
Kragujevac Journal of Mathematics
Volume 49(5) (2025), Pages 781–792.

THE GLOBAL BEHAVIOR OF A SECOND ORDER
EXPONENTIAL DIFFERENCE EQUATION

VAHIDIN HADŽIABDIĆ1, JASMIN BEKTEŠEVIĆ1, AND MIDHAT MEHULJIĆ1

Abstract. In this paper we present the Julia set and the global behavior of an
exponential second order difference equation of the type

xn+1 = axn−1 + bxn−1 exp (cxn−1 + cxn) ,

where a ≥ 0, b > 0 and c > 0 with non-negative initial conditions.

1. Introduction

In general, difference equations and systems of difference equations in exponential
forms have numerous applications in biology, more precisely, they can be used to
discuss population model. One of the most simple results on exponential difference
equation have been obtained in [8] for the equation of type

xn+1 = xn exp (r (1 − xn)) ,
known as Ricker’s equation, which describes a population with a propensity to simple
exponential growth at low densities and tendency to decrease at high densities. In
[9] the qualitative behavior of the exponential second order difference equation of the
two-dimensional population model

xn+1 = a+ bxn−1 exp (−xn)
is completely investigated and described. In [14] we can find results about boundedness
and asymptotic behavior of the positive solution for the difference equation of type

xn+1 = a+ bxn exp (−xn−1) ,
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where a and b are positive constants and the initial values x−1, x0 are nonnegative
real numbers. In [11] are given the conditions for the global behavior of the positive
solutions for the difference equation

xn+1 = axn + bxn−1 exp (−xn) ,

where a and b are positive real numbers with positive initial conditions x−1, x0. The
global stability and bounded nature of the positive solutions of the difference equation

xn+1 = a+ bxn−1 + cxn−1 exp (−xn)

are investigated in [10]. In [7] have been obtained results for the local stability of equi-
libria, parametric conditions for transcritical bifurcation, period-doubling bifurcation
and Neimark-Sacker bifurcation of the following second-order difference equation

xn+1 = αxn + βxn−1 exp (−σxn−1) ,

where the initial conditions satisfy x−1 > 0, x0 > 0 and α, β and σ are the positive
constants. In this paper we will present very unusual results for exponential second
order difference equations. Our results are based on the theorems which hold for
monotone difference equations. Our principal tool is the theory of monotone maps,
and in particular cooperative maps, which guarantee the existence and uniqueness of
the stable and unstable invariant manifolds for the fixed points and periodic points
(see [5]). Consider the difference equation

(1.1) xn+1 = f(xn, xn−1), n = 0, 1, . . . ,

where f is a continuous and increasing function in both variables. The following result
has been obtained in [1].

Theorem 1.1. Let I ⊆ R and let f ∈ C[I × I, I] be a function which increases
in both variables. Then for every solution of (1.1) the subsequences {x2n}∞

n=0 and
{x2n+1}∞

n=−1 of even and odd terms of the solution do exactly one of the following.
(i) Eventually they are both monotonically increasing.

(ii) Eventually they are both monotonically decreasing.
(iii) One of them is monotonically increasing and the other is monotonically de-

creasing.

As a consequence of Theorem 1.1 every bounded solution of (1.1) approaches
either an equilibrium solution or period-two solution and every unbounded solution
is asymptotic to the point at infinity in a monotonic way. Thus the major problem in
dynamics of (1.1) is the problem how to determine the basins of attraction of three
different types of attractors: the equilibrium solutions, minimal period-two solution(s)
and the point(s) at infinity. The following result can be proved by using the techniques
of proof of Theorem 11 in [5].
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Theorem 1.2. Consider (1.1) where f is increasing function in its arguments and
assume that there is no minimal period-two solution. Assume that E1(x1, y1) and
E2(x2, y2) are two consecutive equilibrium points in North-East ordering that satisfy

(x1, y1) ⪯ne (x2, y2)

and that E1 is a local attractor and E2 is a saddle point or a non-hyperbolic point
with second characteristic root in interval (−1, 1), with the neighborhoods where f is
strictly increasing. Then the basin of attraction B(E1) of E1 is the region below the
global stable manifold Ws(E2). More precisely

B(E1) = {(x, y) : exists yu : y < yu, (x, yu) ∈ Ws(E2)}.

The basin of attraction B(E2) = Ws(E2) is exactly the global stable manifold of E2.
The global stable manifold extend to the boundary of the domain of (1.1). If there
exists a period-two solution, then the end points of the global stable manifold are exactly
the period-two solution.

Now, the theorems that are applied in [5] provided the two continuous curves
Ws (E2) (stable manifold) and Wu (E2) (unstable manifold), both passing through
the point E2(x2, y2) from Theorem 1.2, such that Ws (E2) is a graph of decreasing
function and Wu (E2) is a graph of an increasing function. The curve Ws (E2) splits
the first quadrant of initial conditions into two disjoint regions, but we do not know
the explicit form of the curve Ws (E2). In this paper we investigate the following
difference equation

(1.2) xn+1 = axn−1 + bxn−1 exp (cxn−1 + cxn) ,

where a ≥ 0, b > 0 and c > 0 with non-negative initial conditions, that has infinitely
many period-two solutions and we expose the explicit form of the curve that separates
the first quadrant into two basins of attraction of a locally stable equilibrium point
and of the point at infinity. One of the major problems in the dynamics of monotonic
maps is determining the basin of attraction of the point at infinity and in particular
the boundary of the that basin known as the Julia set. We precisely determined the
Julia set of (1.2) and we obtained the global dynamics in the interior of the Julia set,
which includes all the points for which solutions are not asymptotic to the point at
infinity. It turned out that the Julia set for (1.2) is the union of the stable manifolds of
some saddle equilibrium points, nonhyperbolic equilibrium points or period-two points.
We first list some results needed for the proofs of our theorems. The main result for
studying local stability of equilibria is linearized stability theorem (see Theorem 1.1
in [12]).

Theorem 1.3 (Linearized stability). Consider the difference equation

(1.3) xn+1 = f(xn, xn−1)
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and let x̄ be an equilibrium point of difference equation (1.3) . Let p = ∂f(x̄,x̄)
∂u

and
q = ∂f(x̄,x̄)

∂v
denote the partial derivatives of f(u, v) evaluated at the equilibrium x̄. Let

λ1 and λ2 roots of the quadratic equation λ2 − pλ− q = 0.
a) If |λ1| < 1 and |λ2| < 1, then the equilibrium x̄ is locally asymptotically stable

(sink).
b) If |λ1| > 1 or |λ2| > 1, then the equilibrium x̄ is unstable.
c) |λ1| < 1 and |λ2| < 1 ⇔ |p| < 1 − q < 2. Equilibrium x̄ is a sink.
d) |λ1| > 1 and |λ2| > 1 ⇔ |q| > 1 and |p| < |1 − q|. Equilibrium x̄ is a repeller.
e) |λ1| > 1 and |λ2| < 1 ⇔ |p| > |1 − q|. Equilibrium x̄ is a saddle point.
f) |λ1| = 1 or |λ2| = 1 ⇔ |p| = |1 − q| or q = −1 and |p| ≤ 2. Equilibrium x̄ is

called a non-hyperbolic point.

The next theorem (Theorem 1.4.1. in [6]) is a very useful tool in establishing bounds
for the solutions of nonlinear equations in terms of the solutions of equations with
known behaviour.

Theorem 1.4. Let I be an interval of real numbers, let k be a positive integer, and
let F : Ik+1 → I be a function which is increasing in all its arguments. Assume that
{xn}∞

n=−k, {yn}∞
n=−k and {zn}∞

n=−k are sequences of real numbers such that

xn+1 ≤F (xn, . . . , xn−k), n = 0, 1, . . . ,
yn+1 =F (yn, . . . , yn−k), n = 0, 1, . . . ,
zn+1 ≥F (zn, . . . , zn−k), n = 0, 1, . . .

and
xn ≤ yn ≤ zn, for all − k ≤ n ≤ 0.

Then
xn ≤ yn ≤ zn, for all n > 0.

2. Main Results

By using Theorem 1.3, we obtained the following result on local stability of the
zero equilibrium of (1.2).

Proposition 2.1. The zero equilibrium of (1.2) is one of the following:
a) locally asymptotically stable if a+ b < 1;
b) non-hyperbolic a+ b = 1;
c) unstable if a+ b > 1.

Set f (x, y) = ay + by exp (cy + cx) and let p = ∂f(x̄,x̄)
∂x

and q = ∂f(x̄,x̄)
∂y

denote the
partial derivatives of f(x, y) evaluated at the equilibrium x̄. The linearized equation
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at the positive equilibrium x̄ is
zn+1 =pzn + qzn−1,

p =bcx̄ exp (2cx̄) ,
q =a+ b (1 + cx̄) exp (2cx̄) .

Now, in view of Theorem 1.3 we obtain the following results on local stability of the
positive equilibrium of (1.2).
Proposition 2.2. The positive equilibrium of (1.2) is one of the following:

a) locally asymptotically stable if p+ q < 1;
b) non-hyperbolic if p+ q = 1 or q − p = 1;
c) unstable if p+ q > 1;
d) saddle point if p > |q − 1|;
e) repeller if 1 − q < p < q − 1.

Theorem 2.1. If a ≥ 1 or b ≥ 1 or a + b > 1, then every solution {xn} of (1.2)
satisfies lim

n→∞
xn = ∞.

Proof. Let be a ≥ 1 or b ≥ 1, then a+ b > 1. If {xn} is a solution of (1.2), then {xn}
satisfies the inequality

xn+1 =axn−1 + bxn−1 exp (cxn−1 + cxn)
≥axn−1 + bxn−1 = (a+ b)xn−1, n = 0, 1, . . . ,

which in view of the result on difference inequalities, see Theorem 1.4, implies that
xn ≥ yn, n ≥ 1, where {yn} is a solution of the initial value problem

yn+1 = (a+ b) yn−1, y−1 = x−1 and y0 = x0, n = 0, 1, . . .
Consequently, if x0, x−1 > 0, then y0, y−1 > 0, yn ≥ 0 for all n, and

xn ≥ yn = λ1
√
a+ b

n + λ2
(
−

√
a+ b

)n
, n = 1, 2, . . . ,

where λ1, λ2 ∈ R such that yn ≥ 0 for all n, which implies lim
n→∞

xn = ∞. □

Theorem 2.2. Consider the difference equation (1.2) in the first quadrant of initial
conditions, where a, b, c > 0 and a + b < 1. Then (1.2) has a zero equilibrium and
a unique positive equilibrium x̄+ = 1

2c
ln 1−a

b
. The line b exp (cy + cx) = 1 − a is the

Julia set and separates the first quadrant into two regions: the region below the given
line is the basin of attraction of point E0(0, 0), the region above the line is the basin
of attraction of the point at infinity and every point on the line except E+(x̄+, x̄+) is
a period-two solution of (1.2).
Proof. The equilibrium points of (1.2) are the solutions of equation

x (a+ b exp (2cx)) = x,

that is equivalent to
(2.1) x (b exp (2cx) + a− 1) = 0,
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which implies that (2.1) has two equilibria: zero equilibrium and unique positive
equilibrium x̄+. Since a+b < 1, then by applying Proposition (2.1) the zero equilibrium
is locally asymptotically stable. Denote by f (x, y) = ay + by exp (cx+ cy) and let p
and q denote the partial derivatives of function f (x, y) at point E+. By straightforward
calculation we obtain that the following hold:

p+ q = a+ b (1 + 2cx̄) exp (2cx̄)

= a+ b (1 + 2cx̄) 1 − a

b
= 1 + 2c (1 − a) x̄ > 1,

q − p = a+ b exp (2cx̄) = a+ b · 1 − a

b
= 1.

Hence, by applying Proposition 2.2 the positive equilibrium is an unstable non-
hyperbolic point. Period-two solution u, v satisfies the system

u = (a+ b exp (cu+ cv))u,
v = (a+ b exp (cu+ cv)) v.

Obviously, the point (0, 0) is solution of the system above, but it is not minimal
period-two solution. Hence, it has to be v > 0 which implies a+ b exp (cu+ cv) = 1.
Therefore, every point of the set {(x, y) : a + b exp (cx+ cy) = 1} is a period-two
solution of (1.2) except point E+. Clearly, the curve g (x, y) = a+ b exp (cx+ cy) = 1
is a graph of the decreasing function in the first quadrant, more precisely that is line
y = −x+ 1

c
ln 1−a

b
. Let {xn} be a solution of (1.2) for initial condition (x0, x−1) which

lies below the line g (x, y) = 1. Then
g (x0, x−1) = a+ b exp (cx0 + cx−1) < 1,

xn+1 = g (xn, xn−1)xn−1

and
x1 =g (x0, x−1)x−1 < x−1,

x2 =g (x1, x0)x0 < g (x−1, x0)x0 = g (x0, x−1)x0 < x0.

Thus (x2, x1) and (x0, x−1) are two points in North-East ordering (x2, x1) ≤ne

(x0, x−1) which means that the point (x2, x1) is also below the curve g (x, y) = 1 and
also holds

g (x2, x1) < 1.
Similarly we find

x3 =g (x2, x1)x1 < x1,

x4 =g (x3, x2)x2 < g (x1, x2)x2 = g (x2, x1)x2 < x2.

Continuing on this way we get
(0, 0) ≤ne · · · ≤ne (x4, x3) ≤ne (x2, x1) ≤ne (x0, x−1),

which implies that both subsequences {x2n} and {x2n+1} are monotonically decreasing
and bounded below by 0. Since below the line g (x, y) = 1 there are no period-two
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solutions it must be x2n → 0 and x2n+1 → 0. On the other hand, if we consider solution
{xn} of (1.2) for initial condition (x0, x−1) which lies above the line g (x, y) = 1 then
g (x0, x−1) > 1 and by applying the method shown above we obtain the following
condition:

(x−1, x0) ≤ne (x1, x2) ≤ne (x3, x4) ≤ne · · ·
Therefore, both subsequences {x2n} and {x2n+1} are monotonically increasing, hence
x2n → ∞ and x2n+1 → ∞ as n → ∞. □

Figure 1 is visual illustration of Theorem 2.2 obtained by using Mathematica 9.0,
with the boundaries of the basins of attraction obtained by using the software package
Dynamica [6].

Figure 1. Case: a = 1 − e−2, b = e−3, c = 1
2

Theorem 2.3. Consider the difference equation (1.2), where a + b = 1 and initial
conditions x−1, x0 ≥ 0 such that x2

−1 + x2
0 ≠ 0. Then (1.2) has an unique zero

equilibrium and every solution {xn} of (1.2) satisfies lim
n→∞

xn = ∞.

Proof. Assume that a + b = 1 and {xn} is a solution of (1.2). Since x2
−1 + x2

0 ≠ 0,
then exp (cxn−1 + cxn) > 1, which implies exp (cxn−1 + cxn) = 1 + αn, where αn > 0
for all n ∈ N. Then {xn} satisfies the inequality

xn+1 = xn−1 (a+ b exp (cxn−1 + cxn))
≥ xn−1 (a+ b (1 + αn))
= xn−1 (a+ b+ bαn) = xn−1 (1 + bαn)
> xn−1,
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which implies that both subsequences {x2n} and {x2n+1} are monotonically increasing.
Since there is no positive equilibrium point or period-two solution of (1.2) by applying
Theorem 1.1 the both subsequences {x2n} and {x2n+1} approache the point at infinity.

□

Now, consider the difference equation of type
(2.2) xn+1 = Axn−1 +Bxn−1 exp (Cxn−1 +Dxn)
in the first quadrant of initial conditions, where the given parameters satisfy conditions
A > 0, B > 0, C > 0, D > 0 and A + B < 1. It is easy to show that (2.2) has two
equilibria: zero equilibrium and unique positive equilibrium x̄+ = 1

C+D
ln 1−A

B
.

Proposition 2.3. The zero equilibrium of (2.2) is always locally asymptotically stable.
The positive equilibrium x̄+ = 1

C+D
ln 1−A

B
of (2.2) is one of the following:

a) non-hyperbolic if C = D (or q − p = 1);
b) saddle point if C < D (or p > |q − 1|);
c) repeller if C > D (or p < |1 − q|).

Proof. Denote by g (x, y) = Ay+By exp (Cy +Dx) and let p and q denote the partial
derivatives of function g (x, y) at equilibrium point x of (2.2). By straightforward
calculation we obtain that the following hold:

p (x, x) = BDx exp ((C +D)x) ,
q (x, x) = A+B (1 + Cx) exp ((C +D)x) .

Hence, if x = 0, then p (0, 0) = 0 and q (0, 0) = A+B ∈ (0, 1) which implies |p| <
1 − q < 2, so by applying Theorem 1.3 the zero equilibrium is locally asymptotically
stable. If x = x̄+, then p (x̄+, x̄+) = (1−A)D

C+D
ln 1−A

B
= (1 − A)Dx̄+ > 0 and

q (x̄+, x̄+) = 1 + (1 − A)C
C +D

ln 1 − A

B
= 1 + (1 − A)Cx̄+ > 1.

Clearly, |p| + q = p+ q > q > 1, which implies, by applying Theorem 1.3, the positive
equilibrium x̄+ is an unstable. Since A ∈ (0, 1) and

q − p = 1 + (1 − A) (C −D) x̄+,

which yields
C = D ⇒ q − p = 1 ⇔ p = q − 1 ⇔ |p| = |1 − q| ,
C > D ⇒ q − p > 1 ⇔ p < q − 1 ⇔ |p| < |1 − q| ,
C < D ⇒ q − p < 1 ⇔ p > q − 1 ⇔ |p| > |1 − q| .

The rest of proof following from Theorem 1.3. □

Proposition 2.4. (2.2) has prime period-two solution
{
P1
(
0, 1

C
ln 1−A

B

)
,

P2
(

1
C

ln 1−A
B
, 0
)}

. If C > D, then period-two solution is saddle and if C < D,
then the period-two solution is repeller.
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Proof. Assume that (ϕ, ψ) is a prime period-two solution of (2.2) and 0 ≤ ϕ < ψ.
Then

ϕ = Aϕ+Bϕ exp (Cϕ+Dψ) ,(2.3)
ψ = Aψ +Bψ exp (Cψ +Dϕ) .

If ϕ = 0, then ψ = 1
C

ln 1−A
B

. Let ϕ > 0. From system (2.3) we find that

(C −D) (ϕ− ψ) = 0,

which implies C = D (ϕ ̸= ψ), this case has already been considered. Set un = xn−1
and vn = xn and write (2.2) in the equivalent form:

un+1 = vn,

vn+1 = Aun +Bun exp (Cun +Dvn) .

Let T be the function on [0,∞) × [0,∞) defined by

T (u, v) = (v,Au+Bu exp (Cu+Dv)) .

Then (ϕ, ψ) is a fixed point of T 2, the second iterate of T . Furthermore,

T 2 (u, v) = T (T (u, v))
= (Au+Bu exp (Cu+Dv) , Av +Bv exp (Cv +D (Au+Bu exp (Cu+Dv)))) ,
T 2 (u, v) = (g (u, v) , h (u, v)) ,

where g (u, v) = Au+Bu exp (Cu+Dv) and h (u, v) = g (v, g (u, v)). Jacobian matrix
JT 2 (ϕ, ψ) evaluated at (ϕ, ψ) =

(
0, 1

C
ln 1−A

B

)
is given by

JT 2 (ϕ, ψ) =
(

∂g
∂u

(ϕ, ψ) ∂g
∂v

(ϕ, ψ)
∂h
∂u

(ϕ, ψ) ∂h
∂v

(ϕ, ψ)

)

=

 A+B
(

1−A
B

)D
C 0

(1−A)D
C

(
A+B

(
1−A

B

)D
C

)
ln 1−A

B
1 + (1 − A) ln 1−A

B


and

det (JT (ϕ, ψ)) =
A+B

(1 − A

B

)D
C

(1 + (1 − A) ln 1 − A

B

)
> 0,

tr (JT (ϕ, ψ)) = 1 + A+B
(1 − A

B

)D
C

+ (1 − A) ln 1 − A

B
> 1.

If C < D, then −1 + A+B
(

1−A
B

)D
C > −1 + A+B

(
1−A

B

)
= 0 and

tr (JT (ϕ, ψ)) − det (JT (ϕ, ψ)) = 1 − (1 − A)
−1 + A+B

(1 − A

B

)D
C

 ln 1 − A

B
< 1,
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which yields
|tr (JT (ϕ, ψ))| < |1 + det (JT (ϕ, ψ))| .

Then by applying Theorem 1.3 (p = tr (JT (ϕ, ψ)) and q = − det (JT (ϕ, ψ))), the
minimal period-two solution {P1, P2} is repeller. Similarly, if C > D, then

−1 + A+B
(1 − A

B

)D
C

< −1 + A+B
(1 − A

B

)
= 0

and
tr (JT (ϕ, ψ)) − det (JT (ϕ, ψ)) > 1,

which implies
|tr (JT (ϕ, ψ))| > |1 + det (JT (ϕ, ψ))| .

Now, by applying Theorem 1.3 the minimal period-two solution {P1, P2} is saddle. □

Proposition 2.5. Consider the difference equation (2.2) in the first quadrant of
initial conditions, where the given parameters satisfy conditions A > 0, B > 0, C > 0,
D > 0, C ̸= D and A+B < 1. Set m = min{C,D} and M = max {C,D}. Then the
global stable manifold of the positive equilibrium is between two lines
(2.4) p1 : B exp (mx+my) = 1 − A

and
(2.5) p2 : B exp (Mx+My) = 1 − A.

Proof. In a view of Proposition 2.3 the zero equilibrium of (2.2) is always locally
asymptotically stable. The theorems applied in [5] provided existence of global stable
manifold Ws through the saddle point. If C < D, then by applying Proposition 2.3
the positive equilibrium x̄+ = 1

C+D
ln 1−A

B
is a saddle point and there exists a global

stable manifold which contains point E+(x̄+, x̄+). In this case global behavior of (2.2)
is described by Theorem 1.2 where end points of the global stable manifold Ws (E+)
are exactly the period-two solution {P1, P2} from Proposition 2.4. If C > D, then
by applying Proposition 2.3 the positive equilibrium x̄+ is a repeller and in a view of
Proposition 2.4 there exists a prime period-two solution {P1, P2} which is a saddle
point. There are two global stable manifolds Ws (P1) and Ws (P2), guaranteed by
Theorems 1 and 4 in [13], which contain points P1(ϕ, ψ) and P2(ψ, ϕ). In this case the
global behavior of (2.2) is described by Theorem 10 in [2]. Although the Theorems 9
and 10 in [2] have been applied on a polynomial second order difference equation they
are special cases of general Theorems in [5] applied on function f , where f is increasing
function in its arguments. So, the global dynamics of (2.2) is exactly the same as the
global dynamics of equations decribed by Theorems 9 and 10 in [2]. Furthermore,
xn+1 = Axn−1 +Bxn−1 exp (Cxn−1 +Dxn) ≥ Axn−1 +Bxn−1 exp (mxn−1 +mxn)

and
xn+1 = Axn−1 +Bxn−1 exp (Cxn−1 +Dxn) ≤ Axn−1 +Bxn−1 exp (Mxn−1 +Mxn) ,
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for all n, by applying Theorem 1.4 for solution {xn} of (2.2) the following inequality
holds

yn ≤ xn ≤ zn,

for all n, where {yn} is a solution of the difference equation
(2.6) yn+1 = Ayn−1 +Byn−1 exp (myn−1 +myn)
and {zn} is a solution of the difference equation
(2.7) zn+1 = Azn−1 +Bzn−1 exp (Mzn−1 +Mzn) .
Since (2.6) and (2.7) satisfy all conditions of Theorem 2.2 this implies that the
statement of Proposition 2.5 holds. □

3. Conclusion

In this paper we restrict our attention to certain exponential second order difference
equation (1.2). It is important to mention that we have accurately determined the
Julia set of (1.2) and the basins of attractions for the zero equilibrium and the
positive equilibrium point. In general, all theoretical concepts which are very useful in
proving the results of global attractivity of equilibrium points and period-two solutions
only give us existence of global stable manifold(s) whose computation leads to very
uncomfortable calculus (see [3, 4]).

Acknowledgements. The authors are very grateful to anonymous reviewers who
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