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GENERALIZATIONS OF SOME BERNSTEIN-TYPE
INEQUALITIES FOR THE POLAR DERIVATIVE OF A

POLYNOMIAL

ABDULLAH MIR AND ADIL HUSSAIN

Abstract. In this paper, we establish some new Bernstein-type bounds for the
polar derivative of constrained polynomials on the unit circle in the plane. The
obtained results sharpen some known estimates for the ordinary derivative of poly-
nomials as special cases.

1. Introduction

Let Pn denote the class of all complex polynomials P (z) := ∑n
v=0 cvzv of degree

n. The extremal problems of functions of complex variables and the results where
some approches to obtaining the classical inequalities are developed on using various
methods of the geometric function theory are known for various norms and for many
classes of functions such as polynomials with various constraints, and on various
regions of the complex plane. A classical result due to Bernstein [2], that relates an
estimate of the size of the derivative and the polynomial for the sup-norm on the unit
circle states that: if P ∈ Pn, then

max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≤ n max

|z|=1
|P (z)|.(1.1)

The above inequality (1.1) was proved by Bernstein in 1912. Later in 1985, Frappier,
Rahman and Ruscheweyh [3] strengthened (1.1), by proving that if P ∈ Pn, then

max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≤ n max

1≤l≤2n

∣∣∣P (e ilπ
n )
∣∣∣.(1.2)
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Clearly (1.2) represents a refinement of (1.1), since the maximum of |P (z)| on |z| = 1
may be larger than the maximum of |P (z)| taken over the (2n)th roots of unity, as
is shown by the simple example P (z) = zn + ia, a > 0. Following the approach of
Frappier, Rahman and Ruscheweyh [3], Aziz [1] showed that the bound in (1.2) can
be considerably improved. In fact, Aziz proved that if P ∈ Pn, then

max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≤ n

2 (Mα + Mα+π),(1.3)

where

Mα = max
1≤l≤n

∣∣∣P (ei(α+2lπ)/n)
∣∣∣,(1.4)

for all real α.
In the same paper, Aziz obtained a lower bound for the maximum of |P ′(z)| on

|z| = 1, by proving that if P ∈ Pn, then

max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≥ n

2

{
2max

|z|=1

∣∣∣P (z)
∣∣∣− (

M0 + Mπ

)}
.(1.5)

If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then
(1.1) can be replaced by

max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≤ n

2 max
|z|=1

∣∣∣P (z)
∣∣∣,(1.6)

whereas, if P (z) has no zeros in |z| > 1, then

max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≥ n

2 max
|z|=1

∣∣∣P (z)
∣∣∣.(1.7)

Inequality (1.6) was conjectured by Erdős and later proved by Lax [6], whereas
inequality (1.7) is due to Turán [18]. Ideally, it is natural to look for improving results
in (1.3) when P (z) does not vanish in the unit disk, and accordingly Aziz [1] proved
that if P ∈ Pn, and P (z) ̸= 0 in |z| < 1, then for every real number α,

max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≤ n

2

{
M2

α + M2
α+π

} 1
2
,(1.8)

where Mα is defined by (1.4).
It is important to mention that different versions of the Bernstein and Turán-

type inequalities have appeared in the literature in more generalized forms in which
the underlying polynomial is replaced by more general classes of functions. These
inequalities have their own significance and importance in Approximation theory. One
of such generalization is moving from the domain of ordinary derivative of polynomials
to their polar derivative. Before proceeding to our main results, let us remind that
the polar derivative DβP (z) of P (z) where P ∈ Pn, with respect to the point β is
defined as

DβP (z) := nP (z) + (β − z)P ′(z).
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Note that DβP (z) is a polynomial of degree at most n − 1. This is the so-called polar
derivative of P (z) with respect to β (see [7]). It generalizes the ordinary derivative in
the sense that

lim
β→∞

{
DβP (z)

β

}
:= P ′(z),

uniformly with respect to z for |z| ≤ R, R > 0.
More information on the polar derivative of a polynomial can be found in the

comprehensive books of Milovanović et al. [9] and Rahman and Schmeisser [17].
Over the last four decades many different authors produced a large number of differ-

ent versions and generalizations of the above inequalities by introducing restrictions
on the multiplicity of zero at z = 0, the modulus of largest root of P (z), restrictions on
coefficients, using higher order derivatives, etc. Many of these generalizations involve
the comparison of polar derivative DβP (z) with various choices of P (z), β and other
parameters. The latest research and development on this topic can be found in the
papers ([5, 8, 10,11,13–16,20]).

The main purpose of this paper is to obtain some upper bound estimates for the
maximal modulus of polar derivative of a polynomial on a disk under the assumption
that the polynomial has no zeros either in the disk |z| < k or in |z| > k, k > 0.
The obtained results sharpen as well generalize some already known estimates for the
ordinary derivative of polynomials as special cases.

2. Main Results

Theorem 2.1. If P ∈ Pn and P (z) ̸= 0 in |z| < k, k ≥ 1, then for every complex
number β with |β| ≥ 1

max
|z|=1

∣∣∣DβP (z)
∣∣∣ ≤n

2

2max
|z|=1

∣∣∣P (z)
∣∣∣+ (

|β| − 1
)M2

α + M2
α+π

− 2
(1 + k)

(k − 1) + 2
n

(
|c0| − kn|cn|
|c0| + kn|cn|

)∣∣∣P (z)
∣∣∣2


1
2
,(2.1)

where Mα is defined by (1.4).
The result is best possible for k = 1 and equality in (2.1) holds for P (z) = zn + 1,

with real β ≥ 1.

By taking α = 0 in (2.1), we get the following result.
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Corollary 2.1. Let P ∈ Pn and P (z) ̸= 0 in |z| < k, k ≥ 1. If t1, t2, . . . , tn are the
zeros of zn + 1 and s1, s2, . . . , sn are the zeros of zn − 1, then for |β| ≥ 1

max
|z|=1

∣∣∣DβP (z)
∣∣∣ ≤n

2

2max
|z|=1

∣∣∣P (z)
∣∣∣+ (

|β| − 1
)
(

max
1≤j≤n

|P (tj)|
)2

+
(

max
1≤j≤n

|P (sj)|
)2

− 2
(1 + k)

(k − 1) + 2
n

(
|c0| − kn|cn|
|c0| + kn|cn|

)∣∣∣P (z)
∣∣∣2


1
2
.(2.2)

The result is best possible for k = 1 and equality in (2.2) holds for P (z) = zn + 1, with
real β ≥ 1.

Dividing both sides of inequality (2.1) by |β| and letting |β| → ∞, we get the
following result.

Corollary 2.2. If P ∈ Pn and P (z) ̸= 0 in |z| < k, k ≥ 1, then we have for every
real α

max
|z|=1

|P ′(z)| ≤ n

2

M2
α + M2

α+π − 2
(1 + k)

[
(k − 1) + 2

n

(
|c0| − kn|cn|
|c0| + kn|cn|

)]∣∣∣P (z)
∣∣∣2


1
2

,

where Mα is defined by (1.4).

It is easy to verify that Corollary 2.2 generalizes as well as sharpens inequality (1.8).
Taking k = 1 in Corollary 2.2, we get the following result.

Corollary 2.3. If P ∈ Pn and P (z) ̸= 0 in |z| < 1, then we have for every real α,

max
|z|=1

|P ′(z)| ≤ n

2

M2
α + M2

α+π − 2
n

(
|c0| − |cn|
|c0| + |cn|

)∣∣∣P (z)
∣∣∣2


1
2

,

where Mα is defined by (1.4).

The bound obtained in Corollary 2.3 is always sharper than the bound obtained
from inequality (1.8), for this it needs to show that

|c0| − |cn|
|c0| + |cn|

≥ 0,

which is equivalent to

|c0| ≥ |cn|,

which is true as P (z) ̸= 0 in |z| < 1.
If we divide both sides of inequality (2.2) by |β| and let |β| → ∞, we get the

following result.
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Corollary 2.4. Let P ∈ Pn and P (z) ̸= 0 in |z| < k, k ≥ 1. If t1, t2, . . . , tn are the
zeros of zn + 1, and s1, s2, . . . , sn are the zeros of zn − 1, then

max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≤n

2


(

max
1≤j≤n

|P (tj)|
)2

+
(

max
1≤j≤n

|P (sj)|
)2

− 2
(1 + k)

(k − 1) + 2
n

(
|c0| − kn|cn|
|c0| + kn|cn|

)∣∣∣P (z)
∣∣∣2


1
2

.(2.3)

The result is best possible for k = 1 and equality in (2.3) holds for P (z) = zn + 1.

Remark 2.1. It is easy to see that Corollary 2.4 generalizes the following result due
to Wali and Shah [19, Corollary 1].

Theorem 2.2. Let P ∈ Pn and P (z) ̸= 0 in |z| < 1. If t1, t2, . . . , tn are the zeros of
zn + 1, and s1, s2, . . . , sn are the zeros of zn − 1, then for |z| = 1, we have

∣∣∣P ′(z)
∣∣∣ ≤ n

2


(

max
1≤j≤n

∣∣∣P (tj)
∣∣∣)2

+
(

max
1≤j≤n

∣∣∣P (sj)
∣∣∣)2

− 2
n

(
|c0| − |cn|
|c0| + |cn|

)∣∣∣P (z)
∣∣∣2


1
2

.(2.4)

Equality in (2.4) holds for P (z) = zn + 1.

If P (z) has all its zeros on |z| = k, k > 1, then from Theorem 2.1, we get the
following result.

Corollary 2.5. If P ∈ Pn and P (z) has all its zeros on |z| = k, k > 1, then for every
complex number β, with |β| ≥ 1

max
|z|=1

∣∣∣DβP (z)
∣∣∣ ≤ n

2

2max
|z|=1

∣∣∣P (z)
∣∣∣+ (

|β| − 1
){

M2
α + M2

α+π − 2
(

k − 1
k + 1

)
|P (z)|2

} 1
2
,

where Mα is defined by (1.4).

Next as an application of Theorem 2.1, we prove the following result.

Theorem 2.3. Let P (z) = ∑n
v=0 cvzv ∈ Pn, c0 ̸= 0, with P (z) ̸= 0 in |z| > k, k ≤ 1,

then for every complex number γ with |γ| ≤ 1, we have for |z| = 1
∣∣∣DγP (z)

∣∣∣ ≤n

2

2|γ|max
|z|=1

∣∣∣P (z)
∣∣∣+ (

1 − |γ|
)

×

M2
α + M2

α+π − 2
(1 + k)

[
(1 − k) + 2k

n

(
kn|cn| − |c0|
kn|cn| + |c0|

)]∣∣∣P (z)
∣∣∣2


1
2
,(2.5)

where Mα is defined by (1.4).
The result is best possible for k = 1 and equality in (2.5) holds for P (z) = zn + 1,

with real γ ≤ 1.



36 A. MIR AND A. HUSSAIN

Remark 2.2. If we take γ = 0 in (2.5), we get for |z| = 1∣∣∣nP (z) − zP ′(z)
∣∣∣

≤n

2

M2
α + M2

α+π − 2
(1 + k)

[
(1 − k) + 2k

n

(
kn|cn| − |c0|
kn|cn| + |c0|

)]∣∣∣P (z)
∣∣∣2


1
2

.(2.6)

If max
|z|=1

∣∣∣P (z)
∣∣∣ =

∣∣∣P (eiϕ)
∣∣∣, we get from (2.6) that

∣∣∣P ′(eiϕ)
∣∣∣ ≥n

2

2max
|z|=1

∣∣∣P (z)
∣∣∣

−

M2
α + M2

α+π − 2
(1 + k)

(1 − k) + 2k

n

(
kn|cn| − |c0|
kn|cn| + |c0|

)∣∣∣P (z)
∣∣∣2


1
2
.(2.7)

Since max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≥

∣∣∣P ′(eiϕ)
∣∣∣, we get from (2.7) that

max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≥n

2

2max
|z|=1

∣∣∣P (z)
∣∣∣

−

M2
α + M2

α+π − 2
(1 + k)

(1 − k) + 2k

n

(
kn|cn| − |c0|
kn|cn| + |c0|

)∣∣∣P (z)
∣∣∣2


1
2
.(2.8)

Taking k = 1 in (2.8), we immediately get a refinement of (1.5) when all the zeros of
P (z) lie in |z| ≤ 1.

Remark 2.3. It may be remarked here that for k = 1, Theorems 2.1 and 2.3 were
recently established by Mir [11].

3. Lemmas

We need the following lemmas to prove our theorems.

Lemma 3.1. If xv, v = 1, 2, . . . , n is a sequence of real numbers such that xv ≥ 1 for
all v ∈ N, then

n∑
v=1

xv − 1
xv + 1 ≥

∏n
v=1 xv − 1∏n
v=1 xv + 1 , for all n ∈ N.

Proof of Lemma 3.1. We prove this result with the help of mathematical induction
and we use induction on n. The result is trivially true for n = 1.

For n = 2
x1 − 1
x1 + 1 + x2 − 1

x2 + 1 ≥ x1x2 − 1
x1x2 + 1 ,
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if
2(x1x2 − 1)

1 + x1 + x2 + x1x2
≥ x1x2 − 1

x1x2 + 1 ,

i.e., if (x1 − 1)(x2 − 1) ≥ 0, which is true, since x1, x2 ≥ 1. This shows that the result
holds for n = 2. Assume the result is true for n = r ∈ N. Now since ∏r

v=1 xv ≥ 1, we
have

r+1∑
v=1

xv − 1
xv + 1 =

r∑
v=1

xv − 1
xv + 1 + xr+1 − 1

xr+1 + 1

≥
∏r

v=1 xv − 1∏r
v=1 xv + 1 + xr+1 − 1

xr+1 + 1 (by induction hypothesis)

≥
∏r+1

v=1 xv − 1∏r+1
v=1 xv + 1

(by the case n = 2).

This shows that the result holds for n = r + 1 as well. Therefore by the principle of
mathematical induction, it follows that the result holds for all n ∈ N. This completes
the proof of Lemma 3.1. □

Lemma 3.2. If P ∈ Pn and P (z) ̸= 0 in |z| < k, k ≥ 1, then for each point z on
|z| = 1 for which P (z) ̸= 0, we have

Re
(

zP ′(z)
P (z)

)
≤ 1

1 + k

{
n −

(
|c0| − kn|cn|
|c0| + kn|cn|

)}
.(3.1)

Proof of Lemma 3.2. Recall that P ∈ Pn and P (z) has all its zeros in |z| ≥ k, k ≥ 1.
If z1, z2, . . . , zn are the zeros of P (z) = ∑n

v=0 cvzv of degree n, then |zv| ≥ k, k ≥ 1,
and we can write P (z) = cn

∏n
v=1(z − zv). This gives

zP ′(z)
P (z) =

n∑
v=1

z

z − zv

.

Now for the points eiθ, 0 ≤ θ ≤ 2π, with P (eiθ) ̸= 0, we have

Re
(

eiθP ′(eiθ)
P (eiθ)

)
=

n∑
v=1

Re
(

eiθ

eiθ − zv

)

≤
n∑

v=1

1
1 + |zv|

= n

1 + k
− 1

1 + k

n∑
v=1

|zv| − k

|zv| + 1

≤ n

1 + k
− 1

1 + k

n∑
v=1

|zv| − k

|zv| + k
(as k ≥ 1)

= n

1 + k
− 1

1 + k

n∑
v=1

|zv|/k − 1
|zv|/k + 1 .
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Since |zv|/k ≥ 1, v = 1, 2, . . . , n, we get on using Lemma 3.1 for the points eiθ,
0 ≤ θ ≤ 2π, with P (eiθ) ̸= 0,

Re
(

eiθP ′(eiθ)
P (eiθ)

)
≤ n

1 + k
− 1

1 + k

∏n
v=1 |zv|/k − 1∏n
v=1 |zv|/k + 1


= n

1 + k
− 1

1 + k

 |c0|/kn|cn| − 1
|c0|/kn|cn| + 1

,

which is equivalent to (3.1). This completes the proof of Lemma 3.2. □

Lemma 3.3. If P ∈ Pn, then for |z| = 1, and for any real number α,∣∣∣P ′(z)
∣∣∣2 +

∣∣∣Q′(z)
∣∣∣2 ≤ n2

2

(
M2

α + M2
α+π

)
,

where Mα is defined by (1.4).

The above lemma is due to Aziz [1].

Lemma 3.4. If P ∈ Pn, then for |z| = 1,∣∣∣P ′(z)
∣∣∣+ ∣∣∣Q′(z)

∣∣∣ ≤ n max
|z|=1

|P (z)|.

The above lemma is a special case of a result due to Govil and Rahman [4].

4. Proof of the Theorems

Proof of Theorem 2.1. Recall that P ∈ Pn and P (z) has all its zeros in |z| ≥ k, k ≥ 1.
First, we suppose that P (z) has no zeros on |z| = k, k > 1 and therefore, all the zeros
of P (z) lie in |z| > k, we have by Lemma 3.2 for |z| = 1

2Re
(

zP ′(z)
P (z)

)
≤ 2

1 + k

{
n −

(
|c0| − kn|cn|
|c0| + kn|cn|

)}
.(4.1)

Also it easily follows that∣∣∣Q′(z)
∣∣∣ =

∣∣∣nP (z) − zP ′(z)
∣∣∣, for |z| = 1,(4.2)

where Q(z) = znP (1
z̄
). This implies∣∣∣∣∣zQ′(z)

P (z)

∣∣∣∣∣
2

=
∣∣∣∣∣n − zP ′(z)

P (z)

∣∣∣∣∣
2

= n2 +
∣∣∣∣∣zP ′(z)

P (z)

∣∣∣∣∣
2

− 2nRe
(

zP ′(z)
P (z)

)
,

which by using (4.1) yields for |z| = 1

2
∣∣∣P ′(z)

∣∣∣2 ≤
∣∣∣P ′(z)

∣∣∣2 +
∣∣∣Q′(z)

∣∣∣2 +
[

2n2

1 + k
− 2n

1 + k

(
|c0| − kn|cn|
|c0| + kn|cn|

)
− n2

]
|P (z)|2.(4.3)
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On combining Lemma 3.3 and inequality (4.3), we get for |z| = 1

∣∣∣P ′(z)
∣∣∣ ≤ n

2

M2
α + M2

α+π − 2
(1 + k)

[
(k − 1) + 2

n

(
|c0| − kn|cn|
|c0| + kn|cn|

)]∣∣∣P (z)
∣∣∣2


1
2

.(4.4)

The above inequality (4.4) trivially holds for k = 1 as well as for points z on |z| = 1
for which P (z) = 0 by (1.8). Using the definition of polar derivative of a polynomial
P ∈ Pn with respect to the complex number β, we have∣∣∣DβP (z)

∣∣∣ =|nP (z) + (β − z)P ′(z)|

≤
∣∣∣nP (z) − zP ′(z)

∣∣∣+ |β|
∣∣∣P ′(z)

∣∣∣
=
∣∣∣Q′(z)

∣∣∣+ |β|
∣∣∣P ′(z)

∣∣∣ (using (4.2))

≤nmax
|z|=1

|P (z)| + (|β| − 1)
∣∣∣P ′(z)

∣∣∣ (by Lemma 3.4).(4.5)

Inequality (4.5) in conjunction with inequality (4.4) gives,

max
|z|=1

∣∣∣DβP (z)
∣∣∣ ≤n

2

2max
|z|=1

∣∣∣P (z)
∣∣∣+ (

|β| − 1
)M2

α + M2
α+π

− 2
(1 + k)

(k − 1) + 2
n

(
|c0| − kn|cn|
|c0| + kn|cn|

)|P (z)|2


1
2
.

This completes the proof of Theorem 2.1. □

Proof of Theorem 2.3. By hypothesis, the polynomial P (z) = ∑n
v=0 cvzv, c0 ̸= 0 has

all its zeros in |z| ≤ k, k ≤ 1, therefore, the polynomial Q(z) = znP (1
z̄
) has no zeros in

|z| < 1/k, 1/k ≥ 1. Applying Theorem 2.1 to the polynomial Q(z), we get for |β| ≥ 1
and |z| = 1

∣∣∣DβQ(z)
∣∣∣ ≤n

2

2max
|z|=1

|Q(z)| +
(
|β| − 1

)Y 2
α + Y 2

α+π

− 2
(1 + 1/k)

[
(1/k − 1) + 2

n

(
|cn| − 1/kn|c0|
|cn| + 1/kn|c0|

)]
|Q(z)|2


1
2
.(4.6)

Since |P (z)| = |Q(z)| for |z| = 1, it follows that

Yα = max
1≤l≤n

∣∣∣Q(ei(α+2lπ)/n)
∣∣∣ = max

1≤l≤n

∣∣∣P (ei(α+2lπ)/n)
∣∣∣ = Mα.
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Using this in (4.6), we get for |β| ≥ 1 and |z| = 1
∣∣∣DβQ(z)

∣∣∣ ≤n

2

2max
|z|=1

|P (z)| +
(
|β| − 1

)M2
α + M2

α+π

− 2
(1 + k)

[
(1 − k) + 2k

n

(
kn|cn| − |c0|
kn|cn| + |c0|

)]
|P (z)|2


1
2
.(4.7)

For |z| = 1, we have zz = 1, then it is easy to verify (for example, see [11]), that for
|α| ≠ 0 ∣∣∣DβQ(z)

∣∣∣ =
∣∣∣β̄∣∣∣∣∣∣D1/β̄P (z)

∣∣∣.
Replacing 1/β̄ by γ, so that |γ| ≤ 1, we obtain from (4.7), that

∣∣∣DγP (z)
∣∣∣ ≤n

2

2|γ|max
|z|=1

|P (z)| +
(
1 − |γ|

)M2
α + M2

α+π

− 2
(1 + k)

[
(1 − k) + 2k

n

(
kn|cn| − |c0|
kn|cn| + |c0|

)]
|P (z)|2


1
2
,

for |z| = 1 and |γ| ≤ 1.
This completes the proof of Theorem 2.3. □
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