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STABILITY OF NONLINEAR NEUTRAL MIXED TYPE
LIVEN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

KARIMA BESSIOUD1, ABDELOUAHEB ARDJOUNI1, AND AHCENE DJOUDI2

Abstract. In this paper, we use the contraction mapping theorem to obtain as-
ymptotic stability results about the zero solution for a nonlinear neutral mixed type
Levin-Nohel integro-differential equation. An asymptotic stability theorem with a
necessary and sufficient condition is proved. An example is also given to illustrate
our main results.

1. Introduction

The Lyapunov direct method has been very effective in establishing stability results
and the existence of periodic solutions for wide variety of ordinary, functional and
partial differential equations. Nevertheless, in the application of Lyapunov’s direct
method to problems of stability in delay differential equations, serious difficulties
occur if the delay is unbounded or if the equation has unbounded terms. In recent
years, several investigators have tried stability by using a new technique. Particularly,
Burton, Furumochi, Zhang and others began a study in which they noticed that some
of this difficulties vanish or might be overcome by means of fixed point theory, see
[1–28] and the references therein. The fixed point theory does not only solve the
problems on stability but have other significant advantage over Lyapunov’s direct
method. The conditions of the former are often average but those of the latter are
usually pointwise, see [8] and the references therein.
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In paper, we consider the following nonlinear neutral mixed type Levin-Nohel
integro-differential equation

d

dt
x (t) =−

m∑
j=1

∫ t

t−τj(t)
aj (t, s)x (s) ds−

m∑
j=1

∫ t+σj(t)

t
bj (t, s)x (s) ds

+ d

dt
g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) ,(1.1)

with an assumed initial condition
x (t) = φ (t) , t ∈ [m (t0) , t0] ,

where φ ∈ C ([m (t0) , t0] ,R) and
mj (t0) = inf {t− τj (t)} , m (t0) = min {mj (t0) : 1 ≤ j ≤ m} .

Throughout this chapter, we assume that aj ∈ C ([t0,+∞)× [m (t0) ,+∞) ,R), bj ∈
C ([t0,+∞)× [t0,+∞) ,R) and τj, σj ∈ C ([t0,+∞) ,R+), with t − τj (t) → +∞ as
t→ +∞ and t+ σj (t)→ +∞ as t→ +∞, (1 ≤ j ≤ m). The functions g is globally
Lipschitz continuous in x. That is, there are positive constants Ej, 1 ≤ j ≤ m, such
that
(1.2)

|g (t, x1, x2, . . . , xm)− g (t, y1, y2, . . . , ym)| ≤
m∑
j=1

Ej |xj − yj| , g (t, 0, . . . , 0) = 0.

In this paper, our purpose is to use the contraction mapping theorem [26] to show the
asymptotic stability of the zero solution for (1.1). An asymptotic stability theorem
with a necessary and sufficient condition is proved. In the special case bj (t, s) = 0,
1 ≤ j ≤ m and g (t, x1, x2, . . . , xm) = ∑m

j=1 gj (t, xj), Bessioud, Ardjouni and Djoudi
[5] proved the zero solution of (1.1) is asymptotically stable with a necessary and
sufficient condition by using the contraction mapping theorem. Then, the results
presented in this paper extend the main results in [5]. An example is also given to
illustrate our main results.

2. Main Results

For each t0, we denote C (t0) the space of continuous functions on [m (t0) , t0] with
the supremum norm ‖·‖t0 . For each (t0, φ) ∈ [0,+∞) × C (t0), denote by x (t) =
x (t, t0, φ) the unique solution of (1.1).

Definition 2.1. The zero solution of (1.1) is called
(i) stable if for each ε > 0 there exists a δ > 0 such that |x (t, t0, φ)| < ε for all

t ≥ t0 if ‖φ‖t0 < δ,
(ii) asymptotically stable if it is stable and lim

t→+∞
|x (t, t0, φ)| = 0.

In order to be able to construct a new fixed mapping, we transform the Levin-Nohel
equation into an equivalent equation. For this, we use the variation of parameter
formula and the integration by parts.
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Lemma 2.1. x is a solution of (1.1) if and only if

x (t) = (φ (t0)−Gφ (t0)) e
−
∫ t

t0
A(z)dz +Gx (t)

−
∫ t

t0
[Lx (s) + A (s)Gx (s)] e−

∫ t

s
A(z)dzds−

∫ t

t0
Nx (s) e−

∫ t

s
A(z)dzds,(2.1)

where

Gx (t) =g (t, x (t− τ1 (t)) , . . . , x (t− τm (t))) ,(2.2)

Lx (t) =
m∑
j=1

∫ t

t−τj(t)
aj (t, s)

(∫ t

s

(
m∑
k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

+
m∑
k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν

)
du+Gx (s)−Gx (t)

)
ds,(2.3)

Nx (t) =
m∑
j=1

∫ t+σj(t)

t
bj (t, s)

(∫ t

s

(
m∑
k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

+
m∑
k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν

)
du+Gx (s)−Gx (t)

)
ds,(2.4)

and

(2.5) A (t) =
m∑
j=1

∫ t

t−τj(t)
aj (t, s) ds+

m∑
j=1

∫ t+σj(t)

t
bj (t, s) ds.

Proof. Obviously, we have

x (s) = x (t)−
∫ t

s

∂

∂u
x (u) du.

Inserting this relation into (1.1), we get

d

dt
x (t) +

m∑
j=1

∫ t

t−τj(t)
aj (t, s)

(
x (t)−

∫ t

s

∂

∂u
x (u) du

)
ds

+
m∑
j=1

∫ t+σj(t)

t
bj (t, s)

(
x (t)−

∫ t

s

∂

∂u
x (u) du

)
ds− d

dt
Gx (t) = 0,

where Gx is given by (2.2). Or equivalently

d

dt
x (t) + x (t)

 m∑
j=1

∫ t

t−τj(t)
aj (t, s) ds+

m∑
j=1

∫ t+σj(t)

t
bj (t, s) ds


−

m∑
j=1

∫ t

t−τj(t)
aj (t, s)

(∫ t

s

∂

∂u
x (u) du

)
ds

−
m∑
j=1

∫ t+σj(t)

t
bj (t, s)

(∫ t

s

∂

∂u
x (u) du

)
ds− d

dt
Gx (t) = 0.
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Substituting ∂x
∂u

from (1.1), we obtain

d

dt
x (t) + x (t)

 m∑
j=1

∫ t

t−τj(t)
aj (t, s) ds+

m∑
j=1

∫ t+σj(t)

t
bj (t, s) ds


−

m∑
j=1

∫ t

t−τj(t)
aj (t, s)

[∫ t

s

(
−

m∑
k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

−
m∑
k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν + ∂

∂u
Gx (u)

)
du

]
ds

−
m∑
j=1

∫ t+σj(t)

t
bj (t, s)

[∫ t

s

(
−

m∑
k=1

∫ u

u−τk(u)
ak (u, ν)x (ν) dν

−
m∑
k=1

∫ u+σk(u)

u
bk (u, ν)x (ν) dν + ∂

∂u
Gx (u)

)
du

]
ds− d

dt
Gx (t) = 0.(2.6)

By performing the integration, we have

(2.7)
∫ t

s

∂

∂u
Gx (u) du = Gx (t)−Gx (s) .

Substituting (2.7) into (2.6), we have
d

dt
x (t) + A (t)x (t) + Lx (t) +Nx (t)− d

dt
Gx (t) = 0, t ≥ t0,

where A and Lx and Nx are given by (2.5) and (2.3) and (2.4) respectively. By the
variation of constants formula, we get

x (t) =φ (t0) e
−
∫ t

t0
A(z)dz −

∫ t

t0
[Lx (s) +Nx (s)] e−

∫ t

s
A(z)dzds

+
∫ t

t0

(
∂

∂s
Gx (s)

)
e−
∫ t

s
A(z)dzds.(2.8)

By using the integration by parts, we obtain∫ t

t0

(
∂

∂s
Gx (s)

)
e−
∫ t

s
A(z)dzds

=Gx (t)−Gx (t0) e
−
∫ t

t0
A(z)dz −

∫ t

t0
A (s)Gx (s) e−

∫ t

s
A(z)dzds.(2.9)

Finally, we obtain (2.1) by substituting (2.9) in (2.8). Since each step is reversible,
the converse follows easily. This completes the proof. �

Theorem 2.1. Let (1.2) holds and suppose that the following two conditions hold

lim
t→+∞

inf
∫ t

0
A (z) dz > −∞,(2.10)

sup
t≥0

 m∑
j=1

Ej +
∫ t

0
ω (s) e−

∫ t

s
A(z)dzds

 = α < 1,(2.11)
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where

ω (s) =
m∑
j=1

∫ s

s−τj(s)
|aj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du+ 2

m∑
k=1

Ek

)
dw

+
m∑
j=1

∫ s+σj(s)

s
|bj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du+ 2

m∑
k=1

Ek

)
dw + |A (s)|

m∑
j=1

Ej.

Then the zero solution of (1.1) is asymptotically stable if and only if

(2.12)
∫ t

0
A (z) dz → +∞ as t→ +∞.

Proof. Sufficient condition. Suppose that (2.12) holds. Denoted by C the space
of continuous bounded functions x : [m (t0) ,+∞) → R such that x (t) = φ (t),
t ∈ [m (t0) , t0]. It is known that C is a complete metric space endowed with a metric
‖x‖ = supt≥m(t0) |x (t)|. Define the operator P on C by (Px) (t) = φ (t), t ∈ [m (t0) , t0]
and

(Px) (t) = (φ (t0)−Gφ (t0)) e
−
∫ t

t0
A(z)dz +Gx (t)

−
∫ t

t0
[Lx (s) + A (s)Gx (s)] e−

∫ t

s
A(z)dzds−

∫ t

t0
Nx (s) e−

∫ t

s
A(z)dzds.

Obviously, Px is continuous for each x ∈ C. Moreover, it is a contraction operator.
Indeed, let x, y ∈ C

|(Px) (t)− (Py) (t)|

≤ |Gx (t)−Gy (t)|+
∫ t

t0
[|Lx (s)− Ly (s)|+ |Nx (s)−Ny (s)|

+ |A (s)| |Gx (s)−Gy (s)|] e−
∫ t

s
A(z)dzds.

Since x (t) = y (t) = φ (t) for all t ∈ [m (t0) , t0], this implies that

|Lx (s)− Ly (s)|

≤
m∑
j=1

∫ s

s−τj(s)
|aj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du+ 2

m∑
k=1

Ek

)
dw ‖x− y‖
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and

|Nx (s)−Ny (s)|

≤
m∑
j=1

∫ s+σj(s)

s
|bj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du+ 2

m∑
k=1

Ek

)
dw ‖x− y‖ .

Consequently, it holds for all t ≥ t0 that

|(Px) (t)− (Py) (t)|

≤
m∑
j=1

Ej ‖x− y‖+
∫ t

t0

 m∑
j=1

∫ s

s−τj(s)
|aj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du+ 2

m∑
k=1

Ek

)
dw

+
m∑
j=1

∫ s+σj(s)

s
|bj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du+ 2

m∑
k=1

Ek

)
dw + |A (s)|

m∑
j=1

Ej


× e−

∫ t

s
A(z)dzds ‖x− y‖ .

Hence, it follows from (2.11) that

|(Px) (t)− (Py) (t)| ≤ α ‖x− y‖ , t ≥ t0.

Thus P is a contraction operator on C. We now consider a closed subspace S of C
that is defined by

S = {x ∈ C : |x (t)| → 0 as t→ +∞} .

We will show that P (S) ⊂ S. To do this, we need to point out that for each x ∈ S,
|(Px) (t)| → 0 as t→ +∞. Let x ∈ S, by the definition of P we have

(Px) (t) = (φ (t0)−Gφ (t0)) e
−
∫ t

t0
A(z)dz +Gx (t)

−
∫ t

t0
[Lx (s) + A (s)Gx (s)] e−

∫ t

s
A(z)dzds−

∫ t

t0
Nx (s) e−

∫ t

s
A(z)dzds

=I1 + I2 + I3 + I4.

The first term I1 tends to 0 by (2.12) and I2 tends to 0 by (1.2) and t− τj (t)→ +∞
as t → +∞, and t + σj (t) → +∞ as t → +∞. For any T ∈ (t0, t), we have the
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following estimate for the third term

|I3| ≤
∣∣∣∣∣
∫ T

t0
[Lx (s) + A (s)Gx (s)] e−

∫ t

s
A(z)dzds

∣∣∣∣∣
+
∣∣∣∣∫ t

T
[Lx (s) + A (s)Gx (s)] e−

∫ t

s
A(z)dzds

∣∣∣∣
≤

∫ T

t0

 m∑
j=1

∫ s

s−τj(s)
|aj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
bk (u, ν) dν

)
du

+2
m∑
k=1

Ek

)
dw + |A (s)|

m∑
j=1

Ej

 e− ∫ t

s
A(z)dzds

 (‖x‖+ ‖φ‖t0
)

+
∫ t

T

 m∑
j=1

∫ s

s−τj(s)
|aj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| |x (ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| |x (v)| dν

)
du

+
m∑
k=1

Ek |x (s− τk (s))|+
m∑
k=1

Ek |x (w − τk (w))|
)
dw

+ |A (s)|
m∑
j=1

Ej |x (s− τj (s))|
 e− ∫ t

s
A(z)dzds

=I31 + I32.

Since t − τj (t) → +∞ as t → +∞, and t + σj (t) → +∞ as t → +∞, this implies
that u − τk (u) → +∞, and u + σk (u) → +∞ as T → +∞. Thus, from the fact
|x (ν)| → 0, ν → +∞, we can infer that for any ε > 0 there exists T1 = T > t0 such
that

I32 <
ε

2α

∫ t

T1

 m∑
j=1

∫ s

s−τj(s)
|aj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du+ 2

m∑
k=1

Ek

)
dw + |A (s)|

m∑
j=1

Ej

 e− ∫ t

s
A(z)dzds,

and hence, I32 <
ε
2 for all t ≥ T1. On the other hand, ‖x‖ < +∞ because x ∈ S.

This combined with (2.12) yields I31 → 0 as t→ +∞. As a consequence, there exists
T2 ≥ T1 such that I31 <

ε
2 for all t ≥ T2. Thus, I3 < ε for all t ≥ T2, that is, I3 → 0

as t→ +∞. Similarly, I4 → 0 as t→ +∞. So, P (S) ⊂ S.
By the Contraction Mapping Principle, P has a unique fixed point x in S which

is a solution of (1.1) with x (t) = φ (t) on [m (t0) , t0] and x (t) = x (t, t0, φ) → 0 as
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t→ +∞. To obtain the asymptotic stability, we need to show that the zero solution
of (1.1) is stable. By condition (2.10), we can define

(2.13) K = sup
t≥0

e−
∫ t

0 A(z)dz < +∞.

Using the formula (2.1) and condition (2.11), we can obtain

|x (t)| ≤ K

1 +
m∑
j=1

Ej

 ‖φ‖t0 e∫ t0
0 A(z)dz + α

(
‖x‖+ ‖φ‖t0

)
, t ≥ t0,

which leads us to

(2.14) ‖x‖ ≤
K

(
1 +

m∑
j=1

Ej

)
e
∫ t0

0 A(z)dz + α

1− α ‖φ‖t0 .

Thus, for every ε > 0, we can find δ > 0 such that ‖φ‖t0 < δ implies that ‖x‖ < ε.
This shows that the zero solution of (1.1) is stable and hence, it is asymptotically
stable.
Necessary condition. Suppose that the zero solution of (1.1) is asymptotically

stable and that the condition (2.12) fails. It follows from (2.10) that there exists a se-
quence {tn}, tn → +∞ as n→ +∞ such that limn→+∞

∫ tn
0 A (z) dz exists and is finite.

Hence, we can choose a positive constant L satisfying

(2.15) − L < lim
n→+∞

∫ tn

0
A (z) dz < L, for all n ≥ 1.

Then condition (2.11) gives us

cn =
∫ tn

0
ω (s) e

∫ s

0 A(z)dzds ≤ αe
∫ tn

0 A(z)dz ≤ eL.

The sequence {cn} is increasing and bounded, so it has a finite limit. For any δ0 > 0,
there exists n0 > 0 such that

(2.16)
∫ tn

tn0

ω (s) e
∫ s

0 A(z)dzds <
δ0

2K , for all n ≥ n0,

where K is as in (2.13). We choose δ0 such that δ0 <
1−α

K

(
1+
∑m

j=1 Ej

)
eL+1

, and consider

the solution x (t) = x (t, tn0 , φ) of (1.1), with the initial data φ (tn0) = δ0 and |φ (s)| ≤
δ0, s < tn0 . It follows from (2.14) that

(2.17) |x (t)| ≤ 1− δ0, for all t ≥ tn0 .
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Applying the fundamental inequality |a− b| ≥ |a| − |b| and then using (2.17), (2.16)
and (2.15), we get

|x (tn)−Gx (tn)|

≥δ0e
−
∫ tn

tn0
A(z)dz −

∫ tn

tn0

ω (s) e−
∫ tn

s
A(z)dzds

≥e−
∫ tn

tn0
A(z)dz

(
δ0 − e−

∫ tn0
0 A(z)dz

∫ tn

tn0

ω (s) e
∫ s

0 A(z)dzds

)

≥e−
∫ tn

tn0
A(z)dz

(
δ0 −K

∫ tn

tn0

ω (s) e
∫ s

0 A(z)dzds

)

≥1
2δ0e

−
∫ tn

tn0
A(z)dz ≥ 1

2δ0e
−2L > 0,

which is a contradiction because, then (x (tn)−Gx (tn))→ 0 as tn → +∞. The proof
is complete. �

Letting Gx (tn) = 0, we get the following result.

Corollary 2.1. Suppose that the following two conditions hold:

(2.18) lim
t→+∞

inf
∫ t

0
A0 (z) dz > −∞

and

sup
t≥0

∫ t

0

 m∑
j=1

∫ s

s−τj(s)
|aj (s, w)|

(∫ s

w

(
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du

)
dw

+
m∑
j=1

∫ s+σj(s)

s
|bj (s, w)|

∫ s

w

((
m∑
k=1

∫ u

u−τk(u)
|ak (u, ν)| dν

+
m∑
k=1

∫ u+σk(u)

u
|bk (u, ν)| dν

)
du

)
dw

]
e−
∫ t

s
A0(z)dzds

=α < 1,(2.19)

where

A0 (z) =
m∑
j=1

∫ z

z−τj(z)
aj (z, s) ds+

m∑
j=1

∫ z+σj(z)

z
bj (z, s) ds.

Then the zero solution of

d

dt
x (t) +

m∑
j=1

∫ t

t−τj(t)
aj (t, s)x (s) ds+

m∑
j=1

∫ t+σj(t)

t
bj (t, s)x (s) ds = 0
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is asymptotically stable if and only if

(2.20)
∫ t

0
A0 (z) dz → +∞ as t→ +∞.

Example 2.1. Consider the following nonlinear neutral mixed type Levin-Nohel integro-
differential equation

(2.21) d

dt
x (t) =

∫ t

t−τ(t)
a (t, s) ds+

∫ t+σ(t)

t
b (t, s)x (s) ds+ d

dt
g (t, x (t− τ (t))) ,

where a (t, s) = 2
t2+1 , τ (t) = t

2 , b (t, s) = 1
t2+1 , σ (t) = t, g (t, x) = 0.08 (x cos t+ 3) +

0.09x sin t2. Then the zero solution of (2.21) is asymptotically stable.

Proof. We have

A (t) =
∫ t

t−τ(t)
a (t, s) ds+

∫ t+σ(t)

t
b (t, s) ds = 2 t

t2 + 1 ,
∫ t

0
A (z) dz = ln

(
t2 + 1

)
,

ω (s) =
∫ s

s
2

2
s2 + 1

(∫ s

w

(∫ u

u
2

2
u2 + 1dν +

∫ 2u

u

1
u2 + 1dν

)
du+ 0.34

)
dw

+
∫ 2s

s

1
s2 + 1

(∫ s

w

(∫ u

u
2

2
u2 + 1dν +

∫ 2u

u

1
u2 + 1dν

)
du+ 0.34

)
dw + 0.34s

s2 + 1

= 1
s2 + 1

[
s ln

(
s2 + 1

)
+ 4 arctan s2 − 2 arctan s

+ s ln
(
s2

4 + 1
)
− 2 arctan 2s− 2s ln

(
4s2 + 1

)
+ 5.02s

]
and∫ t

0
ω (s) e−

∫ t

s
A(z)dzdz

= 1
t2 + 1

∫ t

0

[
s ln

(
s2 + 1

)
+ 4 arctan s2 − 2 arctan s

+ s ln
(
s2

4 + 1
)
− 2 arctan 2s− 2s ln

(
4s2 + 1

)
+ 5.02s

]
ds

= 1
t2 + 1

[
1
2
(
t2 + 3

)
ln
(
t2 + 1

)
+ 2

(
t2

4 − 1
)

ln
(
t2

4 + 1
)
− 1

4
(
4t2 − 1

)
ln
(
4t2 + 1

)
− 2t arctan t+ 4t arctan t

2 − 2t arctan 2t+ 2.51t2
]

≤0.43056.
Then

sup
t≥0

(
E +M +

∫ t

0
ω (s) e−

∫ t

s
A(z)dzdz

)
≤ 0.60.

It is easy to see that all conditions of Theorem 2.1 hold for α = 0.60 < 1. Thus,
Theorem 2.1 implies that the zero solution of (2.21) is asymptotically stable. �
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