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DISCRETE LOCAL FRACTIONAL HILBERT-TYPE INEQUALITIES

PREDRAG VUKOVIĆ1 AND WENGUI YANG2

Abstract. The main objective of this paper is a study of some new discrete local
fractional Hilbert-type inequalities. We apply our general results to homogeneous
kernels. Also, the obtained results have the best possible constants.

1. Introduction

If f(x), g(x) ≥ 0, such that 0 <
∫+∞

0 f 2(x)dx < +∞ and 0 <
∫+∞

0 g2(x)dx < +∞,
then we have (see [1]):

(1.1)
∫ +∞

0

∫ +∞

0

f(x)g(y)
x + y

dxdy ≤ π
(∫ +∞

0
f 2(x)dx

∫ +∞

0
g2(y)dy

) 1
2

,

where the constant π is the best possible. The inequality (1.1) is well known as
Hilbert’s integral inequality, which is important in mathematical analysis and its
applications.

Over the last ten years, by using the kinds of generalized fractional integral operators,
a great deal of fractional integral inequalities have been presented [2–5]. Recently, local
fractional calculus has caused widespread attention from many scholars, we give basic
definitions and results of the local fractional calculus (see [6–13]). Based on the local
fractal identity and the generalized p-convexity, some novel Newton’s type variants
for the local differentiable functions were obtained in the paper [14]. Sarikaya et al.
[15] established the generalized Grüss type inequality and some generalized Čebyšev
type inequalities for local fractional integrals on fractal sets. Acorrding to the identity
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involving local fractional integrals, Iftikhar et al. [16] presented some new Newton-
type inequalities for functions with the local fractional derivatives. By employing the
local fractional integrals, Akkurt et al. [17] investigated the generalized Ostrowski
type integral inequalities involving moments of continuous random variables. Sarikaya
and Budak [18] gave a generalized Ostrowski inequality and some new inequalities
using the generalized convex function for local fractional integrals on fractal sets.
Based on two local fractional integral operators with Mittag-Leffler kernel, Sun [19]
obtained some Hermite-Hadamard and Hermite-Hadamard-Fejér-type local fractional
integral inequalities for generalized preinvex functions on Yang’s fractal sets.

For the sake of convenience, we recall Yang’s fractal set Ωα, where the set Ω is
called base set of fractional set, and α denotes the dimension of cantor set, 0 < α ≤ 1.
The α-type set of integers Zα is defined by (see [6–8])

Zα := {0α} ∪ {±mα : m ∈ N}.

The α-type set of rational numbers Qα is defined by

Qα := {qα : q ∈ Q} =
{(

m

n

)α

: m ∈ Z, n ∈ N
}

.

The α-type set of irrational numbers Jα is defined by

Jα := {rα : r ∈ J} =
{

rα ̸=
(

m

n

)α

: m ∈ Z, n ∈ N
}

.

The α-type set of real line numbers Rα is defined by

Rα = Qα ∪ Jα.

Some basic operation rules on Rα are presented as follows: If aα, bα, cα ∈ Rα, then
(a1) aα + bα ∈ Rα, aαbα ∈ Rα;
(a2) aα + bα = bα + aα = (a + b)α = (b + a)α;
(a3) aα + (bα + cα) = (a + b)α + cα;
(a4) aαbα = bαaα = (ab)α = (ba)α;
(a5) aα(bαcα) = (aαbα)cα;
(a6) aα(bα + cα) = aαbα + aαcα;
(a7) aα + 0α = 0α + aα = aα and aα1α = 1αaα = aα;
(a8) for each aα ∈ Rα, its inverse element (−aα) may be written as −aα; for each

bα ∈ Rα \ {0α}, its inverse element (1/b)α may be written as 1α/bα but not as
1/bα;

(a9) aα < bα if and only if a < b;
(a10) aα = bα if and only if a = b.

Further, we define the local fractional derivative and integral.

Definition 1.1. A non-differentiable function f(x) is said to be local fractional
continuous at x = x0 if for each ε > 0, there exists for δ > 0 such that

|f(x) − f(x0)| < εα,
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holds for 0 < |x − x0| < δ. If a function f is local continuous on the interval (a, b), we
denote f ∈ Cα(a, b).

Definition 1.2. Let f(x) ∈ Cα[a, b]. Local fractional derivative of the function f(x)
at x = x0 is given by

f (α)(x0) = dαf(x)
dxα

∣∣∣∣∣
x=x0

= lim
x→x0

Γ(1 + α)(f(x) − f(x0))
(x − x0)α

.

Definition 1.3. Let f(x) ∈ Cα[a, b] and let P = {t0, t1, . . . , tN}, N ∈ N, be a partition
of interval [a, b] such that a = t0 < t1 < · · · < tN−1 < tN = b. Further, for this
partition P , let ∆tj = tj+1−tj, j = 0, . . . , N −1, and ∆t = max{∆t1, ∆t2, . . . , ∆tN−1}.
Then the local fractional integral of f on the interval [a, b] of order α (denoted by
aIα

b f(x)) is defined by

aI
(α)
b f(x) = 1

Γ(1 + α)

∫ b

a
f(t)(dt)α = 1

Γ(1 + α) lim
∆t→0

N−1∑
j=0

f(tj)(∆tj)α.

The above definition implies that aI
(α)
b f(x) = 0 if a = b, and aI

(α)
b f(x) = −bI

(α)
a f(x) if

a < b. If for any x ∈ [a, b], there exists aI(α)
x f(x), then we denote by f(x) ∈ I(α)

x [a, b].

At the end of this summary, we give some useful formulas:
(b1) dαxkα

dxα = Γ(1+kα)
Γ(1+(k−1)α)x

(k−1)α, k > 0;
(b2) dαEα((cx)α)

dxα = cαEα((cx)α), where Eα(·) denotes the Mittag-Leffler function
given by Eα(xα) = ∑+∞

k=0
xkα

Γ(1+kα) ;
(b3) If y(x) = (f ◦ g)(x), then dαy(x)

dxα = f (α)(g(x))(g′(x))α;
(b4) 1

Γ(1+α)
∫ b

a Eα(xα)(dx)α = Eα(bα) − Eα(aα);
(b5) 1

Γ(1+α)
∫ b

a xkα(dx)α = Γ(1+kα)
Γ(1+(k+1)α)

(
b(k+1)α − a(k+1)α

)
, k > 0;

(b6) Bα(a, b) = 1
Γ(1+α)

∫+∞
0

xα(b−1)

(1α+xα)a+b (dx)α, where Bα(a, b) denotes local fractional
Beta function.

In this paper, by using the way of weight functions and the technique of local
fractional calculus, a new Hilbert-type discrete inequality with homogeneous kernel
and a best constant is built. As applications, the equivalent form and some particular
cases are obtained.

2. Main Results

The starting point in the researching Hilbert-type inequalities is the well-known
Hölder’s inequality. A fractal version of Hölder’s inequality is presented in the following
lemma.
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Lemma 2.1 ([8]). Let 1/p + 1/q = 1, p > 1, and let (am)m∈N and (bn)n∈N be non-
negative real sequences. Then

n∑
i=1

aα
i bα

i ≤
(

n∑
i=1

aαp
i

) 1
p
(

n∑
i=1

bαq
i

) 1
q

.

If ∑+∞
i=1 aαp

i < +∞ and ∑+∞
i=1 bαq

i < +∞, then the following inequalitiy holds

+∞∑
i=1

aα
i bα

i ≤
(+∞∑

i=1
aαp

i

) 1
p
(+∞∑

i=1
bαq

i

) 1
q

.

In particular, a two-variable version of the fractal Hölder’s inequality is given in
the next lemma.

Lemma 2.2. Let 1/p + 1/q = 1, p > 1, and let h, F, G ∈ Cα(R2
+) be non-negative

functions. If

0 <
+∞∑
m=1

+∞∑
n=1

h(m, n)F p(m, n) < +∞, 0 <
+∞∑
m=1

+∞∑
n=1

h(m, n)Gq(m, n) < +∞,

then the following inequality holds

+∞∑
m=1

+∞∑
n=1

h(m, n)F (m, n)G(m, n) ≤
(+∞∑

m=1

+∞∑
n=1

h(m, n)F p(m, n)
) 1

p

(2.1)

×
(+∞∑

m=1

+∞∑
n=1

h(m, n)Gq(m, n)
) 1

p

.

Proof. The inequality (2.1) is trivially true in the case when h or F or G is identically
zero. Suppose that(+∞∑

m=1

+∞∑
n=1

h(m, n)F p(m, n)
)(+∞∑

m=1

+∞∑
n=1

h(m, n)Gq(m, n)
)

̸= 0.

Applying the following α-Young’s inequality

x
α
p

i y
α
q

i ≤ xα
i

pα
+ yα

i

qα
, xi, yi ≥ 0, and 1

p
+ 1

q
= 1, p > 1,

to

xα := h(m, n)F p(m, n)∑+∞
m=1

∑+∞
n=1 h(m, n)F p(m, n)

and

yα := h(m, n)Gq(m, n)∑+∞
m=1

∑+∞
n=1 h(m, n)Gq(m, n) ,
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we can obtain
[h(m, n)]

1
p F (m, n) [h(m, n)]

1
q G(m, n)(∑+∞

m=1
∑+∞

n=1 h(m, n)F p(m, n)
) 1

p
(∑+∞

m=1
∑+∞

n=1 h(m, n)Gq(m, n)
) 1

p

≤ 1
pα

· h(m, n)F p(m, n)∑+∞
m=1

∑+∞
n=1 h(m, n)F p(m, n) + 1

qα
· h(m, n)Gq(m, n)∑+∞

m=1
∑+∞

n=1 h(m, n)Gq(m, n) .

Summarizing both side of the obtained inequality, we have∑+∞
m=1

∑+∞
n=1 h(m, n)F (m, n)G(m, n)(∑+∞

m=1
∑+∞

n=1 h(m, n)F p(m, n)
) 1

p
(∑+∞

m=1
∑+∞

n=1 h(m, n)Gq(m, n)
) 1

p

≤ 1
pα

·
∑+∞

m=1
∑+∞

n=1 h(m, n)F p(m, n)∑+∞
m=1

∑+∞
n=1 h(m, n)F p(m, n) + 1

qα
·
∑+∞

m=1
∑+∞

n=1 h(m, n)Gq(m, n)∑+∞
m=1

∑+∞
n=1 h(m, n)Gq(m, n)

= 1
pα

+ 1
qα

= 1α.

This directly gives the desired inequality (2.1). The proof is completed. □

Besides, we introduce the following notation and definition (see [21]).

Definition 2.1. Let f : I ⊆ R → Rα. If the following inequality
(2.2) f(λx1 + (1 − λ)x2) ≤ λαf(x1) + (1 − λ)αf(x2)
holds, for any x1, x2 ∈ I and λ ∈ [0, 1], then f is said to be a generalized convex
function on I.

Mo et al. [21] proved the following generalized Hermite-Hadamard inequality for
local fractional integral. Let f ∈ I(α)

x [a, b] be a generalized convex function on [a, b]
with a < b. Then

(2.3) f

(
a + b

2

)
≤ Γ(1 + α)

(b − a)α aI
(α)
b f ≤ f(a) + f(b)

2α
.

Applying above inequality we can prove next lemma.

Lemma 2.3. If f ∈ I(α)
x (R+), f (α)(t) < 0, f (2α)(t) > 0, t ∈ (1/2, +∞), then we have

(2.4) 1
Γ(1 + α)

∫ +∞

1
f(t)(dt)α ≤ 1

Γ(1 + α)

+∞∑
n=1

f(n) ≤ 1
Γ(1 + α)

∫ +∞

1
2

f(t)(dt)α.

Proof. Setting a = n − 1
2 , b = n + 1

2 , the generalized Hermite-Hadamard inequality
(2.3) yields

(2.5) f(n)
Γ(1 + α) ≤ 1

Γ(1 + α)

∫ n+ 1
2

n− 1
2

f(t)(dt)α.

Similarly, for a = n, b = n + 1, from (2.3) we get

(2.6) 1
Γ(1 + α)

∫ n+1

n
f(t)(dt)α ≤ f(n)

Γ(1 + α) .
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Now, from (2.5) and (2.6) we obtain

1
Γ(1 + α)

∫ n+1

n
f(t)(dt)α ≤ f(n)

Γ(1 + α) ≤ 1
Γ(1 + α)

∫ n+ 1
2

n− 1
2

f(t)(dt)α.

Furthermore, we can obtain
+∞∑
n=1

1
Γ(1 + α)

∫ n+1

n
f(t)(dt)α = 1

Γ(1 + α)

∫ +∞

1
f(t)(dt)α

≤ 1
Γ(1 + α)

+∞∑
n=1

f(t) ≤
+∞∑
n=1

1
Γ(1 + α)

∫ n+ 1
2

n− 1
2

f(t)(dt)α = 1
Γ(1 + α)

∫ +∞

1
2

f(t)(dt)α,

which implies (2.4) holds. This completes the proof. □

Suppose that r > 0 and K(x, y) is strictly decreasing and generalized convex
function in both variables on R+. Using chain rule for local fractional derivative (the
formula (b3) from Introduction) yields

∂α

∂xα
K(x, n)x−αr = 1

xαr
· ∂α

∂xα
[K(x, n)] − Γ(1 + rα)

Γ(1 + (r − 1)α) · K(x, n)
xα(r+1) < 0

and
∂2α

∂x2α
K(x, n)x−αr = 1

xαr
· ∂2α

∂x2α
[K(x, n)] − Γ(1 + rα)

Γ(1 + (r − 1)α) · K(x, n)
xα(r+1)

× ∂α

∂xα
[K(x, n)] > 0,

for x > 0 and n ∈ N. In this way (see also [22], Corollary 1) we obtain the following
result.

Lemma 2.4. Let r > 0, m, n ∈ N, and K(x, y) be strictly decreasing and generalized
convex function in both variables on R+. Then

K(m, y)y−αr and K(x, n)x−αr

are strictly decreasing and generalized convex function on R+.

In what follows we suppose that K ∈ Cα(R2
+) is a non-negative homogeneous

function of degree −αs, s > 0. Further, we define

(2.7) k(β) = 1
Γ(1 + α)

∫ +∞

1
K(1, t)t−αβ(dt)α,

under assumption k(β) < +∞.
To prove our main results we need some technical lemma.

Lemma 2.5. Let 1/p + 1/q = 1, p > 1, and let K ∈ Cα(R2
+) be a non-negative

homogeneous function of degree −αs, s > 0. If K is strictly decreasing and generalized
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convex function in both variables on R+, then

ωm(pA2) :=
+∞∑
n=1

K(m, n)
(

m

n

)αpA2

≤ Γ(1 + α)mα(1−s)k(pA2)(2.8)

and

ωn(qA1) :=
+∞∑
n=1

K(m, n)
(

n

m

)αqA1

≤ Γ(1 + α)nα(1−s)k(2 − s − qA1),(2.9)

where A1 ∈ (max{(1 − s)/q, 0}, 1/q) and A2 ∈ (max{(1 − s)/p, 0}, 1/p).

Proof. Applying Lemma 2.2 and Lemma 2.4 we get

ωm(pA2) ≤ Γ(1 + α) 1
Γ(1 + α)

∫ +∞

0
K(m, x)

(
x

m

)−αpA2

(dx)α.

Further, using homogeneity of function K and substituting u = x/m, we have

ωm(pA2) ≤ Γ(1 + α)mα(1−s) 1
Γ(1 + α)

∫ +∞

0
K(1, u)u−αpA2(du)α

= Γ(1 + α)mα(1−s)k(pA2),

which implies (2.8), where we used the definition of k(β) in equation (2.7). Similarly,
we obtain (2.9). □

The main results are stated below.

Theorem A. Let 1/p + 1/q = 1, p > 1, and let (am)m∈N and (bn)n∈N be non-negative
real sequences. If K(x, y), A1, A2 are defined as in Lemma 2.5, then the following
inequalities hold and are equivalent

I :=
+∞∑
m=1

+∞∑
n=1

K(m, n)aα
mbα

n ≤L

(+∞∑
m=1

mα(1−s)+αp(A1−A2)aαp
m

) 1
p

(2.10)

×
(+∞∑

n=1
nα(1−s)+αq(A2−A1)bαq

n

) 1
q

and

J :=
(+∞∑

n=1
nα(s−1)(p−1)+αp(A1−A2)

(+∞∑
m=1

K(m, n)aα
m

)p) 1
p

(2.11)

≤L

(+∞∑
m=1

mα(1−s)+αp(A1−A2)aαp
m

) 1
p

,

where L = Γ(1 + α)k(pA2)1/pk(2 − s − qA1)1/q.
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Proof. By using the local fractional Hölder’s inequality (2.1), we have

I =
+∞∑
m=1

+∞∑
n=1

K(m, n) aα
m

mαA1

nαA2
bα

n

nαA2

mαA1

≤
(+∞∑

m=1

+∞∑
n=1

K(m, n)mαpA1

nαpA2
aαp

m

) 1
p
(+∞∑

m=1

+∞∑
n=1

K(m, n) nαqA2

mαqA1
bαq

n

) 1
q

=
(+∞∑

m=1

(+∞∑
n=1

K(m, n)
(

m

n

)αpA2
)

mαp(A1−A2)aαp
m

) 1
p

=
(+∞∑

n=1

(+∞∑
m=1

K(m, n)
(

n

m

)αqA1
)

nαq(A2−A1)bαq
n

) 1
q

.

Now, from Lemma 2.5, we get the inequality (2.10).
We suppose that the inequality (2.10) is valid. To obtain (2.11), we set

bα
n := nα(s−1)(p−1)+αp(A1−A2)

(+∞∑
m=1

K(m, n)aα
m

)p−1

.

It follows that

Jp =
+∞∑
n=1

nα(1−s)+αq(A2−A1)bαq
n .

By using the inequality (2.10), we have
+∞∑
n=1

nα(s−1)(p−1)+αp(A1−A2)
(+∞∑

m=1
K(m, n)aα

m

)p

= Jp = I

≤L

(+∞∑
m=1

mα(1−s)+αp(A1−A2)aαp
m

) 1
p
(+∞∑

n=1
nα(1−s)+αq(A2−A1)bαq

n

) 1
q

,

which implies the inequality (2.11) holds. By using the two dimensional Hölder’s
inequality in Lemma 2.1, we have

I =
+∞∑
n=1

(
nα(s−1) 1

q
+α(A1−A2)

(+∞∑
m=1

K(m, n)aα
m

))
nα(1−s) 1

q
+α(A2−A1)bα

n

≤J

(+∞∑
n=1

nα(1−s)+αq(A2−A1)bαq
n

) 1
q

.

From (2.11) and the above inequality, we have (2.10). Therefore, the inequalities
(2.11) and (2.10) are equivalent. □

Now, we consider some special choises of the parameters A1 and A2. More precisely,
let the parameters A1 and A2 satisfy condition

(2.12) pA2 + qA1 = 2 − s.
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Then, the constant L from Theorem A becomes
(2.13) L∗ = Γ(1 + α)k(pA2).
Further, the inequalities (2.10) and (2.11) take form

+∞∑
m=1

+∞∑
n=1

K(m, n)aα
mbα

n ≤ L∗
(+∞∑

m=1
m−α+αpqA1aαp

m

) 1
p
(+∞∑

n=1
n−α+αpqA2bαq

n

) 1
q

(2.14)

and (+∞∑
n=1

nα(p−1)(1−pqA2)
(+∞∑

m=1
K(m, n)aα

m

)p) 1
p

≤ L∗
(+∞∑

m=1
m−α+αpqA1aαp

m

) 1
p

.(2.15)

In the following theorem we show that, if the parameters A1 and A2 satisfy condition
(2.12), then one obtains the best possible constant.

Theorem B. Let s, A1, A2 and K(x, y) be defined as in Theorem A. If the parameters
A1 and A2 satisfy condition pA2 +qA1 = 2−s, then the constant L∗ = Γ(1+α)k(pA2)
in inequalities (2.14) and (2.15) is the best possible.

Proof. For this purpose, set ãα
m = m−αqA1− αε

p and b̃α
n = n−αpA2− αε

q where 0 < ε <
1−pA2

q
. Now, let us suppose that the inequality (2.14) is valid. By using Lemma 2.2,

we have
1

Γ(1 + α)εα
= 1

Γ(1 + α)

∫ +∞

1
u−α−αε(du)α ≤ 1

Γ(1 + α)

+∞∑
m=1

m−α−αε

= 1
Γ(1 + α)

+∞∑
m=1

m−α+αpqA1 ãαp
m

≤ 1
Γ(1 + α)

∫ +∞

1
2

u−α−αε(du)α + 1
Γ(1 + α)

∫ +∞

1
u−α−αε(du)α.

Hence, we obtain

(2.16) 1
Γ(1 + α)

+∞∑
m=1

m−α+αpqA1 ãαp
m ≤ 1

εαΓ(1 + α) + O(1),

and similarly

(2.17) 1
Γ(1 + α)

+∞∑
m=1

n−α+αpqA2 b̃αq
n ≤ 1

εαΓ(1 + α) + O(1).

Suppose that the constant L∗, defined by (2.13), is not the best possible in inequality
(2.14). That implies that there exits constant M, smaller than L∗, such that the
inequality (2.14) is still valid if we replace L∗ with M. Hence, if we insert relations
(2.16) and (2.17) in inequality (2.14), with the constant M instead of L∗, we have

(2.18)
+∞∑
m=1

+∞∑
n=1

K(m, n)ãα
mb̃α

n ≤ 1
εα

(M + o(1)).
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Further, we estimate the left-hand side of inequality (2.14). Namely, if we insert the
above defined sequences (ãα

m)m∈N and (b̃α
n)n∈N in the left-hand side of (2.14), we easily

obtain the inequality

Jε := 1
Γ2(1 + α)

+∞∑
m=1

+∞∑
n=1

K(m, n)ãα
mb̃α

n

(2.19)

≥ 1
Γ(1 + α)

∫ +∞

1
x−αqA1− αε

p

(
1

Γ(1 + α)

∫ +∞

1
K(x, y)y−αpA2− αε

q (dy)α

)
(dx)α,

where we used Lemma 2.2. By using the substitution u = y/x, we obtain

(2.20) Jε ≥ 1
Γ(1 + α)

∫ +∞

1
x−α−αε

(
1

Γ(1 + α)

∫ +∞

1
x

K(1, u)u−αpA2− αε
q (du)α

)
(dx)α.

Further, since the kernel K is strictly decreasing in both variables, it follows that
K(1, 0) > K(1, t), for t > 0, so we have

1
Γ(1 + α)

∫ +∞

1
x

K(1, u)u−αpA2− αε
q (du)α

>
1

Γ(1 + α)

∫ +∞

0
K(1, u)u−αpA2− αε

q (du)α − K(1, 0)
Γ(1 + α)

∫ 1
x

0
K(1, u)u−αpA2− αε

q (du)α

=k

(
pA2 + ε

q

)
− K(1, 0)

Γ(1 + α)(1 − pA2 − ε
q
)α

xαpA2+ αε
q

−α

and, consequently,

(2.21) Jε ≥ 1
εα

·
k
(
pA2 + ε

q

)
Γ(1 + α) + K(1, 0)

Γ2(1 + α) · 1
(1 − pA2 − ε

q
)α(pA2 − ε

p
− 1)α

.

Now, the relations (2.19), (2.20) and (2.21) yield the estimate for the left-hand side
of inequality (2.14):

(2.22)
+∞∑
m=1

+∞∑
n=1

K(m, n)ãα
mb̃α

n >
1
εα

(L∗ + o(1)).

Finally, by comparing (2.18) and (2.22), and by letting ε −→ 0+, we get that L∗ ≤ M,
which contradicts with the assumption that the constant M is smaller than L∗.

The equivalence of inequalities (2.14) and (2.15) means that the constant L∗ is the
best possible in the inequality (2.15). The proof is now completed. □

As corollaries of Theorem B we have the following results. We processed with the
kernel K1(x, y) = (x + y)−αs, s > 0. By using local fractional calculus, we have

∂α

∂xα
· 1

(m + x)αs
= − Γ(1 + sα)

Γ(1 + (s − 1)α) · 1
(m + x)α(s+1) < 0, x > 0,
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and similarly
∂2α

∂x2α
· 1

(m + x)αs
= Γ(1 + (s + 1)α)

Γ(1 + (s − 1)α) · 1
(m + x)α(s+2) > 0, x > 0.

Now, by applying Lemma 2.4 we obtain
∂α

∂xα
K1(x, y)x−αr < 0 and ∂2α

∂x2α
K1(x, y)x−αr > 0

and
∂α

∂yα
K1(x, y)y−αr < 0 and ∂2α

∂y2α
K1(x, y)y−αr > 0,

for r > 0.
In what follows we suppose that

(2.23) A1 = 2 − s

2q
, A2 = 2 − s

2p
.

Then, based on equation (2.23), the constant L∗ from Theorem B becomes

L∗ =Γ(1 + α)k(pA2) = Γ(1 + α)k
(

1 − s

2

)
=Γ(1 + α) 1

Γ(1 + α)

∫ +∞

0

u−α− αs
2

(1 + u)αs
(du)α = Γ(1 + α)Bα

(
s

2 ,
s

2

)
.

Now, from Theorem B, we get the following result.

Corollary 2.1. Let 1/p + 1/q = 1, p > 1, 0 < s < 2, and (am)m∈N and (bn)n∈N be
non-negative real sequences. Then the following inequalities hold and are equivalent

+∞∑
m=1

+∞∑
n=1

aα
mbα

n

(m + n)αs
≤Γ(1 + α)Bα

(
s

2 ,
s

2

)

×
(+∞∑

m=1
mαp(1− s

2 )−αaαp
m

) 1
p
(+∞∑

n=1
nαp(1− s

2 )−αbαq
n

) 1
q

and(+∞∑
n=1

n
αps

2 −α

(+∞∑
m=1

aα
m

(m + n)αs

)p) 1
p

≤Γ(1 + α)Bα

(
s

2 ,
s

2

)(+∞∑
m=1

mαp(1− s
2 )−αaαp

m

) 1
p

,

where the constant Γ(1 + α)Bα(s/2, s/2) is the best possible.

3. Conclusion

In this paper, we have firstly obtained a fractal Hölder’s inequality and some related
inequalities. According to the basic results, some new discrete local fractional Hilbert-
type inequalities have been investigated. At the same time, some new fractional
Hilbert-type inequalities with homogeneous kernels have been given.
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