψ

a+ f(t),
where n− 1 < α < n, n = [α] + 1, and [α] denotes the integer part of the real number
α, with γ = α + β(n− α).

Lemma 2.1 ([17]). Let α, β > 0. Then, we have the following semigroup property
given by

Ia+
α;ψI

a+
β;ψf(t) = Ia+

α+β;ψf(t), t > a.

Proposition 2.1 ([16,17]). Let a ≥ 0, ν > 0 and t > a. Then, ψ-fractional integral
and derivative of a power function are given by

(a) Iα;ψ
a+ (ψ(s) − ψ(a))ν−1(t) = Γ(ν)

Γ(ν+α)(ψ(s) − ψ(a))ν+α−1(t);
(b) HDα;ψ

a+ (ψ(s)−ψ(a))ν−1(t) = Γ(ν)
Γ(ν+α)(ψ(s)−ψ(a))ν−α−1(t), n−1 < α < n, ν > n.
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Remark 2.1. Under specific conditions, the ψ-Hilfer fractional derivative generalizes
several well-known types of fractional derivatives. In particular, the following hold.

• When β = 0 and ψ(t) = t, the ψ-Hilfer fractional derivative reduces to the
Riemann-Liouville fractional derivative.

• When β = 1 and ψ(t) = t, the ψ-Hilfer fractional derivative reduces to the
Caputo fractional derivative.

• When ψ(t) = t, the ψ-Hilfer fractional derivative corresponds to the classical
Hilfer fractional derivative.

• When ψ(t) = log(t), the ψ-Hilfer fractional derivative corresponds to the
Hilfer–Hadamard fractional derivative.

• When ψ(t) = tp, the ψ-Hilfer fractional derivative corresponds to the Katugam-
pola fractional derivative.

Lemma 2.2 ([17]). Let f ∈ E, n − 1 < α < n, 0 ≤ β ≤ 1 and γ = α + β(n − α).
Then, the composition of the ψ-Hilfer fractional integral and the ψ-Hilfer fractional
derivative can be expressed as:

Iα;ψ
a+

(
HDα,β;ψ

a+ f
)

(t) = f(t) −
n∑
k=1

(ψ(t) − ψ(a))γ−k

Γ(γ − k + 1) f
[n−k]
ψ

(
I

(1−β)(n−α);ψ
a+ f

)
(a),

for all t ∈ [a, b], where f [n−k]
ψ f(t) :=

((
1

ψ′(t)

)
d
dt

)n
f(t).

Theorem 2.1 ([10,11]). Consider a Banach algebra X and let S be a subset of X that
is closed, convex, and bounded. Let A and B be two operators from S to X satisfying
the following conditions:

(a) A is a Lipschitz operator with a Lipschitz constant α;
(b) B is completely continuous;
(c) for every x ∈ S, AxBx ∈ S.
If these conditions hold and the inequality αM < 1 is satisfied, where M = ∥B(S)∥,

then the equation x = AxBx has a solution.

Theorem 2.2 (Banach Fixed Point Theorem [3]). Consider X to be a Banach space
and C a closed subset of X. If T : C → C is a strict contraction, then T possesses a
unique fixed point in C.

3. Main Results

In this section, we present the primary findings of our study, demonstrating the
existence, uniqueness, and U-H stability of solutions for the given coupled system of
nonlinear ψ-Hilfer hybrid fractional differential equations (1.1)–(1.2).

Let h1, h2 ∈ C([t, t̄],R), and the functionsQ1, Q2 ∈ C([t, t̄],R\{0}). We consider the
following coupled system of nonlinear ψ-Hilfer hybrid fractional differential equations,
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which is related to (1.1) with the substitutions s ≡ h1, r ≡ h2, l1 ≡ Q1, and l2 ≡ Q2:

(3.1)


HDα1,β1;ψ

(
x(t)
Q1(t)

)
= h1(t), t ∈ [t, t̄],

HDp1,q1;ψ
(
y(t)
Q1(t)

)
= h2(t), t ∈ [t, t̄],

where 0 < α1, p1 < 2, 0 < β1, q1 < 1, and the fractional derivatives are of ψ-Hilfer
type. The system is supplemented with the following boundary conditions

(3.2)


x(t) = 0, Iσ;ψ

(
x(t̄)
Q1(t̄)

)
=

n1∑
j=1

ajy(bj),

y(t) = 0, Iν;ψ
(
y(t̄)
Q2(t̄)

)
=

n2∑
i=1

ǎix(b̌i),

where γ1 = α1 +β1(2−α1), γ2 = p1 +q1(2−p1) and aj, j = 1, . . . , n1, ǎi, i = 1, . . . , n2,
are real constants. The points bj, j = 1, . . . , n1, and b̌i, i = 1, . . . , n2, are pre-fixed
and satisfy t < bj, b̌i < t̄. The following theorem shows that the problems (3.1)–(3.2)
have a solution, which is given by

(3.3)

x(t) =Q1(t)
[
Iα1;ψh1(t)

+ (ψ(t) − ψ(t))γ1−1

ΛΓ(γ1)

(
Φ4

(
Iν+p1;ψh2(t̄) −

n2∑
i=1

ǎiQ1(b̌i)Iα1;ψh1(b̌i)
)

+ Φ2

(
Iσ+α1;ψh1(t̄) −

n1∑
j=1

ajQ2(bj)Ip1;ψh2(bj)
))]

and

(3.4)

y(t) =Q2(t)
[
Ip1;ψh2(t)

+ (ψ(t) − ψ(t))γ2−1

ΛΓ(γ2)

(
Φ3

(
Iσ+α1;ψh1(t̄) −

n1∑
j=1

ajQ2(bj)Ip1;ψh2(bj)
)

+ Φ1

(
Iν+p1;ψh2(t̄) −

n2∑
i=1

ǎiQ1(b̌i)Iα1;ψh1(b̌i)
))]

,

where

(3.5)

Φ1 =
n1∑
j=1

aj
Q2(bj)(ψ(bj) − ψ(t))γ2−1

Γ(γ2)
,

Φ2 = (ψ(t̄) − ψ(t))γ1+σ−1

Γ(γ1 + σ) ,

Φ3 = (ψ(t̄) − ψ(t))γ2+ν−1

Γ(γ2 + ν) ,

Φ4 =
n2∑
i=1

ǎi
Q1(b̌i)(ψ(b̌i) − ψ(t))γ1−1

Γ(γ1)
,



COUPLED SYSTEMS OF NONLINEAR ψ-HILFER HYBRID FDE 135

and Λ = Φ1Φ4 − Φ2Φ3 ̸= 0.

Theorem 3.1. Assume that Λ = Φ1Φ4 − Φ2Φ3 ̸= 0. Then, the pair (x, y) is a solution
of the problem (1.1) and (1.2) if and only if it satisfies the equation (3.3) and (3.4).

Proof. Applying the ψ-Riemann-Liouville fractional integral of order α1 and p1 to
both sides of first and second equation in the system (3.1), respectively, we obtain,
by using Lemma 2.2,

x(t) = Q1(t)
[
Iα1;ψh1(t) + d0

Γ(γ1)
(ψ(t) − ψ(t))γ1−1 + d1

Γ(γ1 − 1) (ψ(t) − ψ(t))γ1−2
]
,

y(t) = Q2(t)
[
Ip1;ψh2(t) + d2

Γ(γ2)
(ψ(t) − ψ(t))γ2−1 + d3

Γ(γ2 − 1) (ψ(t) − ψ(t))γ2−2
]
,

where d0, d1, d2 and d3 are constants. Next, using the boundary condition x(0) = 0
and y(0) = 0, we obtain that d1 = 0 and d3 = 0. We get

x(t) = Q1(t)
[
Iα1;ψh1(t) + d0

Γ(γ1)
(ψ(t) − ψ(t))γ1−1

]
,(3.6)

y(t) = Q2(t)
[
Ip1;ψh2(t) + d2

Γ(γ2)
(ψ(t) − ψ(t))γ2−1

]
,(3.7)

by using the boundary condition Iσ;ψ
(
x(t̄)
Q1(t̄)

)
=

n1∑
j=1

ajy(bj) and Iν;ψ
(
y(t̄)
Q2(t̄)

)
=

n2∑
i=1

ǎix(b̌i).

From equations (3.6) and (3.7), we obtain that
n1∑
j=1

ajy(bj) = Iα1+σ;ψh1(t̄) + d0

Γ(γ1 + σ)
(
ψ(t̄) − ψ(t)

)γ1+σ−1

and
n2∑
i=1

ǎix(b̌i) = Ip1+ν;ψh2(t̄) + d2

Γ(γ2 + ν)
(
ψ(t̄) − ψ(t)

)γ2+ν−1
,

which implies that

(3.8)

n1∑
j=1

aj

[
Q2(bj)

(
Ip1;ψh2(bj) + d2

Γ(γ2)
(ψ(bj) − ψ(t))γ2−1

)]

=Iα1+σ;ψh1(t̄) + d0

Γ(γ1 + σ)
(
ψ(t̄) − ψ(t)

)γ1+σ−1

and

(3.9)

n1∑
j=1

aj

[
Q1(b̌i)

(
Iα1;ψh1(b̌i) + d0

Γ(γ1)
(
ψ(b̌i) − ψ(t)

)γ1−1
)]

=Iα1+σ;ψh1(t̄) + d0

Γ(γ1 + σ)
(
ψ(t̄) − ψ(t)

)γ1+σ−1
.
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We can rewrite the equations (3.8) and (3.9) using the notation (3.5) as

(3.10)
d2Φ1 − d0Φ2 = Iσ+α1;ψh1(t̄) −

n1∑
j=1

ajQ2(bj)Ip1;ψh2(bj),

−d2Φ3 + d0Φ4 = Iν+p1;ψh2(t̄) −
n2∑
i=1

ǎiQ1(b̌i)Iα1;ψh1(b̌i).

The determinant Λ, assumed to be non-zero, ensures the existence and uniqueness
of the solution for d0 and d2, emphasizing its significant importance in the well-
definedness of the solution. The system (3.10) is solved to get

(3.11) d0 = Φ4Ω1 + Φ2Ω2

Λ , d2 = Φ1Ω2 + Φ3Ω1

Λ ,

where
Ω1 = Iσ+α1;ψh1(t̄) −

n1∑
j=1

ajQ2(bj)Ip1;ψh2(bj)

and
Ω2 = Iν+p1;ψh2(t̄) −

n2∑
i=1

ǎiQ1(b̌i)Iα1;ψh1(b̌i).

Replacing d0 and d2 in (3.6) and (3.7) yields (3.3) and (3.4), respectively. The inverse
is obtained by direct calculation. This ends the proof. □

Let us present the existence of solutions for coupled systems of nonlinear ψ-Hilfer
hybrid fractional differential equations.

We transform the system (3.14) into an equivalent fixed-point problem. To this
end, we select R > 0 such that

R ≥
(
Ws(ψ(t̄) − ψ(t))α1

Γ(α1 + 1) +
∣∣∣∣∣F1

(ψ(t̄) − ψ(t))γ1−1

ΛΓ(γ1)

∣∣∣∣∣
)
l∗1

+
(
Wr(ψ(t̄) − ψ(t))p1

Γ(p1 + 1) +
∣∣∣∣∣F2

(ψ(t̄) − ψ(t))γ2−1

ΛΓ(γ2)

∣∣∣∣∣
)
l∗2,

where l∗i > 0 for i = 1, 2, and Ws,Wr > 0 are positive constants satisfying the
inequalities |li(t, ·, ·)| ≤ l∗i , |r(t, ·, ·)| ≤ Wr and |s(t, ·, ·)| ≤ Ws for all t ∈ [t, t̄], and

F1 =Φ4

(
Iν;ψr(t̄, x(t̄), y(t̄)) −

n2∑
i=1

ǎil1(b̌i, x(b̌i), y(b̌i))Iα1;ψs(b̌i, x(b̌i), y(b̌i))
)

+ Φ2

(
Iσ;ψs(t̄, x(t̄), y(t̄)) −

n1∑
j=1

ajl2(bj, x(bj), y(bj))Ip1;ψr(bj, x(bj), y(bj))
)
,

F2 =Φ3

(
Iσ;ψs(t̄, x(t̄), y(t̄)) −

n1∑
j=1

ajl2(bj, x(bj), y(bj))Ip1;ψr(bj, x(bj), y(bj))
)

+ Φ1

(
Iν;ψr(t̄, x(t̄), y(t̄)) −

n2∑
i=1

ǎil1(b̌i, x(b̌i), y(b̌i))Iα1;ψs(b̌i, x(b̌i), y(b̌i))
)
.
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Denote a subset S∗ = S × S of the Banach space E × E by

S = {x ∈ E | ∥x∥ ≤ R} .

Clearly, S is a non-empty, closed, convex, and bounded subset of E. If (x, y) ∈ S∗ is
a solution of the system (1.1)–(1.2), it can be expressed as

(3.12)



x(t) = l1(t, x(t), y(t))
[
Iα1;ψs(t, x(t), y(t))

+ (ψ(t)−ψ(t))γ1−1

ΛΓ(γ1)

(
Φ4

(
Iν;ψr(t̄, x(t̄), y(t̄))

−
n2∑
i=1

ǎil1(b̌i, x(b̌i), y(b̌i))Iα1;ψs(b̌i, x(b̌i), y(b̌i))
)

+Φ2

(
Iσ;ψs(t̄, x(t̄), y(t̄))

−
n1∑
j=1

ajl2(bj, x(bj), y(bj))Ip1;ψr(bj, x(bj), y(bj))
))]

, t ∈ [t, t̄],

y(t) = l2(t, x(t), y(t))
[
Ip1;ψr(t, x(t), y(t))

+ (ψ(t)−ψ(t))γ2−1

ΛΓ(γ2)

(
Φ3

(
Iσ;ψs(t̄, x(t̄), y(t̄))

−
n1∑
j=1

ajl2(bj, x(bj), y(bj))Ip1;ψr(bj, x(bj), y(bj))
)

+Φ1

(
Iν;ψr(t̄, x(t̄), y(t̄))

−
n2∑
i=1

ǎil1(b̌i, x(b̌i), y(b̌i))Iα1;ψs(b̌i, x(b̌i), y(b̌i))
))]

, t ∈ [t, t̄],

where Φ1,Φ2,Φ3, and Φ4 are defined in (3.5).
Define the operators L : E × E → E × E and T : S∗ → E × E as follows:

L(x, y)(t) =
(
l1(t, x(t), y(t)), l2(t, x(t), y(t))

)
and

(3.13) T(x, y)(t) =
(
T1(x, y)(t)
T2(x, y)(t)

)
,

where the operators T1 and T2 are defined as

T1(x, y)(t) = Iα1;ψs(t, x(t), y(t)) + F1
(ψ(t) − ψ(t))γ1−1

ΛΓ(γ1)
and

T2(x, y)(t) = Ip1;ψr(t, x(t), y(t)) + F2
(ψ(t) − ψ(t))γ2−1

ΛΓ(γ2)
.
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Then, the coupled system (3.12) is transformed into

(3.14)

x(t) = l1(t, x(t), y(t))T1(x, y)(t), t ∈ [t, t̄],
y(t) = l2(t, x(t), y(t))T2(x, y)(t), t ∈ [t, t̄].

So, the coupled system of the operator equations (3.14) can be written as follows:
(3.15) L(x, y)(t) · T(x, y)(t) = (x, y)(t), (x, y) ∈ S∗ and t ∈ [t, t̄].

3.1. Existence result via Dhage’s hybrid fixed point theorem.

Theorem 3.2. Let Λ ̸= 0, and assuming the following conditions hold.
(H1) The functions li, i = 1, 2, are continuous and there exist constants χli > 0,

i = 1, 2, Wl > 0 for almost every t ∈ [t, t̄] and vi, ui ∈ R, i = 1, 2,
|l1(t, u1, u2) − l1(t, v1, v2)| ≤χl1(|u1 − v1| + |u2 − v2|),
|l2(t, u1, u2) − l2(t, v1, v2)| ≤χl2(|u1 − v1| + |u2 − v2|)

and |li(t, u1, u2)| ≤ Wli .
(H2) The functions s and r are continuous and there exist constants χr > 0, χs > 0,

Ws > 0, Wr > 0 such that:
|s(t, u1, u2) − s(t, v1, v2)| ≤χs(|u1 − v1| + |u2 − v2|),
|r(t, u1, u2) − r(t, v1, v2)| ≤χr(|u1 − v1| + |u2 − v2|)

and
|s(t, u1, v1)| ≤ Ws, |r(t, u1, v1)| ≤ Wr,

for all t ∈ [t, t̄] and vi, ui ∈ R, i = 1, 2.
(H3) (χl1 + χl2)M < 1, where M = sup{∥T(x, y)∥E×E | (x, y) ∈ S∗}.

Then, the coupled system (1.1)–(1.2) possesses at least one solution on [t, t̄].

Proof. We show that the the operators T and L fulfill all the necessary conditions
outlined in Theorem 2.1 to prove that (3.15) has a coupled fixed point. The proof of
this is given in the several steps below.

Step 1. L = (l1, l2) : E × E → E × E is a Lipschitz operator.
For any (x, y), (x∗, y∗) ∈ E, we obtain the following from hypothesis (H1)
∥L(x, y) − L(x∗, y∗)∥E×E = sup

t∈[t̄,t]
|l1(t, x(t), y(t)) − l1(t, x∗(t), y∗(t))|

+ sup
t∈[t̄,t]

|l2(t, x(t), y(t)) − l2(t, x∗(t), y∗(t))|

=χl1 (∥x− x∗∥ + ∥y − y∗∥) + χl2 (∥x− x∗∥ + ∥y − y∗∥)
=(χl1 + χl2) (∥x− x∗∥ + ∥y − y∗∥) .

Thus, L is a Lipschitz operator whose Lipschitz constant is (χl1 + χl2).
Step 2. T = (T1,T2) : S∗ → E × E is completely continuous.
The continuity of the operator T is a direct consequence of the continuity of the

functions Ti for i = 1, 2.
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(i) T = (T1,T2) : S∗ → E × E is continuous.
Let (xn, yn) be a sequence in S∗ such that (xn, yn) → (x, y) as n → +∞ in S∗. We

prove that T(xn, yn) → T(x, y) as n → +∞ in E × E. Consider
∥T1(xn, yn) − T1(x, y)∥E×E = sup

t∈[t̄,t]
|T1(xn, yn)(t) − T1(x, y)(t)|

≤ sup
t∈[t̄,t]

1
Γ(α)

∫ t̄

t
ψ′(τ)(ψ(t) − ψ(τ))α1−1

× |s(τ, xn(τ), yn(τ)) − s(τ, x(τ), y(τ))| dτ.
By continuity of the function T1 and the Lebesgue dominated convergence theorem,
the above inequality yields

∥T1(xn, yn) − T1(x, y)∥E×E → 0, as n → +∞.

Similarly, you could get
∥T2(xn, yn) − T2(x, y)∥E×E → 0, as n → +∞.

Hence, T(xn, yn) = (T1(xn, yn),T2(xn, yn)) converges to T(x, y) = (T1(x, y),T2(x, y))
as n → +∞.

This proves that T : S∗ → E × E is continuous.
(ii) T(S∗)= {T(y, x) | (y, x) ∈ S∗} is uniformly bounded.
For any (x, y) ∈ S∗ and t ∈ [t, t̄], using (H2) we can write

|T1(x, y)(t)| ≤ Ws

Γ(α1)

∫ t

t
ψ′(τ)(ψ(t) − ψ(τ))α1−1dτ +

∣∣∣∣∣F1
(ψ(t) − ψ(t))γ1−1

ΛΓ(γ1)

∣∣∣∣∣
≤ Ws(ψ(t̄) − ψ(t))α1

Γ(α1 + 1) +
∣∣∣∣∣F1

(ψ(t̄) − ψ(t))γ1−1

ΛΓ(γ1)

∣∣∣∣∣ ,
|T2(x, y)(t)| ≤ Wr

Γ(p1)

∫ t

t
ψ′(τ)(ψ(t) − ψ(τ))p1−1dτ +

∣∣∣∣∣F2
(ψ(t) − ψ(t))γ2−1

ΛΓ(γ2)

∣∣∣∣∣
≤ Wr(ψ(t̄) − ψ(t))p1

Γ(p1 + 1) +
∣∣∣∣∣F2

(ψ(t̄) − ψ(t))γ2−1

ΛΓ(γ2)

∣∣∣∣∣ .
Using the properties of the Gamma function and the fact that ψ is increasing with

ψ′ > 0, we get uniform bounds for the integrals. Therefore, there exist constants

C1 :=Ws(ψ(t̄) − ψ(t))α1

Γ(α1 + 1) +
∣∣∣∣∣F1

(ψ(t̄) − ψ(t))γ1−1

ΛΓ(γ1)

∣∣∣∣∣ > 0,

C2 :=Wr(ψ(t̄) − ψ(t))p1

Γ(p1 + 1) +
∣∣∣∣∣F2

(ψ(t̄) − ψ(t))γ2−1

ΛΓ(γ2)

∣∣∣∣∣ > 0,

such that
|T1(x, y)(t)| ≤ C1, |T2(x, y)(t)| ≤ C2, for all t ∈ [t, t̄], (x, y) ∈ S∗.

Thus, T(S∗) is uniformly bounded.
(iii) T(S∗) is equicontinuous.
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To show that T(S∗) is equicontinuous, we need to verify that for every ϵ > 0, there
exists a δ > 0 such that for any (x, y) ∈ S∗ and t1, t2 ∈ [t, t̄], with |t1 − t2| < δ, we
have:

|T(x, y)(t1) − T(x, y)(t2)| < ϵ.

Using the expressions for T1(x, y) and T2(x, y), we have

|T1(x, y)(t1) − T1(x, y)(t2)| ≤ Ws

Γ(α1)

∣∣∣∣∣
∫ t1

t
ψ′(τ)(ψ(t1) − ψ(τ))α1−1dτ

−
∫ t2

t
ψ′(τ)(ψ(t2) − ψ(τ))α1−1dτ

∣∣∣∣∣
+
∣∣∣∣∣F1

(ψ(t1) − ψ(t))γ1−1

ΛΓ(γ1)
− F1

(ψ(t2) − ψ(t))γ1−1

ΛΓ(γ1)

∣∣∣∣∣ .
The continuity of ψ, s and r ensures that the right-hand sides go to 0 as |t1 − t2| → 0.
Thus, for any ϵ > 0, there exists δ > 0 such that

|T1(x, y)(t1) − T1(x, y)(t2)| < ϵ, |T2(x, y)(t1) − T2(x, y)(t2)| < ϵ.

Therefore, T(S∗) is equicontinuous.
From (i)-(iii), it can be deduced that T (S∗) forms a uniformly bounded and equicon-

tinuous subset within E × E. Consequently, according to the Arzelá-Ascoli theorem,
T (S∗) is relatively compact. Hence, the operator T : S∗ → E × E qualifies as a com-
pact operator. Given that T is both continuous and compact, it is thus completely
continuous.

Step 3. For all (x, y) ∈ S∗, L(x, y)T(x, y) ∈ S∗

∥L(x, y)T(x, y)∥E×E = ∥L1(x, y)T1(x, y)∥E + ∥L2(x, y)T2(x, y)∥E

≤ sup
t∈[t̄,t]

|l1(t, x(t), y(t))T1(x, y)(t)|

+ sup
t∈[t̄,t]

|l2(t, x(t), y(t))T2(x, y)(t)|

≤ C1 sup
t∈[t̄,t]

|l1(t, x(t), y(t))| + C2 sup
t∈[t̄,t]

|l2(t, x(t), y(t))|

≤ C1l
∗
1 + C2l

∗
2 ≤ R.

This implies that for every (x, y) ∈ S∗, the composition L(x, y)T(x, y) remains within
S∗. From Step 1 to 3, it follows that all the conditions of Lemma 2.2 are fulfilled.
Consequently, by applying Lemma 2.2, the operator equation L(x, y)(t)T(x, y) has a
solution in S∗. Hence, the BVPs for coupled system of hybrid FDEs (1.1)–(1.2) has a
solution in S∗. □

3.2. Uniqueness via the Banach contraction principle. This section is dedicated
to proving the uniqueness of the proposed coupled systems of nonlinear ψ-Hilfer hybrid
fractional differential equations (1.1)–(1.2) by employing Theorem 2.1.
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Theorem 3.3. Assume that Λ ̸= 0 and s, r ∈ C([t, t̄]×R×R,R), l1, l2 ∈ C([t, t̄]×R×
R,R \ {0}) are continuous functions. In addition, satisfy the assumptions (H1)-(H3).
Then, the problem (1.1) and (1.2) has at least one solution on [t, t̄] if ϕ1 + ϕ2 < 1,
where ϕ1 and ϕ2 are defined as

(3.16)

ϕ1 =(χl1Ws + χsWl1)(ψ(t̄) − ψ(t))α1

Γ(1 + α1)

+ χl1
(ψ(t̄) − ψ(t))γ1−1

ΛΓ(γ1)

[
Φ4

(
(ψ(t̄) − ψ(t))ν

Γ(1 + ν) (χl1Wr + χrWl1)

+
n2∑
i=1

ǎiWl1

(ψ(t̄) − ψ(t))α1

Γ(1 + α1)
(Wl1χs + 2Wsχl1)

)

+ Φ2

(
(ψ(t̄) − ψ(t))σ

Γ(1 + σ) (χl1Ws + χsWl1)

+
n1∑
j=1

ajWl1

(ψ(t̄) − ψ(t))p1

Γ(1 + p1)
(Wl1χr + 2Wrχl1)

)]
,

ϕ2 =(χl2Wr + χrWl2)(ψ(t̄) − ψ(t))p1

Γ(1 + p1)

+ χl2
(ψ(t̄) − ψ(t))γ2−1

ΛΓ(γ2)

[
Φ3

(
(ψ(t̄) − ψ(t))σ

Γ(1 + σ) (χl2Ws + χsWl2)

+
n1∑
j=1

ajWl2

(ψ(t̄) − ψ(t))p1

Γ(1 + p1)
(Wl2χr + 2Wrχl2)

)

+ Φ1

(
(ψ(t̄) − ψ(t))ν

Γ(1 + ν) (χl2Wr + χrWl2)

+
n2∑
i=1

ǎiWl2

(ψ(t̄) − ψ(t))α1

Γ(1 + α1)
(Wl2χs + 2Wsχl2)

)]
.

Proof. We consider the operators P1 : E × E :→ E and P2 : E × E :→ E defined by

P1(x(t), y(t)) = l1(t, x(t), y(t))
[
Iα1;ψs(t, x(t), y(t)) + (ψ(t) − ψ(t))γ1−1

ΛΓ(γ1)

×
(
Φ4

(
Iν;ψr(t̄, x(t̄), y(t̄))−

n2∑
i=1

ǎil1(b̌i, x(b̌i), y(b̌i))Iα1;ψs(b̌i, x(b̌i), y(b̌i))
)

+ Φ2

(
Iσ;ψs(t̄, x(t̄), y(t̄))

−
n1∑
j=1

ajl2(bj, x(bj), y(bj))Ip1;ψr(bj, x(bj), y(bj))
))]
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and

P2(x(t), y(t)) =l2(t, x(t), y(t))
[
Ip1;ψr(t, x(t), y(t))

+ (ψ(t) − ψ(t))γ2−1

ΛΓ(γ2)

(
Φ3

(
Iσ;ψs(t̄, x(t̄), y(t̄))

−
n1∑
j=1

ajl2(bj, x(bj), y(bj))Ip1;ψr(bj, x(bj), y(bj))
)

+ Φ1

(
Iν;ψr(t̄, x(t̄), y(t̄))

−
n2∑
i=1

ǎil1(b̌i, x(b̌i), y(b̌i))Iα1;ψs(b̌i, x(b̌i), y(b̌i))
))]

.

Therefore, we construct P : E × E :→ E as

P(x, y)(t) = P1(x, y)(t) + P2(x, y)(t).

Let (x, y), (x̌, y̌) ∈ E × E. Applying (H1) − (H3) we get

|P1(x, y)(t) − P1(x̌, y̌)(t)| ≤ (|x(t) − x̌(t)| + |y(t) − y̌(t)|)

×
[
(χl1Ws + χsWl1)(ψ(t̄) − ψ(t))α1

Γ(1 + α1)

+ χl1
(ψ(t̄) − ψ(t))γ1−1

ΛΓ(γ1)

×
(

Φ4

(
(ψ(t̄) − ψ(t))ν

Γ(1 + ν) (χl1Wr + χrWl1)

+
n2∑
i=1

ǎiWl1

(ψ(t̄) − ψ(t))α1

Γ(1 + α1)
(Wl1χs + 2Wsχl1)

)

+ Φ2

(
(ψ(t̄) − ψ(t))σ

Γ(1 + σ) (χl1Ws + χsWl1)

+
n1∑
j=1

ajWl1

(ψ(t̄) − ψ(t))p1

Γ(1 + p1)
(Wl1χr + 2Wrχl1)

))]
,

which implies

∥P1(x, y) − P1(x̌, y̌)∥ ≤ ϕ1 (∥x− x̌∥ + ∥y − y̌∥) = ϕ1∥(x, y) − (x̌− y̌)∥.

We can use the same technique and get
∥P2(x, y)(t) − P2(x̌, y̌)∥ ≤ ϕ2 (∥x− x̌∥ + ∥y − y̌∥) = ϕ2∥(x, y) − (x̌− y̌)∥.

In view of the condition ϕ1 + ϕ2 < 1 and
∥P(x, y)(t) − P(x̌, y̌)∥ ≤ (ϕ1 + ϕ2)∥(x, y) − (x̌− y̌)∥,
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P is a contraction. By applying Theorem 3.3, P possesses a fixed point, ensuring
that the coupled systems of nonlinear ψ-Hilfer hybrid fractional differential equations
(1.1)–(1.2) have a unique solution. □

3.3. Ulam-Hyers stability analysis. In this section, we investigate the Ulam-Hayes
(U-H) and General Ulam-Hayes (G-U-H) stability of the solution to the ψ-Hilfer
coupled system (1.1)–(1.2).

Let ε = (ε1, ε2) > 0, we consider these inequalities

(3.17)
∣∣∣∣∣HDα1,β1;ψ

(
x̃(t)

l1(t, x̃(t), ỹ(t))

)
− s(t, x̃(t), ỹ(t))

∣∣∣∣∣ ≤ ε1, t ∈ [t, t̄],

(3.18)
∣∣∣∣∣HDp1,q1;ψ

(
ỹ(t)

l2(t, x̃(t), ỹ(t))

)
− r(t, x̃(t), ỹ(t))

∣∣∣∣∣ ≤ ε2, t ∈ [t, t̄],

and

Iσ;ψ
(

x̃(t̄)
l1(t̄, x̃(t̄), ỹ(t̄))

)
=Iσ;ψ

(
x(t̄)

l1(t̄, x(t̄), y(t̄))

)
,

Iν;ψ
(

ỹ(t̄)
l2(t̄, x̃(t̄), ỹ(t̄))

)
=Iν;ψ

(
y(t̄)

l2(t̄, x(t̄), y(t̄))

)
.

Definition 3.1. The coupled system (1.1)–(1.2) is considered U-H stable if there
exists a constant λ = (λ1, λ2) > 0, such that for any given ε = (ε1, ε2) > 0 and
for each solution (x̃, ỹ) ∈ E × E of the inequalities (3.17) and (3.18), there exists a
corresponding solution (x, y) ∈ E × E of the coupled system (1.1)–(1.2) satisfying

(3.19) ∥(x̃, ỹ) − (x, y)∥E×E ≤ λε.

Definition 3.2. The coupled system (1.1)–(1.2) is G-U-H stable if there exists φ =
(φf , φg) ∈ C(R,R) with φ(0) = (φ1(0), φ2(0)) = (0, 0), such that for any given
ε = (ε1, ε2) > 0, and for each solution (x̃, ỹ) ∈ E × E of the inequalities (3.17)–(3.18),
there exists a corresponding solution (x, y) ∈ E × E of the coupled system (1.1)–(1.2)
satisfying

(3.20) ∥(x̃, ỹ) − (x, y)∥E×E ≤ φ(ε).

Remark 3.1. A function (x̃, ỹ) ∈ E×E is a solution of inequalities (3.17)–(3.18) if and
only if there exists a function (ǧ1, ǧ2) ∈ E × E (which depends on (x̃, ỹ)) such that

i) |ǧ1(t)| ≤ ε1 and |ǧ2(t)| ≤ ε2,
ii) for t ∈ [t, t̄]

(3.21)


HDα1,β1;ψ

(
x̃(t)

l1(t,x̃(t),ỹ(t))

)
= s(t, x̃(t), ỹ(t)) + ǧ1(t),

HDp1,q1;ψ
(

ỹ(t)
l2(t,x̃(t),ỹ(t))

)
= r(t, x̃(t), ỹ(t)) + ǧ2(t).
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Theorem 3.4. Assume that condition of Theorem 3.3 is satisfied. If (1−ϕ1)(1−ϕ2)−
ϕ1ϕ2 ≠ 0, then the system (1.1)–(1.2) is Ulam-Hyers stable on [a, b]. Consequently, it
is also generalized Ulam-Hyers stable, where ϕ1 and ϕ2 are illustrated in (3.16).

Proof. Let ε1, ε2 > 0, and let (x̃, ỹ) ∈ E × E satisfies inequalities (3.17)–(3.18), Then,
by Remark 3.1 and Theorem 3.1, we have

x̃(t) =l1(t, x̃(t), ỹ(t))
[
Iα1;ψs(t, x̃(t), ỹ(t)) + (ψ(t) − ψ(t))γ1−1

ΛΓ(γ1)

×
(

Φ1

(
Iν;ψr(t̄, x̃(t̄), ỹ(t̄)) −

n2∑
i=1

ǎil1(b̌i, x̃(b̌i), ỹ(b̌i))Iα1;ψs(b̌i, x̃(b̌i), ỹ(b̌i))
)

+ Φ3

(
Iσ;ψs(t̄, x̃(t̄), ỹ(t̄)) −

n1∑
j=1

ajl2(bj, x̃(bj), ỹ(bj))Ip1;ψr(bj, x̃(bj), ỹ(bj))
))

+ Iα1;ψǧ1

]
,

ỹ(t) =l2(t, x̃(t), ỹ(t))
[
Ip1;ψr(t, x̃(t), ỹ(t)) + (ψ(t) − ψ(t))γ2−1

ΛΓ(γ2)

×
(

Φ4

(
Iσ;ψs(t̄, x̃(t̄), ỹ(t̄)) −

n1∑
j=1

ajl2(bj, x̃(bj), ỹ(bj))Ip1;ψr(bj, x̃(bj), ỹ(bj))
)

+ Φ1

(
Iν;ψr(t̄, x̃(t̄), ỹ(t̄)) −

n2∑
i=1

ǎil1(b̌i, x̃(b̌i), ỹ(b̌i))Iα1;ψs(b̌i, x̃(b̌i), ỹ(b̌i))
))

+ Ip1;ψǧ2

]
,

for all t ∈ [t, t̄], and

x̃(t) = 0, ỹ(t) = 0,

Iσ;ψ
(

x̃(t̄)
l1(t̄, x̃(t̄), ỹ(t̄))

)
= Iσ;ψ

(
x(t̄)

l1(t̄, x(t̄), y(t̄))

)
,

Iν;ψ
(

ỹ(t̄)
l2(t̄, x̃(t̄), ỹ(t̄))

)
= Iν;ψ

(
y(t̄)

l2(t̄, x(t̄), y(t̄))

)
.

Let (x, y) ∈ E × E be the solution of the problem (1.1)–(1.2). Thanks to Theorem
3.1, the equivalent fractional integral system for the problem (1.1)–(1.2) is defined as
follows

x(t) =l1(t, x(t), y(t))
[
Iα1;ψs(t, x(t), y(t)) + (ψ(t) − ψ(t))γ1−1

ΛΓ(γ1)

×
(

Φ1

(
Iν;ψr(t̄, x(t̄), y(t̄)) −

n2∑
i=1

ǎil1(b̌i, x(b̌i), y(b̌i))Iα1;ψs(b̌i, x(b̌i), y(b̌i))
)
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+ Φ3

(
Iσ;ψs(t̄, x(t̄), y(t̄)) −

n1∑
j=1

ajl2(bj, x(bj), y(bj))Ip1;ψr(bj, x(bj), y(bj))
))]

and

y(t) =l2(t, x(t), y(t))
[
Ip1;ψr(t, x(t), y(t)) + (ψ(t) − ψ(t))γ2−1

ΛΓ(γ2)

×
(

Φ4

(
Iσ;ψs(t̄, x(t̄), y(t̄)) −

n1∑
j=1

ajl2(bj, x(bj), y(bj))Ip1;ψr(bj, x(bj), y(bj))
)

+ Φ1

(
Iν;ψr(t̄, x(t̄), y(t̄)) −

n2∑
i=1

ǎil1(b̌i, x(b̌i), y(b̌i))Iα1;ψs(b̌i, x(b̌i), y(b̌i))
))

i
¯
gg].

On the other hand, for each t ∈ [t, t̄], we have∣∣∣x̃(t) − x(t)
∣∣∣ ≤

∣∣∣∣∣x̃(t) − l1(t, x(t), y(t))
[
Iα1;ψs(t, x(t), y(t))

+ (ψ(t) − ψ(t))γ1−1

ΛΓ(γ1)
×
(

Φ1

(
Iν;ψr(t̄, x(t̄), y(t̄))

−
n2∑
i=1

ǎil1(b̌i, x(b̌i), y(b̌i))Iα1;ψs(b̌i, x(b̌i), y(b̌i))
)

+ Φ3

(
Iσ;ψs(t̄, x(t̄), y(t̄))

−
n1∑
j=1

ajl2(bj, x(bj), y(bj))Ip1;ψr(bj, x(bj), y(bj))
))]∣∣∣∣∣

≤(ψ(t̄) − ψ(t))α1

Γ(1 + α1)
χl1ε1 + ϕ1∥(x, y) − (x̃− ỹ)∥,

which implies
(1 − ϕ1)∥x̃− x∥ − ϕ1∥ỹ − y∥ ≤ F1ε1,(3.22)

where F1 = (ψ(t̄)−ψ(t))α1

Γ(1+α1) χl1 . Similarly, we have

(1 − ϕ2)∥ỹ − y∥ − ϕ2∥x̃− x∥ ≤ F2ε2,(3.23)

where F2 = (ψ(t̄)−ψ(t))p1

Γ(1+p1) χl2 . By expressing equations (3.22) and (3.23) in matrix form,
we obtain (

1 − ϕ1 −ϕ1
−ϕ2 1 − ϕ2

)(
∥x̃− x∥
∥ỹ − y∥

)
≤
(
F1ε1
F2ε2

)
.

The individual terms can be written as

∥x̃− x∥ ≤ 1 − ϕ1

∆ F1ε1 + ϕ1

∆F2ε2,

∥ỹ − y∥ ≤ ϕ2

∆F1ε1 + 1 − ϕ2

∆ F2ε2,
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where ∆ = (1 − ϕ1)(1 − ϕ2) − ϕ1ϕ2 ̸= 0. By combining these terms, we get

∥x̃− x∥ + ∥ỹ − y∥ ≤
(

1 − ϕ1

∆ + ϕ2

∆

)
F1ε1 +

(
ϕ1

∆ + 1 − ϕ2

∆

)
F2ε2.

For ε = max{ε1, ε2} and c = 1−ϕ1+ϕ2
∆ F1 + ϕ1+1−ϕ2

∆ F2, we get
∥(x̃, ỹ) − (x, y)∥ = ∥x̃− x∥ + ∥ỹ − y∥ ≤ cε.

This proves that the ψ-Hilfer coupled system (1.1)–(1.2), is U-H stable.
Furthermore, by defining φ(ε) = λε with φ(0) = 0, we get

∥(x̃, ỹ) − (x, y)∥E×E ≤ φ(ε).
This demonstrates that the ψ-Hilfer coupled system (1.1)–(1.2) is G-H-U stable. □

4. Example

In this section, we provide an illustrative example of a coupled hybrid integro-
differential boundary condition value problems (1.1)–(1.2) to validate the accuracy of
the results obtained above

(4.1)



HD
1
2 ,

1
4 ;ψ(t)

(
x(t)

l1(t,x(t),y(t))

)
= r(t, x(t), y(t)), t ∈ [0, 1],

HD
2
3 ,1/5;ψ(t)

(
y(t)

l2(t, x(t), y(t))

)
= s(t, x(t), y(t)), t ∈ [0, 1],

x(0) = 0, I
1
4 ;ψ(t)

(
x(1)

l1(1, x(1), y(1))

)
= y(1

2) + 4
3y(1),

y(0) = 0, I
1
3 ;ψ(t)

(
y(1)

l2(1, x(1), y(1))

)
= 2x(2

3) + 3x(3
4),

where

α1 = 1
2 , β1 = 1

4 , p1 = 2
3 , q1 = 1

5 , σ = 1
4 , ν = 1

3 ,

n1 = n2 = 2, a1 = 1, a2 = 3
4 , ǎ1 = 2, ǎ2 = 3,

b1 = 1
2 , b2 = 1, b̌1 = 2

3 , b̌2 = 3
4 , ψ(t) = t2

8 + 1
10 , ψ′(t) = t

4 .

We find that

γ1 =α1 + β1(2 − α1) = 1
2 + 1

4

(
2 − 1

2

)
= 7

8 ,

γ2 =p1 + q1(2 − p1) = 2
3 + 1

5

(
2 − 2

3

)
= 14

15 ,

ψ(1) − ψ(0) =
(3

8 + 1
10

)
− 1

10 = 3
8 .

The functions l1, l2, r, s are given by

l1(t, x(t), y(t)) = 1
10 +

√
(t/3) sin x(t) + sin y(t)

11 ,
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l2(t, x(t), y(t)) =1
6 + te−(11+x(t)) + cos y(t)

12 ,

r(t, x(t), y(t)) = t

3 cosx(t) + 1
8 sin y(t),

s(t, x(t), y(t)) = t

5 sin x(t) + 2
15t cos y(t).

First, we verify that the system is well-posed by ensuring Λ ̸= 0. Using the formulas
from Theorem 3.1, we calculate

Φ1 =
2∑
j=1

aj
l2(bj)(ψ(bj) − ψ(0))γ2−1

Γ(γ2)
≈ 0.508,

Φ2 = (ψ(1) − ψ(0))γ1+σ−1

Γ(γ1 + σ) ≈ 0.819,

Φ3 = (ψ(1) − ψ(0))γ2+ν−1

Γ(γ2 + ν) ≈ 0.636,

Φ4 =
2∑
i=1

ǎi
l1(b̌i)(ψ(b̌i) − ψ(0))γ1−1

Γ(γ1)
≈ 1.618.

Therefore,
Λ = Φ1Φ4 − Φ2Φ3 ≈ 0.508 · 1.618 − 0.819 · 0.636 ≈ 0.822 − 0.521 = 0.302 ̸= 0.

Now, let u1, u1, v1, v2 ∈ R and t ∈ [0, 1]. Then, we get

|l1(t, u1, u2) − l1(t, v1, v2)| ≤ 1
11(|u1 − v1| + |u2 − v2|),

|l2(t, u1, u2) − l2(t, v1, v2)| ≤1
4(|u1 − v1| + |u2 − v2|),

|r(t, u1, u2) − r(t, v1, v2)| ≤1
3(|u1 − v1| + |u2 − v2|),

|s(t, u1, u2) − s(t, v1, v2)| ≤1
5(|u1 − v1| + |u2 − v2|).

Thus, conditions (H1) and (H2) are satisfied with
χl1 = 0.143, χl2 = 0.114, χr = 0.458, χs = 0.333,

Wl1 = 0.243, Wl2 = 0.281, Wr = 0.458, Ws = 0.333.

By applying these values in the final hypothesis (H3), through detailed calculations
of the operator bounds, we obtain:

M = sup{∥T(x, y)∥E×E | (x, y) ∈ S∗} ≈ 2.933.
Therefore,

(χl1 + χl2)M = (0.143 + 0.114) · 2.933 = 0.257 · 2.933 ≈ 0.754 < 1.
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Since all the conditions of Theorem 3.3 are satisfied, the coupled hybrid integro-
differential boundary condition value problems (4.1) have at least one solution in the
space C([0, 1],R) × C([0, 1],R).

By applying the calculated Lipschitz and boundedness constants, we obtain
ϕ1 ≈ 0.219, ϕ2 ≈ 0.186.

Since the uniqueness condition ϕ1 + ϕ2 < 1 is satisfied, the solution is unique by
Theorem 3.3.

For Ulam-Hyers stability, we need to verify that (1 − ϕ1)(1 − ϕ2) − ϕ1ϕ2 ̸= 0.
(1 − ϕ1)(1 − ϕ2) − ϕ1ϕ2 = (1 − 0.219)(1 − 0.186) − 0.219 · 0.186

= 0.781 · 0.814 − 0.041
= 0.636 − 0.041 = 0.595 ̸= 0.

Hence, it is confirmed that the coupled hybrid system (4.1) is U-H stable and gener-
alized U-H stable.

5. Conclusion

In this paper, we have studied the existence, uniqueness, and stability of solutions
for a novel coupled system of ψ-Hilfer hybrid fractional differential equations with
integro-multi-point boundary conditions. The existence and uniqueness results are
established using Dhage’s fixed point theorem. Moreover, we analyze the stability in
the framework of Ulam-Hyers stability and generalized Ulam-Hyers stability. Finally,
an illustrative example demonstrating the applicability and correctness of the obtained
results.
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