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HORADAM SEQUENCE THROUGH RECURRENT
DETERMINANTS OF TRIDIAGONAL MATRICES

TARAS GOY

Abstract. Applying the apparatus of triangular matrices, we proved new recurrent
formulas for Horadam numbers with even (odd) subscripts through determinants of
tridiagonal matrix.

1. Paradeterminant of Triangular Matrix

In this section, we provide basic notions and results about paradeterminants of
triangular matrices that will be used for the proving the main results of the paper.

Definition 1.1. [20] A triangular number table

(1.1) An =



a11
a21 a22
... ... . . .

an−1,1 an−1,2 · · · an−1,n−1
an1 an2 · · · an,n−1 ann


is called a triangular matrix , and the number n is called its order .

Note that a matrix thus defined is not a matrix in the standard sense, because it is
a triangular, rather than a rectangular, table of numbers.

The functions of triangular matrices are widely used in algebra, combinatorics,
number theory, theory of ordinary differential equations, and other branches of math-
ematics (see [4, 14,18–21] for more details and examples).
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Definition 1.2. [20] The paradeterminant of the triangular matrix (1.1), denote by
ddet(An), is the number

ddet(An) =
n∑

r=1

∑
p1+···+pr=n

(−1)n−r
r∏

s=1
{ap1+···+ps, p1+···+ps−1+1},

where the summation is over the set of positive integer solutions of the equality
p1 + · · ·+ pr = n, and {aij} = aij · ai,j+1 · · · aii.

For example,
ddet(A4) = − a41a42a43a44 + a31a32a33a44 + a11a42a43a44 + a21a22a43a44

− a21a22a33a44 − a11a32a33a44 − a11a22a43a44 + a11a22a33a44.

The following formula (decomposition of a paradeterminant by elements of the last
row) holds [20]:

(1.2) ddet(An) =
n∑

s=1
(−1)n−s {ans} ddet(As−1).

For example,
ddet(A4) = − a41a42a43a44 ddet(A0) + a42a43a44 ddet(A1)

− a43a44 ddet(A2) + a44 ddet(A3),
where, by definition, ddet(A0) = 1.

R. Zatorsky and I. Lishchynskyy [22] established the relation between the parade-
terminants and the lower Hessenberg determinants by formula

(1.3) ddet(An) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{a11} 1 0 . . . 0 0
{a21} {a22} 1 . . . 0 0
{a31} {a32} {a33} . . . 0 0

... ... ... . . . ... ...
{an−1,1} {an−1,2} {an−1,3} . . . {an−1,n−1} 1
{an1} {an2} {an3} . . . {an,n−1} {ann}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

2. The Relation Between Horadam Numbers with Even (Odd)
Subscripts and Paradeterminants

For n ≥ 0, the second order linear recurrence sequence hn = hn(a, b; p, q) is defined
by
(2.1) h0 = a, h1 = b, hn+2 = phn+1 − qhn,

where a, b, p, q are integers (q 6= 0), was introduce by A. F. Horadam. The properties
of this sequence were discussed in detail in [1, 2, 5–7,13,15,16].

Sequence (2.1) generalized many well-known number sequences. Examples of such
sequences are the Fibonacci, Lucas, Pell, Jacobsthal, Jacobsthal-Lucas, Pell-Lucas
sequences, and some others sequences.
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Proposition 2.1. For n ≥ 1, the following formula holds:

(2.2) h2n−2 = ddet



a
p
q

h1
1 −q

0 p
q

h3
h0
−q

... ... ... . . .
0 0 0 · · · −q

0 0 0 · · · p
q

h2n−5
h2n−8

−q

0 0 0 · · · 0 p
q

h2n−3
h2n−6

−q


.

For example,

h0 = a,

h2 = ddet
(

a
p
q

h1
1 −q

)
=− aq + bp,

h4 = ddet

 a
p
q

h1
1 −q

0 p
q

h3
h0
−q


= aq2 − bpq + p(bp2 − apq − bq)
= aq2 − 2bpq + bp3 − ap2q,

and so on.

Proof. Expanding the paradeterminant (2.2) by elements of the last raw (see (1.2)),
we have

h2n−2 = (−q)h2n−4 −
p

q
(−q)h2n−3

h2n−6
h2n−6

= ph2n−3 − qh2n−4.

Thus, we obtained the recurrent relation (2.1). �

Proposition 2.2. For n ≥ 1, the following formula holds:

(2.3) h2n−1 = ddet



b
p
q

h2
1 −q

0 p
q

h4
h1
−q

... ... ... . . .
0 0 0 · · · −q

0 0 0 · · · p
q

h2n−4
h2n−7

−q

0 0 0 · · · 0 p
q

h2n−2
h2n−5

−q


.
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For example,

h1 = b,

h3 = ddet
(

b
p
q

h2
1 −q

)
=− bq + p(bp− aq)
=− bq + bp2 − apq,

h5 = ddet

 b
p
q

h2
1 −q

0 p
q

h4
h1
−q


= bq2 − pq(bp− aq) + p(aq2 − 2bpq + bp3 − ap2q)
= bq2 − 3bp2q + 2apq2 + bp4 − ap3q,

and so on.

Proof. The proof is similar to the Proposition 2.1. Indeed, using (1.2), we have

h2n−1 = (−q)h2n−3 −
p

q
(−q)h2n−2

h2n−5
h2n−5

= ph2n−2 − qh2n−3. �

3. Main Results

In this section, we prove new recurrent formulas expressing Horadam numbers hn

with even (odd) subscripts through the determinants of tridiagonal matrix. As a
consequence we obtain the corresponding formulas for Fibonacci numbers.

Theorem 3.1. For n ≥ 1, the following formulas are hold:

(3.1) h2n−2 = 1
n−3∏
i=0

h2i

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 1 0 0 · · · 0 0 0
−ph1 −q 1 0 · · · 0 0 0

0 −ph3 −qh0 h0 · · · 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 · · · −ph2n−5 −qh2n−8 h2n−8
0 0 0 0 · · · 0 −ph2n−3 −qh2n−6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and

(3.2) h2n−1 = 1
n−3∏
i=0

h2i+1

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b 1 0 0 · · · 0 0 0
−ph2 −q 1 0 · · · 0 0 0

0 −ph4 −qh1 h1 · · · 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 · · · −ph2n−4 −qh2n−7 h2n−7
0 0 0 0 · · · 0 −ph2n−2 −qh2n−5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Proof. We prove the formula (3.1). Using (1.3), from (2.2) we have

h2n−2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 1 0 0 · · · 0 0 0
−ph1

1 −q 1 0 · · · 0 0 0
0 −ph3

h0
−q 1 · · · 0 0 0

... ... ... ... . . . ... ... ...
0 0 0 0 · · · −ph2n−5

h2n−8
−q 1

0 0 0 0 · · · 0 −ph2n−3
h2n−6

−q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From this, after obvious transformations we get (3.1).
Formula (3.2) follows from (1.3) and (2.3). �

Corollary 3.1. From (3.1), (3.2), for special choices of a, b, p, q the following formulas
can be obtained:

• Fibonacci numbers Fn = hn(1, 1; 1,−1) (beginning at F1 = 1) with even sub-
scripts:

F2n = 1
F2F4 · · ·F2n−4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0 0
−F3 1 1 0 · · · 0 0 0

0 −F5 F2 F2 · · · 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 · · · −F2n−3 F2n−6 F2n−6
0 0 0 0 · · · 0 −F2n−1 F2n−4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
;

• Fibonacci numbers (beginning at F1 = 1) with odd subscripts:

F2n−1 = 1
F1F3 · · ·F2n−5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0 0
−F2 1 1 0 · · · 0 0 0

0 −F4 F1 F1 · · · 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 · · · −F2n−4 F2n−7 F2n−7
0 0 0 0 · · · 0 −F2n−2 F2n−5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By choosing other suitable values on a, b, p and q, one can also obtain the Lucas,
Pell, Jacobsthal, Jacobsthal-Lucas and Pell-Lucas numbers or polynomials in term of
recurrent determinants of tridiagonal matrix.

Note that determinants of matrices, elements of which are classical or generalized
Fibonacci and Lucas numbers, in particular, studied in [3, 8–12,17].
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