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SOME RESULTS ON SUPER EDGE-MAGIC DEFICIENCY OF
GRAPHS

M. IMRAN1,2, A. Q. BAIG3, AND A. S. FEŇOVČÍKOVÁ4

Abstract. An edge-magic total labeling of a graph G is a bijection f :
V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|}, where there exists a constant k such
that f(u) + f(uv) + f(v) = k, for every edge uv ∈ E(G). Moreover, if the ver-
tices are labeled with the numbers 1, 2, . . . , |V (G)| such a labeling is called a super
edge-magic total labeling. The super edge-magic deficiency of a graph G, denoted
by µs(G), is the minimum nonnegative integer n such that G ∪ nK1 has a super
edge-magic total labeling or is defined to be ∞ if there exists no such n.

In this paper we study the super edge-magic deficiencies of two types of snake
graph and a prism graph Dn for n ≡ 0 (mod 4). We also give an exact value of
super edge-magic deficiency for a ladder Pn × K2 with 1 pendant edge attached
at each vertex of the ladder, for n odd, and an exact value of super edge-magic
deficiency for a square of a path Pn for n ≥ 3.

1. Introduction

In this paper, we consider only finite, simple and undirected graphs. We denote the
vertex set and edge set of a graph G by V (G) and E(G), respectively. Let |V (G)| = p
and |E(G)| = q.

An edge-magic total labeling of a graph G is a bijection f : V (G) ∪ E(G) →
{1, 2, . . . , p+ q}, where there exists a constant k such that

f(u) + f(uv) + f(v) = k,

for every edge uv ∈ E(G). The constant k is called a magic constant. An edge-magic
total labeling f is called super edge-magic total if the vertices are labeled with the
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smallest possible labels, i.e., with the numbers 1, 2, . . . , p. A graph that admits a
(super) edge-magic total labeling is called (super) edge-magic total.

The concept of edge-magic total labeling was given by Kotzig and Rosa [8]. Super
edge-magic total labelings were originally defined by Enomoto et al. in [3]. However
Acharya and Hegde had introduced in [1] the concept of strongly indexable graphs
that is equivalent to the one of super edge-magic total labeling.

Kotzig and Rosa [8] proved that for any graph G there exists an edge-magic graph H
such that H ∼= G∪nK1 for some nonnegative integer n. This fact leads to the concept
of edge-magic deficiency of a graph G, which is the minimum nonnegative integer n
such that G ∪ nK1 is edge-magic total and it is denoted by µ(G). In particular,

µ(G) = min{n ≥ 0 : G ∪ nK1 is edge-magic total}.

In the same paper, Kotzig and Rosa gave an upper bound for the edge-magic deficiency
of a graph G with n vertices,

µ(G) ≤ Fn+2 − 2− n− n(n− 1)
2 ,

where Fn is the nth Fibonacci number.
Motivated by Kotzig and Rosa’s concept of edge-magic deficiency, Figueroa-Centeno,

Ichishima and Muntaner-Batle [5] defined a similar concept for the super edge-magic
total labelings. The super edge-magic deficiency of a graph G, denoted by µs(G), is
the minimum nonnegative integer n such that G ∪ nK1 has a super edge-magic total
labeling, or is defined to be ∞ if there exists no such n. More precisely, if

M(G) = {n ≥ 0 : G ∪ nK1 is a super edge-magic total graph},

then

µs(G) =

minM(G), if M(G) 6= ∅,
∞, if M(G) = ∅.

It is easy to see that for every graph G it holds

µ(G) ≤ µs(G).

In [5,7] Figueroa-Centeno, Ichishima and Muntaner-Batle found the exact values of
the super edge-magic deficiencies of several classes of graphs, such as cycles, complete
graphs, 2-regular graphs and complete bipartite graphs K2,m. They also proved that
all forests have finite deficiency. In particular, they proved that

µs(nK2) =

0, if n is odd,
1, if n is even.

In [10] Ngurah, Simanjuntak and Baskoro gave some upper bounds for the super
edge-magic deficiency of fans, double fans and wheels. In [6] Figueroa-Centeno,
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Ichishima and Muntaner-Batle proved

µs(Pm ∪K1,n) =

1, if m = 2 and n is odd or m = 3 and n 6≡ 0 (mod 3),
0, otherwise.

In the same paper, they showed that

µs(K1,m ∪K1,n) =

0, if m is a multiple of n+ 1 or n is a multiple of m+ 1,
1, otherwise.

They also conjectured that every forest with two components has super edge-magic
deficiency less than or equal to 1. Baig, Baskoro and Semaničová–Feňovčíková [2] have
determined the super edge magic deficiency of a star forest. Santhosh and Singh [11]
studied the corona product of K2 and Cn and they showed that µs(K2 � Cn) ≤ n−3

2 ,
for n odd at least 3.

In this paper we study the super edge-magic deficiencies for several classes of graphs.
We give upper bounds for the super edge-magic deficiencies of two types of snake
graph and for prism graph Dn for n ≡ 0 (mod 4). We also give an exact value of
super edge-magic deficiency for a ladder Pn × K2 with 1 pendant edge attached at
each vertex of the ladder, for n odd, and an exact value of super edge-magic deficiency
for a square of a path Pn for every positive integer n, n ≥ 3.

To prove the results presented in this paper, we frequently use the following lemma.

Lemma 1.1. [4] A graph G with p vertices and q edges is super edge-magic total if
and only if there exists a bijective function f : V (G) → {1, 2, . . . , p} such that the
set {f(u) + f(v) : uv ∈ E(G)} consists of q consecutive integers. In such a case, f
extends to a super edge-magic total labeling of G.

2. Upper Bounds

In graph theory a block graph is a graph in which every bi-connected component
(block) is a clique. Block graphs are sometimes erroneously said to be "Husimi trees",
but that name more properly refers to cactus graphs, graphs in which every nontrivial
bi-connected component is a cycle. In graph theory block graphs may be described
as the intersection graphs of the blocks of arbitrary undirected graphs.

Let G be a graph and u and v are two fixed vertices in G. The Gn-snake is a graph
obtained from n copies of G by identifying the vertex corresponding to the vertex v
in the ith copy of G with the vertex corresponding to the vertex u in the (i + 1)th
copy of G, for i = 1, 2, . . . , n− 1. The wheel Wk, k ≥ 3 is a graph obtained by joining
every vertex of a cycle Ck with a new vertex.

In the following theorem we will deal with the super edge-magic deficiency of
W n

4 -snake. Let us denote the vertex set and the edge set of W n
4 -snake such that

V (W n
4 -snake) ={xi : i = 1, 2, . . . , 2n} ∪ {yi : i = 1, 2, . . . , n}

∪ {zi : i = 1, 2, . . . , n+ 1},
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E(W n
4 -snake) ={xixn+i : i = 1, 2, . . . , n} ∪ {zizi+1 : i = 1, 2, . . . , n}

∪ {xizi, xn+izi+1 : i = 1, 2, . . . , n}
∪ {yixi, yixn+i : i = 1, 2, . . . , n}
∪ {yizi, yizi+1 : i = 1, 2, . . . , n}.

Theorem 2.1. The graph W n
4 -snake has super edge-magic deficiency at most 1.

Proof. Let us denote the vertices and edges of G ∼= W n
4 ∪ K1 such that V (G) =

V (W n
4 -snake)∪ {v} and E(G) = E(W n

4 -snake). The graph G has 4n+ 2 vertices and
8n edges.

We define the vertex labeling f of G in the following way
f(xi) = 4i− 3, if i = 1, 2, . . . , n,

f(xn+i) = 4i− 1, if i = 1, 2, . . . , n,
f(yi) = 4i, if i = 1, 2, . . . , n,
f(zi) = 4i− 2, if i = 1, 2, . . . , n+ 1,
f(v) = 4n+ 1.

It is easy to see that the vertices of G are labeled with the numbers 1, 2, 3, . . . , 4n+ 2
as the sets of vertex labels are

{f(xi) : i = 1, 2, 3, . . . , n} = {1, 5, 9, . . . , 4n− 3},
{f(zi) : i = 1, 2, 3, . . . , n, n+ 1} = {2, 6, 10, . . . , 4n− 2, 4n+ 2},

{f(xi) : i = n+ 1, n+ 2, n+ 3, . . . , 2n} = {3, 7, 11, . . . , 4n− 1},
{f(yi) : i = 1, 2, 3, . . . , n} = {4, 8, 12, . . . , 4n},

f(v) = 4n+ 1.
Next we will count the edge sums of the edges in the blocks. For i = 1, 2, . . . , n it

holds
f(xi) + f(zi) = (4i− 3) + (4i− 2) = 8i− 5,

f(xi) + f(xi+n) = (4i− 3) + (4i− 1) = 8i− 4,
f(xi) + f(yi) = (4i− 3) + 4i = 8i− 3,
f(yi) + f(zi) = 4i+ (4i− 2) = 8i− 2,

f(xi+n) + f(yi) = (4i− 1) + 4i = 8i− 1,
f(zi) + f(zi+1) = (4i− 2) + (4(i+ 1)− 2) = 8i,

f(xi+n) + f(zi+1) = (4i− 1) + (4(i+ 1)− 2) = 8i+ 1,
f(yi) + f(zi+1) = 4i+ (4(i+ 1)− 2) = 8i+ 2.

It means that the edge sums are consecutive integers 3, 4, . . . , 8n + 2. According to
Lemma 1.1 the labeling f can be extended to a super edge-magic total labeling of G
with magic constant 12n+ 5. �



SOME RESULTS ON SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS 241

A graph is called a cactus graph if every block is either a cycle or a complete graph
K2. Next we will deal with a special type of a cactus graph called an alternate
quadrilateral snake. An alternate quadrilateral snake A(Cn

4 ) is obtained from a path
x1x2 . . . xn by joining the vertices xi, xi+1, for every odd i, to new vertices yi, yi+1,
respectively and then joining yi and yi+1. That is every alternate edge of the path is
replaced by a cycle C4. More precisely, the vertex set and the edge set of A(Cn

4 ) are
the following

V (A(Cn
4 )) = {xi, yi : i = 1, 2, . . . , n}

and
E(A(Cn

4 )) ={xixi+1 : i = 1, 2, . . . , n− 1} ∪ {xiyi : i = 1, 2, . . . , n}
∪ {yiyi+1 : i = 1, 3, . . . , n− 1}.

Theorem 2.2. For every even positive integer n, n ≥ 4, for super edge-magic defi-
ciency of the alternate quadrilateral snake A(Cn

4 ) we have

µs(A(Cn
4 )) ≤ n

2 .

Proof. Let n be an even positive integer. Let us denote the vertex set and the edge
set of G ∼= A(Cn

4 ) ∪ n
2K1 as follows V (G) = V (A(Cn

4 )) ∪ {vi : i = 1, 2, . . . , n
2} and

E(G) = E(A(Cn
4 )).

We define the vertex labeling of the graph G in the following way

f(xi) =


i, if i = 1, 3, . . . , n− 1,

n+ 3i
2 , if i = 2, 4, . . . , n,

f(yi) =

 n+ 3i− 1
2 , if i = 1, 3, . . . , n− 1,

i, if i = 2, 4, . . . , n.

The remaining n
2 numbers n+2, n+5, . . . , 5n

2 −1 are used to label the isolated vertices
v1, v2, . . . , vn

2
of the graph G arbitrary.

It is easy to see that f is a bijection from the vertex set of G onto the set of integers
1, 2, . . . , 5n

2 .
For the edge sums we have the following. The edge sum of the edges xiyi, yiyi+1,

xixi+1 and yi+1xi+1, for i = 1, 3, . . . , n− 1, are

f(xi) + f(yi) =i+
(
n+ 3i− 1

2

)
= n+ 5i− 1

2 ,

f(yi) + f(yi+1) =
(
n+ 3i− 1

2

)
+ (i+ 1) = n+ 5i− 1

2 + 1,

f(xi) + f(xi+1) =i+
(
n+ 3(i+ 1)

2

)
= n+ 5i− 1

2 + 2,

f(xi+1) + f(yi+1) =
(
n+ 3(i+ 1)

2

)
+ (i+ 1) = n+ 5i− 1

2 + 3.
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The edge sum of the edge xi+1xi+2, for i = 1, 3, . . . , n− 3, is

f(xi+1) + f(xi+2) =
(
n+ 3(i+ 1)

2

)
+ (i+ 2) = n+ 5i− 1

2 + 4.

Moreover, for i = 1, 3, . . . , n− 3, we have

f(xi+2) + f(yi+2) = (i+ 2) +
(
n+ 3(i+ 2)− 1

2

)
= n+ 5i− 1

2 + 5.

Hence the edge sums are consecutive integers n+ 2, n+ 3, . . . , 7n
2 . Thus, according to

Lemma 1.1, the labeling f can be extended to the super edge-magic total labeling of
G with the magic constant 6n+ 1. �

The graph A(C2
4) is isomorphic to the cycle C4. Figueroa-Centeno, Ichishima and

Muntaner-Batle [5] proved that µs(C4) = 1.

A prism graph Dn, sometimes also called a circular ladder graph, is a graph corre-
sponding to the skeleton of an n-prism. Prism graphs are both planar and polyhedral.
An n-prism graph consist of 2n vertices and 3n edges, which is equivalent to general-
ized Petersen graph Pn,1. The n-prism is isomorphic to circulant graph Ci2n(2, n) for
odd n, and can be showed by rotating the inner cycle by 180◦, and its radius is equal
to that of the outer cycle in the top embedding above. In addition, for odd n,Dn is
isomorphic to Ci2n(4, n), Ci2n(6, n), . . . , Ci2n(n− 1, n). The prism Dn is isomorphic
to the Cartesian product Cn ×K2, where Cn is the cycle on n vertices and K2 is the
complete graph of order 2. The prism graph Dn is equivalent to the Cayley graph of
the dihedral group Dn, with respect to the generating set {x, x−1, y}.

We denote the vertices and edges of Dn such that

V (Dn) ={xi, yi : i = 1, 2, . . . , n}

and

E(Dn) ={xixi+1, yiyi+1 : i = 1, 2, . . . , n− 1} ∪ {x1xn, y1yn} ∪ {xiyi : i = 1, 2, . . . , n}.

The cardinality of the vertex set and the edge set of Dn is 2n and 3n, respectively.
In [4] Figueroa-Centeno, Ichishima and Muntaner-Batle proved that for n odd the

graph Dn is super edge-magic total. Ngurah and Baskoro [9] showed that for n even
the prism Dn is not edge-magic total. In the following theorem we are dealing with
the case when n is divisible by 4.

Theorem 2.3. Let n be a positive integer, n ≡ 0 (mod 4). The super edge-magic
deficiency of Dn is

µs(Dn) ≤ 3n
2 − 1.

Proof. Let n be a positive integer, n ≡ 0 (mod 4). Let us denote the isolated vertices
of G ∼= Dn ∪ (3n

2 − 1)K1 by the symbols v1, v2, . . . , v3n
2 −1

.
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We define the vertex labeling f of G in the following way.

f(xi) =



i+ 1
2 , if i = 1, 3, . . . , n− 1,

9n
4 − 1 + i

2 , if i = 2, 4, . . . , n2 ,
5n
4 + i

2 , if i = n

2 + 2, n2 + 4, . . . , n,

f(yi) =



11n
4 , if i = 1,

n+ i

2 , if i = 2, 4, . . . , n,
13n
4 + i− 3

2 if i = 3, 5, . . . , n2 + 1,
9n
4 + i− 1

2 if i = n

2 + 3, n2 + 5, . . . n− 1,

and the vertices vi, i = 1, 2, . . . , 3n
2 − 1 are labeled arbitrary with 3n

2 − 1 unused
numbers from the set {1, 2, . . . , 7n

2 − 1}. It is not difficult to check that the vertices
vi, i = 1, 2, . . . , 3n

2 − 1 are labeled with the numbers n
2 + 1, n

2 + 2, . . . , 3n
2 ,

7n
4 + 1, 7n

4 +
2, . . . , 9n

4 − 1, 5n
2 ,

11n
4 + 1, 11n

4 + 2, . . . , 13n
4 − 1.

Next we prove that the edge sums are consecutive integers. Indeed, we have

f(x1) + f(xn) = 1 + 1
2 +

(5n
4 + n

2

)
= 7n

4 + 1,

f
(
xn

2 +1

)
+ f

(
xn

2 +2

)
=

(
n
2 +1

)
+1

2 +
(

5n
4 +

n
2 + 2

2

)
= 7n

4 + 2,

f
(
xn

2 +2

)
+ f

(
xn

2 +3

)
=
(5n

4 +
n
2 +2

2

)
+

(
n
2 + 1

)
+ 3

2 = 7n
4 + 3,

...

f(xn−1) + f(xn) = (n− 1) + 1
2 +

(5n
4 + n

2

)
= 9n

4 ,

f(x1) + f(x2) = 1 + 1
2 +

(9n
4 − 1 + 2

2

)
= 9n

4 + 1,

f(x2) + f(x3) =
(9n

4 − 1 + 2
2

)
+ 3 + 1

2 = 9n
4 + 2,

...

f
(
xn

2

)
+ f

(
xn

2 +1

)
=
(

9n
4 − 1 +

n
2
2

)
+

(
n
2 + 1

)
+ 1

2 = 11n
4 ,

...
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f(x1) + f(y1) = 1 + 1
2 + 11n

4 = 11n
4 + 1,

f
(
xn

2 +2

)
+ f

(
yn

2 +2

)
=
(

5n
4 +

n
2 + 2

2

)
+
(
n+

n
2 + 2

2

)
= 11n

4 + 2,

f
(
xn

2 +3

)
+ f

(
yn

2 +3

)
=

(
n
2 + 1

)
+ 3

2 +
9n

4 +

(
n
2 + 3

)
− 1

2

 = 11n
4 + 3,

...

f(xn) + f(yn) =
(5n

4 + n

2

)
+
(
n+ n

2

)
= 13n

4 ,

f(x2) + f(y2) =
(9n

4 − 1 + 2
2

)
+
(
n+ 2

2

)
= 13n

4 + 1,

f(x3) + f(y3) = 3 + 1
2 +

(13n
4 + 3− 3

2

)
= 13n

4 + 2,
...

f
(
xn

2 +1

)
+ f

(
yn

2 +1

)
=

(
n
2 + 1

)
+ 1

2 +
13n

4 +

(
n
2 + 1

)
− 3

2

 = 15n
4 ,

f(y1) + f(y2) = 11n
4 +

(
n+ 2

2

)
= 15n

4 + 1,

f
(
yn

2 +2

)
+ f

(
yn

2 +3

)
=
(
n+

n
2 + 2

2

)
+
9n

4 +

(
n
2 + 3

)
− 1

2

 = 15n
4 + 2,

f
(
yn

2 +3

)
+ f

(
yn

2 +4

)
=
9n

4 +

(
n
2 + 3

)
− 1

2

+
(
n+

n
2 + 4

2

)
= 15n

4 + 3,

...

f(y1) + f(yn) = 11n
4 +

(
n+ n

2

)
= 17n

4 ,

f(y2) + f(y3) =
(
n+ 2

2

)
+
(13n

4 + 3− 3
2

)
= 17n

4 + 1,

f(y3) + f(y4) =
(13n

4 + 3− 3
2

)
+
(
n+ 4

2

)
= 17n

4 + 2,
...

f
(
yn

2 +1

)
+ f

(
yn

2 +2

)
=
(

13n
4 +

n
2 + 1− 3

2

)
+
(
n+

n
2 + 2

2

)
= 19n

4 .
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Hence the edge sums are the numbers 7n
4 + 1, 7n

4 + 2, . . . , 19n
4 . According to Lemma

1.1 the labeling f can be extended to the super edge-magic total labeling of G with
the magic constant 33n

4 . �

3. Exact Values

If G has order p, the corona of G with H, denoted by G�H, is the graph obtained
by taking one copy of G and p copies of H and joining the ith vertex of G with an
edge to every vertex in the ith copy of H.

Let us consider the Cartesian product Pn ×K2, where Pn is the path on n vertices
and K2 is the complete graph of order 2. This graph is also called a ladder. In
this section we deal with the super edge-magic deficiency of a ladder Pn ×K2 with 1
pendant edge attached at each vertex of Pn ×K2, i.e., the corona (Pn ×K2)�K1.

Theorem 3.1. For every odd positive integer n the graph (Pn ×K2) �K1 is super
edge-magic total, i.e.,

µs((Pn ×K2)�K1) = 0.

Proof. Let n be a positive odd integer. We denote the vertex set and the edge set of
G ∼= (Pn ×K2)�K1 as follows

V (G) = {xi, si, bi, di : i = 1, 2, . . . , n},
E(G) = {xisi, xibi, sidi : i = 1, 2, . . . , n} ∪ {xixi+1, sisi+1 : i = 1, 2, . . . , n− 1}.

The graph G is of order 4n and of size 5n− 2.
For n ≥ 5 we define the vertex labeling f of G such that

f(xi) =


4n+ 1 + i

2 , if i = 1, 3, . . . , n,
5n+ 1 + i

2 , if i = 2, 4, . . . , n− 1,

f(si) =


3n+ i

2 , if i = 1, 3, . . . , n,
2n+ i

2 , if i = 2, 4, . . . , n− 1,

f(bi) =



n− 1
2 , if i = 1,

6n+ i

2 , if i = 2, 4, . . . , n− 1,
7n+ i

2 , if i = 3, 5, . . . , n− 2,
n, if i = n,
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f(di) =



n− 1, if i = 1,
7n+ 1

2 , if i = 2,

4n, if i = 3,
n− 3 + i

2 , if i = 4, 6, . . . , n− 1,
i− 3

2 , if i = 5, 7, . . . , n.

It is easy to see that the vertices of G are labeled with the numbers 1, 2, . . . , 4n as
the sets of vertex labels are the following ones.

{f(si) : i = 1, 2, . . . , n} ={n+ 1, n+ 2, . . . , 2n},
{f(xi) : i = 1, 2, . . . , n} ={2n+ 1, 2n+ 2, . . . , 3n},

{f(bi) : i = 1, 2, . . . , n} =
{

n−1
2 , n, 3n+ 1, 3n+ 2, . . . , 7n−1

2 , 7n+3
2 , 7n+5

2 , . . . , 4n− 1
}
,

{f(di) : i = 1, 2, . . . , n} =
{
1, 2, . . . , n−3

2 , n+1
2 , n+3

2 , . . . , n− 2, n− 1, 7n+1
2 , 4n

}
.

Thus f is a bijection.
The edge sums under the labeling f are consecutive integers from the set
{3n+5

2 , 3n+7
2 + 1, . . . , 13n−1

2 } since we have

f(s4d4) = 2n+ 4
2 + n− 3 + 4

2 = 3n+ 5
2 ,

f(s5d5) = 3n+ 5
2 + 5− 3

2 = 3n+ 7
2 ,

...

f(sndn) = 3n+ n

2 + n− 3
2 = 5n− 3

2 ,

f(s1d1) = 3n+ 1
2 + (n− 1) = 5n− 1

2 ,

f(x1b1) = 4n+ 1 + 1
2 + n− 1

2 = 5n+ 1
2 ,

f(s1s2) = 3n+ 1
2 + 2n+ 2

2 = 5n+ 3
2 ,

f(s2s3) = 2n+ 2
2 + 3n+ 3

2 = 5n+ 5
2 ,

...

f(sn−1sn) = 2n+ (n− 1)
2 + 3n+ n

2 = 7n− 1
2 ,

f(xnbn) = 4n+ 1 + n

2 + n = 7n+ 1
2 ,
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f(s1x1) = 3n+ 1
2 + 4n+ 1 + 1

2 = 7n+ 3
2 ,

f(s2x2) = 2n+ 2
2 + 5n+ 1 + 2

2 = 7n+ 5
2 ,

...

f(snxn) = 3n+ n

2 + 4n+ 1 + n

2 = 9n+ 1
2 ,

f(s2d2) = 2n+ 2
2 + 7n+ 1

2 = 9n+ 3
2 ,

f(x1x2) = 4n+ 1 + 1
2 + 5n+ 1 + 2

2 = 9n+ 5
2 ,

f(x2x3) = 5n+ 1 + 2
2 + 4n+ 1 + 3

2 = 9n+ 7
2 ,

...

f(xn−1xn) = 5n+ 1 + (n− 1)
2 + 4n+ 1 + n

2 = 11n+ 1
2 ,

f(s3d3) = 3n+ 3
2 + 4n = 11n+ 3

2 ,

f(x2b2) = 5n+ 1 + 2
2 + 6n+ 2

2 = 11n+ 5
2 ,

f(x3b3) = 4n+ 1 + 3
2 + 7n+ 3

2 = 11n+ 7
2 ,

...

f(xn−1bn−1) = 5n+ 1 + (n− 1)
2 + 6n+ (n− 1)

2 = 13n− 1
2 .

According to Lemma 1.1 the labeling f can be extended to the super edge-magic
total labeling of G ∼= (Pn ×K2)�K1, for n ≥ 5 with the magic constant 21n+1

2 .
On Figures 1 and 2 are illustrated super edge-magic total labelings of (P1 ×K2)�

K1 ∼= P4 and (P3 ×K2)�K1, respectively.
This concludes the proof.

3 1 4 2

Figure 1. A super edge-magic total labeling of (P1 ×K2)�K1 ∼= P4.

�

4. Conclusion

In this paper we have dealt with the problem of finding super edge-magic deficiency
of graphs. We were trying to find the exact values of super edge-magic deficiencies
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2 11 12

1 10 3

5 4 6

7 9 8

Figure 2. A super edge-magic total labeling of (P3 ×K2)�K1.

of some graphs or to find the upper bound of this parameter for several classes of
graphs.

In Theorem 2.3 we described the upper bound of the super edge-magic deficiency
of prism Dn for n ≡ 0 (mod 4). As it is known, see [4], that for n odd the prism
Dn is super edge-magic. To conclude the problem of finding the super edge-magic
deficiency of prism Dn also for n even, for further investigation we state the following
open problem.
Open Problem. Find the super edge-magic deficiency of prism Dn, for n ≡ 2
(mod 4).
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