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SEVERAL THEOREMS OF APPROXIMATION T RY THE
¢-BESSEL TRANSFORM

OTHMAN TYR! AND ABDELAAILDADES?

inverse estimates for the generalized g-Bess€l transform Jin the space Lgya(R;), where

g€ (0,1) and a > —1/2.

1. 1 ODUCTION

ardintegrable function on R, i.e., f € L*(R). We

en positive real number 6, the k*'-order generalized modulus of continuity
ction f is defined by

Q(f,6) = sup AL 2) || 2wy

Key words and phrases. g-Bessel transform, generalized g-Bessel translation, modulus of continuity.
2020 Mathematics Subject Classification. Primary: 26B10. Secondary: 33D15.

DOI

Received: February 14, 2025.

Accepted: August 03, 2025.

237



238 O. TYR AND A. DADES

Let W;ﬂ’g(D), where r = 0,1,... and k = 1,2,..., denote the class of functions
f € L*(R) for which the generalized partial derivatives exist in the sense of Levi:

of *f  of

ox’ 0z’ Oa’

which all belong to L*(R) (see [21, p. 172]). These functions satisfy the estimate
(D" f,6) = O(@(3%)), asd — 0,
where D = a%’ and the iterated derivatives D’ f are defined rec

D'f=f, D'f=DD7f), i=1.2

Here, @ is a continuous, strictly increasing function on
The following theorem is an analogue of Jackson’s om the classical
theory of function approximation [21, Ch. 5] (see

Theorem 1.1. It holds that

R 2\F
fevizgw)\//wwlf(wd 0<N @[(N) D

as N — +oo, wherer =0,1,..., k nd f stands for the Fourier transform
of f.

In the case where ®(t , Abilov et al. characterized the functions
f € L*(R) by the folloyfiag enke (see [1, Theorem 2]).

Theorem 1.2. L

v

FOOPdN=O(N"™), as N — +oo,

by Fitouhi et al. [9,10,13]. It is therefore natural to investigate g-analogues of classical
theorems in this framework.

In this paper, building on the work of Abilov, we establish new Jackson-type inverse
estimates for the g-Bessel transform for certain classes of functions characterised by
a modulus of continuity and associated with the ¢-Bessel operator. Similar results
were obtained in [2,6,7,25-30]. To achieve these results, we use a generalised g-Bessel
translation operator rather than the Steklov operator defined in (1.1).
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2. HARMONIC ANALYSIS ASSOCIATED WITH THE ¢-BESSEL OPERATOR

This section provides the essential background to g-harmonic analysis related to the
g-Bessel transform. We give a brief overview of the standard notions and notations
of g-theory, while further details and results on ¢-Bessel analysis can be found in
[5,9-11,13,17,18].

Throughout this paper, we assume ¢ €]0,1[ and o > —1/2. We i uce the
following set

RS = {¢", n € Z}.
Let a € C, the ¢-shifted factorials are defined by:

n—1

(2.1) (a;9)0=1, (a;q)n = 1:[(1 — aql), n=12 ...

The g-derivative of a function f is given by
Dy f(x) =

where D, f(0) = f'(0) provided f'(0) exist§h Note thdt when f is differentiable at =,
then D, f(x) tends to f'(z) as ¢ tends to 1

The general g-hypergeometric se defined by
a1,Aa9,...,0
] ’ ’ ’ ; ) AR 7'; b 7b PR 7b$; )
¢ [bl,bg,...,bs qz} 1, ba q,2)
<oy A Q)n n_ n(n—1)/2 Is—r
2.2 —1)"q 2",
(22) ba, .., bs: @)n(q: @)n -1 }
where the g-shif; i efined by (2.1) and

The ¢-Ja€kspn integra}é from 0 to a and from 0 to +oo are defined by [14,17]

" fadye =1 - g S g flag"),

0
+o0 Too

| r@da=1-a ¥ ¢,
proyided the sums converge absolutely. The ¢-Jackson integral in a generic interval
[a, b] is given by

b b a

/a f(2)dyw = /0 F(x)dyz — /0 f(x)dyz.

We denote by £? ,(RF), p > 1, the set of all real functions f defined on R for which

1/p
< +00.

oo p..2a+1
Flapa = [ @ P+da
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We denote by Cyo(R7), for the space of functions defined on R/ tending to 0 as
x — +00 and continuous at 0. The space C,o(R]), when equipped w1th the topology
of uniform convergence, is a complete normed hnear space with norm

[fllg.00 = sup [f(2)]

xeR;"

In [16], Ismail introduced the third ¢-Bessel function, defined as follow,

20+2.
) a o
Jo(; ) = ( e )) 161 (0;¢°7% ¢, ¢2?)
(2.3) _ (qm“,q )oo S gty

(P S (q2‘”+2; @)
It satisfies (see [5]) the following.

e Foralln € Z, a > —1/2, we have

2. 2 2042, 2 .
n. 2\ < (_q 4 )m(_q ) -7
(2.4) | Jalq":q7)] < (0% ¢%)oe n(n—of1) i < 0.

e For all 0 € R, 2 € R}, we have

)

as r — +00.

In particular
as r — +o00.

The function J,(+; ¢*) igfle lized form by

(2 ) qn(n+1) )
) "

(@**% ¢*)n(d*; ¢°)
The followi roved in [12, Lemma 3.1].

Lem 2.4, Wg hav€ the following inequalities for the q-Bessel function:
(2.6) ja(®:¢%) =O(1), ifx >0 and z € R},

1= ja(x;¢°) =O(1), ifx>1andx € R,

1 — jo(z;¢%) =0(2%), ifxr<1andxc RS

g-integration theorem by a change of variable can be stated as follows
b (A :
/ H <—> N\ = s2a+2/ H(z)x***'dyz, for all s € R}
a S a

For A € C, the function = — j,(Az,¢?) is a solution of the g-differential equation

{ Agof (@) = =X f(2),
f0) =1,
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where A, , denotes the g-Bessel operator, defined by
flg™'e) = (1 +¢*) f(x) + ¢ f(gw
a0} = 20 = ) (0) )
We now give the definition of the ¢-Bessel transform associated with the ¢-Bessel
operator.

, xER;.

Definition 2.1. The g¢-Bessel transform F,,, is defined for every f e
Lqo(RY) by
oo 2\, 20+1
FoalF)A) = g (2) ja(Az; ¢*) 2* T dgz,  fo €
0
where
Coa =

10,13, 15)).
o If f € E;Q(R;), then fq,a(f)

where

Byo = :
q, l_q

e For every f € L] (R}), one

(2.9) of)(A), forall X e RY.
Theorem 2.1 gives the gkel ferinula and inversion formula for the g-Bessel
transform.
Theorem 2.1. 4 ransform Fqq is an isomorphism from L (R} onto
itself and sati -Plantherel formula
(2.10) : lg2.a = Ifllg2.0; Sforall f € Eg (RF)

i1) soXRT) such that Foo(f) € L} (RF), then the g-inversion formula
holds an ha

+o0o

f(x) = cpa 0 Fralf)(N)ja(Az; q2>)‘2a+1dq)‘7

g-generalized translation operator associated with the ¢-Bessel transform, de-
noted by 7.7, for h € R}, was introduced in [13] and later corrected in [10]. It is
defined using Jackson’s g-integral and the g-shifted factorial as

+o0
Tonf () :/0 () Kyalh,x, t) 22 dyt,
where .
Koalhyz,y) = ¢a /0 Ja(ht; ®)ja(wt; ¢*)ja(yts *) 12 dyt.
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In particular, the product formula
Toda(@ @) = ja(h; ¢)jalz; ¢%)
holds.
The g-generalized translation operator has the following properties (see [10,11]).

Theorem 2.2. i) For f € £b (RX), p > 1, we have T, f € LE (RY) a
[Tehflapa < 1 llapa-
ii) For f € L, ,(RY), we have
(2'12) ‘Fq,a(,]:fhf)()‘) = ja(Ah; q2)"rq7a(f)(
For every f € L2 (Rf), we define the differences
with step h > 0, h € R} by:
Anf(x) = Apf(z) =
A f(z) = Ap(A7

Let W7y(Aga), 7 = 0,1,...

generalized derivatives in the

fo Aof=Aga (A;;l ) r=1,2,...
€ W7 y(Aga), we have

vo (Mpaf) V) = (C1 N Fua( DN, 7=1,2,...

3. MaAIN RESuULTS

ow present the main results of this paper. Their proofs rely on several prelim-
inafy lemmas.

Lemma 3.1. For a > —1/2 and x € R}, we have

(3.1) Voo (x;¢*) = O(1), forxz > 0.
Moreover, we have

(3.2) jalz:q%) = O(x7°72),  forx > 0.
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Proof. First, note that
reRS,z>1 ifandonly if z=¢",n <0,
and
xER;,OSxS 1 ifand only if = =¢",n > 0.

From this and (2.4), we distinguish two cases.
For x = ¢" € R; with n > 0, we obtain

(=% @)oo (—2**2; @)

(0% ¢%) o

Since n(a + 3) > 0, it follows that g3 < 1, and ther

‘q%Ja(qn; q2)| <

Therefore, equivalently,
(3.3) Vada(z;¢*) = O(1), reRY,0<z<1.

For the case x = ¢" € R with n <

: 1
Since n(n —a —3) >

and thus we agad

Consequ .

Vada(z;¢°) = O0(1), forxz e RF, z>1.
, ining (3.3) and (3.4), we obtain
Vado(z;¢*) = 0(1), forz >0,z € R},

wlhfich proves (3.1). To prove (3.2), we use formulas (2.3) and (2.5), which yield

: (@* 6 o
) = gz ) )
Thus, taking into account the formula above and (3.1), we obtain the result. O

We now present an important lemma that will lead us to the main result.
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Lemma 3.2. Let h > 0 with h € R}, If f € W;,(Aga), then

400
A7 (Ao § o = [ AT = JuOV, P el YO A=,
where r =0,1,2, ...
Proof. According to the formula (2.12), we obtain

FoaBnf)N) = FoalTin YA = FoalHX) = (a(Mh, %) — D&,
Using the recurrence proof with respect to m, we obtain
Fral AR F)A) = (Ja(Ah, q2) —1)"Fya
In view of formula (2.13), we get
Foral A7 (Mg o)) = (1) A (ja(My 1)™Fy,
Now, by appealing the ¢-Plancherel formula

)(A).

Swe ha e desired result. 0

The following theorem is an analogue @f Abilo
represents a Jackson-type direct theorem f:
imation [21, Chapter 5.

theorem [1, Theorem 1]. It
the clg@sical theory of function approx-

Theorem 3.1. For a function f

[ Foa(H) A, A
+oo
< [ 1N @) (AN,
+oo . 2 2y 2041
£ [T = an )] (DA,
A ing to the formula (3.2), there exists a constant ¢; > 0 such that

ja(Mh, @] < er(Ah) ™~ 2,

Hence,
+oo ) too )
[ aOh )] 1Faa PN A < k™8 [ X o)A,

< c1(hN)™ "2 J2(f).
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[0

Choosing ¢ > 0 such that the constant ¢; = 1 — ¢j¢” -3 s positive and setting

h = ¢/N in inequality (3.5). Then, we have
+o0o
(3.6) TR < [ L= Jal )] [ Fual HOVEN=d,

Furthermore, by Holder’s inequality, the second term in (3.6) satisfies
+oo
[ =G @) F YA

= [ = GO ) (I D) (1)

+o00 L
< (7 1 b P F (DR,

= (/+00 %)\MH _ja()\haq2)|2m|fq,a<f)()\)|2
N

NI ([T A

From Lemma 3.2, we conclude that

+o0
[T AL = )P
N

Therefore,

+oo ) 9
/ 11— ja(AR, )| - | F,
N

dgA < | AR (AGa)IIg

,2,000

—2r 2m—1

(I () EARAL ) | P

NPPARG A< N

(JN(f))QT”_Iw}n/m (A;O‘f’ %)q,la .

th sides to the power m and simplifying by (Jn(f))*™, we
< —mN—Zr o (Ar £> ]
jN(f) > G w q,af7 N 020
— O (N, (AT ﬁ) .
jN(f) O ( w q,ozf? N 020
mpletes the proof of Theorem 3.1. O

eorems 3.2 and 3.3 are analogues of the classical inverse theorems of approxima-
tion theory due to Stechkin and Timan (see [22,23]).

Theorem 3.2. Let f € L2 (RY). Then, for all N > 0,

in(f.57)., =0 (sz OERIERFAT) ) .

=0
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Proof. From Lemma 3.2, we have
m g2 oo : 2\|2m 22041
[AvA :/0 1= JaAh, )7 [ Fqa(F) N PATTdgA.

q,2,

This integral is divided into two:

+o0 N +o00
0 0 N

where N = [%] We estimate them separately. From (2.6), we have tift

+oo
(3.7) B [ 1Fal DA = eo T
Now, we estimate Z;. From relation (2.8), we have

I e [© A F ()
~ 0 q,a

(A)[2A20H g\,

q,

| transf@fmation shows
M

(f) = anTipa () + 3 (a0 — ai1) TP (f)

=1

() + D (ar— a) TP (f),

becausgla ;&2 (). Hence
+1 )

L < g™ («702(f) + ]:g(az - al—1)~7z2(f)> :

the finite increments theorem, we have
a; —ai1 < 4m(l+ 1)L

Thén,
N—-1
I < ¢y N~4m (Jﬁ(f) +4m Yy (I+ 1>4m‘1$2(f>> :

=1
since N < % Combining the estimates for I; and I gives

N—-1
JAT T2, = O (N-4m S+ 1)4’”‘1%2(1’)) |

=0
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which implies

ol o)

and this completes the proof. 0J
Theorem 3.3. Let f € L2 (RF). If the series

+oo
SNPYA(f), r=1,2,...

=1
converges, then f € W7y(Aga) and, for all N > 0,

1 N-1
N g 1=0

Proof. Let f € L‘ia(R;). By (2. 13) and Pla

(TP) = T ()

Using an Abel transfi ain
+oo

S T5(f) +4r (U + D)),

=1

From the jeaguality < 2l, we conclude
—+o0
I 2 = s (T30 + 5500200
=1
’ = 2%r—1
Il =0 (5230
=1
Si he series

+00
SNPIf), r=1,2,...
-1

converges, we see that f € W7 y(Aga).

On the other hand, it follows from Lemma 3.2 that

AT = [ NI = GalM )P Fa YA
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This integral is divided into two:

+o0 N +o00
[ L
0 0 N

where N = [}]. We estimate them separately.
By rearranging terms analogous to summation by parts and proceeding as with I,

we obtain

N
Ky < ol [ XCEE L ()AL

N-1 41
= 3 [N (XA
0

N—-1
< eoh™ ST (14 D)MEM(TA(F)
=0
N—-1

+o00
— O </ )\4r| /\2a+1dq)\)
N

AN

|fq,a<f><x>|2va“qu)

unt of the fact that
2m—IN

24'r Z l2r_1%(f) Z 24T(2m_2N)2r_1\72m71N(f)2m_2N

[=2m—2N41
= (2" N)*" Tom-1n(f),
we obtain the estimate

K2%: (Zoo ZMZN 127 lj( ) (ler 1'.71 )
1=[5]

m=1]=2m-2N41
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Combining the estimates for K; and K, gives

N-—1 2 +o00

IAPAL o llgze =0 (N“*mZ(Hl)“*‘*m‘lf(f)) ol 3 eram].
1=0 1=(4]

which implies that

1 N-—1 % +oo

im (Moo ) =O(NTS )T ) 40| )
o N/ g2 1=0 Z
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