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ON UNIQUE MINIMAL SOBOLEV NORM ELEMENT OF
BANACH SPACES OF FUNCTIONS WHICH TAKES A GIVEN

VALUE IN A FIXED POINT

TOMASZ ŁUKASZ ŻYNDA

Abstract. First, it will be shown that some Banach spaces V of functions, which
are subspaces subspaces of Sobolev spaces satisfy the c-minimal norm property, i.e.,
in any set

Vz,c := {f ∈ V | f(z) = c},

if non-empty, there is exactly one element with t minimal Sobolev norm. Later, it
will be proved that this element depends continuously on the deformation of the
norm and on an increasing sequence of domains in a precisely defined sense. We
conclude with applications to the theory of linear partial differential equations.

1. Introduction

Classical theory states that the solution of a partial differential equation is unique
in many cases if the boundary or initial conditions are given. Here we introduce
a different idea - if we want a solution of a homogeneous linear partial differential
equation to be unique, we can consider the solution with the minimal Sobolev norm
among the solutions which take given value at a fixed point.

First, we prove a theorem showing sufficient conditions for the Banach space of
functions to have the minimal norm property, i.e., the property of the existence of a
unique element with minimal norm in the subset of elements taking a certain value at
a fixed point. Then we show that some Banach spaces of functions with Sobolev norm
satisfy the assumptions of this theorem. Next, we prove our main results - theorems
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stating that the unique minimal norm element of a Banach space of functions with
Sobolev norm continuously depends on an integration weight, i.e., on the deformation
of the norm and on an increasing sequence of domains.

2. Preliminaries

It is known that a Hilbert space V of functions defined on a domain D is a repro-
ducing kernel Hilbert space if and only if it satisfies the minimal norm property, e.g.,
in any set

Vz := {f ∈ V | f(z) = 1},

if it is not empty, there is exactly one element with the minimal norm. In fact, the
property of the minimal norm is equivalent to a formally stronger property: c-minimal
norm property, i.e., in every set

Vz,c := {f ∈ V | f(z) = c},

if non-empty, there is exactly one element with minimal norm. Indeed, if V satisfies
the property of c-minimal norm, then it also satisfies the property of minimal norm.
On the other hand, if φz is unique element of Vz with the minimal norm, then cφz is
the unique element of Vz,c with the minimal norm.

For more details and proofs see e.g. [6]. For examples of Hilbert spaces that do not
satisfy the minimal norm property, i.e., are not reproducing kernel Hilbert spaces, see
e.g. [6] or [3].

The aim of this paper is to show that some subspaces of functions of Sobolev spaces,
which are not necessarily Hilbert spaces, also satisfy the minimal norm property.
Moreover, we will show that the unique minimal norm element in the set Vz depends
continuously on a weight function and on the integration domain. These results can
be somehow treated as a continuation of the research introduced in [6] and [4].

Throughout the paper, the unique minimal norm element of Vz will be denoted by
φz without further recalling.

3. Proof that some Subspaces of Functions of Sobolev Spaces Satisfy
the Minimal Norm Property

Let V be a Banach space of functions which is a subspace of a Sobolev space W k,p(U),
U ⊂ Rn, U an open bounded domain with boundary of class C1, 1 < p < +∞,
equipped with the same norm, i.e.,

||f || := ||f ||W k,p(U) =
 ∑

|i|≤k

||Dif ||pLp(U)

 1
p

,

where i = (i1, i2, . . . , im), |i| = i1 + i2 + · · · + im and

Dif = ∂|i|f

∂xi1
1 ∂xi2

2 · · · ∂xin
n

.
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It is well-known that each space Lp, 1 < p < +∞, is strictly convex, therefore also V
is strictly convex as a closed subspace of Lp. Moreover, the following theorem holds.

Theorem 3.1 ([1], Theorem 6 in Section 5.6.3.). If f ∈ W k,p(U), with additional as-
sumptions above and k > n

p
, then f is also an element of Hölder’s space Ck−[ n

p ]−1,γ(U),
where γ is equal to

[
n
p

]
+ 1 − n

p
, if n

p
/∈ Z and is any positive number lower than 1,

otherwise.
Moreover, the following holds.

(3.1) ||f ||
C

k−[ n
p ]−1,γ(U)

≤ C||f ||W k,p(U).

A direct consequence of this theorem is the fact that the functionals of the point
evaluation in V are continuous if only its assumptions are fulfilled, i.e. for every z ∈ U
there exists constant Cz, such that

|f(z)| ≤ Cz||f ||W k,p(U),

for any f ∈ V .
Now we are ready to prove the main theorems of this section.

Theorem 3.2. Let V be a Banach space of functions defined on U satisfying the
following conditions:

(i) functionals of point evaluation are continuous;
(ii) V is strictly convex.
Then, for any z ∈ U , if there exist fz ∈ V such that fz(z) ̸= 0, we have

(3.2) inf
{f∈V |f(z)=1}

||f || > 0.

Moreover, if the infimum is reached, then it is only reached for one function, i.e, then
V satisfies the minimal norm property.

Proof. Let z ∈ U be a point for which there exist functions in V that take a nonzero
value at z, and let f ∈ V be such a function. Then, by continuity of functionals of
the point evaluation we have

0 <
1

Cz

≤
∣∣∣∣∣
∣∣∣∣∣ f

f(z)

∣∣∣∣∣
∣∣∣∣∣ .

Therefore, (3.2) holds.
Now, let us assume that the infimum in (3.2) is reached for some functions f, g ∈ Vz.

We will show that f = g. First, let us define

h = 1
2 (f + g) ∈ Vz,

i.e., h(z) = 1. Next, by the triangle inequality and the fact that ||f || = ||g||, we obtain

||h|| =
∣∣∣∣∣∣∣∣12 (f + g)

∣∣∣∣∣∣∣∣ ≤ 1
2 (||f || + ||g||) = ||f ||.



1688 T. Ł. ŻYNDA

On the other hand, by our assumptions,
||h|| ≥ ||f ||,

therefore
(3.3) ||h|| = ||f ||.
Since V is strictly convex and the triangle inequality in the above case is in fact
equality, we conclude that there exists α ∈ C, such that f = αg. Then,

||h|| =
∣∣∣∣∣∣∣∣12 (f + g)

∣∣∣∣∣∣∣∣ = 1
2(α + 1)||f ||.

By (3.3) we get that α = 1 and in conclusion f = g. □

Corollary 3.1. Let V be a Banach space of functions equipped with the Sobolev norm,
which satisfies assumptions of Theorem 3.1. Then, V satisfies the minimal norm
property.

Proof. As it was stated before, V is strictly convex and functionals of point evaluation
for that space are continuous. Therefore,

inf
f∈Vz

||f ||W k,p(U) > 0,

and if it is reached, then it is reached only for one function. It is sufficient to show
that the infimum above is in fact minimum. Let {fn} ⊂ Vz be a sequence which
approximates this infimum, i.e., such that

lim
n→+∞

||fn||W k,p(U) = inf
f∈Vz

||f ||W k,p(U).

It is obvious that {fn} is bounded in the || · ||W k,p(U) norm. By Theorem 3.1, it is also
bounded in a Hölder space. Therefore, the sequence {fn} satisfies the assumptions of
the Arzelà-Ascoli theorem and there is a convergent subsequence of it. Let us denote
its limit by f0. By Fatou’s lemma ||f0||W k,p(U) ≤ inff∈Vz ||f ||W k,p(U), so f0 is the unique
element of W k,p(U), such that

||f0||W k,p(U) = min
f∈Vz

||f ||W k,p(U).

□

Lemma 3.1. Let V be a Banach space of functions defined on D which satisfies the
minimal norm property. Then, the functionals of the point evaluation for that space
are continuous. Moreover, for any z ∈ D and any functional Ez : V ∋ f 7→ f(z) ∈ C,

||Ez||∗ = 1
||φz||

.

Proof. By the minimal norm property for any z ∈ D there exists Cz > 0 such that for
any f ∈ V for which f(z) ̸= 0 we have

Cz ≤
∣∣∣∣∣
∣∣∣∣∣ f

f(z)

∣∣∣∣∣
∣∣∣∣∣ .
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Therefore,
|f(z)| ≤ Cz||f ||.

If f(z) = 0, then the above inequality is trivially satisfied. Moreover, for any g such
that g(z) = 1, we have

|g(z)| ≤ 1
||φz||

||g||.

For any function f ∈ V , such that f(z) = c, c ̸= 0, 1 there exists function g ∈ V , such
that g(z) = 1 and f = cg. So, we have

|f(z)| = |cg(z)| ≤ 1
||φz||

||cg|| = 1
||φz||

||f ||.

Therefore, ||Ez||∗ ≤ 1
||φz || . Since the above inequality for f = φz is in fact equality, we

conclude that ||Ez||∗ = 1
||φz || . □

4. Dependence of Minimal Norm Element on a Weight of Integration

Let µ1, µ2, . . . , µr be measurable positive functions defined on a domain U such that
there exist positive constants c1, c2 for which

(4.1) c1 < µi(w) < c2,

for any i = 1, 2, . . . , r. µ := (µ1, µ2, . . . , µr) will be called a weight. We will say
that a sequence of weights {µN} converges almost everywhere to the weight µ if the
coefficients of µN converge almost everywhere to the corresponding coefficients of µ.

Let

||f ||Lp
µi

(U) =
(∫

U
|f(w)|pµi(w)dw

) 1
p

.

Now let us define weighted Sobolev norm W k,p
µ

||f || := ||f ||W k,p
µ (U) =

 ∑
|i|≤k

||Dif ||pLp
µi

(U)

 1
p

.

It is clear that in W k,p
µ functionals of point evaluation are continuous. Indeed, using

Theorem 3.1, we get that

||u||
C

k−[ n
p ]−1,γ(U)

≤ C||u||W k,p(U) ≤ C
1

c
1
p

1

||u||W k,p
µ (U).

A direct consequence of this inequality is the fact that any sequence that is bounded in
the weighted Sobolev norm has a convergent subsequence, by Arzelá-Ascoli Theorem.
Therefore, by Theorem 3.2, Banach space of functions with weighted Sobolev norm
with the additional assumptions of Theorem 3.1 satisfies the minimal norm property.
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Theorem 4.1. Let µN be a sequence of weights that converges to the weight µ al-
most everywhere. Let V0 be a Banach space of functions with weighted Sobolev norm
|| · ||W k,p

µ (U) satisfying the assumptions of Theorem 3.1. For any N ∈ N, let V N be the
same as a vector space as V0, but equipped with the weighted Sobolev norm || · ||W k,p

µN (U)

and analogously let V be the same as a vector space as V0 but equipped with the
weighted Sobolev norm || · ||W k,p

µ (U). Let φµN

z,c denote the minimal norm element in the
set

{f ∈ V N | f(z) = c},

and similarly φµ
z,c denote the minimal norm element in the set {f ∈ V | f(z) = c}.

Then,
lim

N→+∞
φµN

z,c = φµ
z,c

and the limit above is uniform on U .

By (4.1) all spaces V N , V and V 0 are the same as topological vector spaces. In
particular they are all complete, i.e., they are Banach spaces.

Note that by the minimal norm property it is sufficient to show this theorem for
c = 1.

Lemma 4.1. If µ1 := (µ1
1, µ1

2, . . . , µ1
r) and µ2 := (µ2

1, µ2
2, . . . , µ2

r) are weights such that
µ1

i ≤ µ2
i for any 1 ≤ i ≤ r, then

||φµ1

z,c||W k,p

µ1 (U) ≤ ||φµ2

z,c||W k,p

µ2 (U).

Proof. By its very own definition
||φµ1

z,c||W k,p

µ1 (U) ≤ ||φµ2

z,c||W k,p

µ1 (U) ≤ ||φµ2

z,c||W k,p

µ2 (U).

□

Now we are going to give the proof of the main theorem.

Proof. First, let us show that the limit of φµN

z exists. Let us take
µ0 := (2c2, 2c2, . . . , 2c2)

(see (4.1)). By (4.1) and Lemma 4.1,

||φµN

z ||W k,p(U) ≤ 1

c
1
p

1

||φµN

z ||W k,p

µN (U) ≤ ||φµ0

z ||W k,p

µ0 (U).

So the sequence ||φµN

z ||W k,p(U) is bounded. Therefore, by (3.1) sequence φµN

z,c satisfies
the assumptions of the Arzelá-Ascoli theorem and we conclude that there exists a
uniformly convergent subsequence of it. Without loss of generality, we can identify it
with the entire sequence. Let us denote its limit by g. By the property of the minimal
norm, it is sufficient to show that
(4.2) ||g||W k,p

µ (U) ≤ ||φµ
z ||W k,p

µ (U).
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By Fatou’s lemma
(4.3) ||g||W k,p

µ (U) ≤ lim inf
N→+∞

||φµN

z ||W k,p

µN (U).

Note that since µN for any N and µ are bounded from below and above by non-zero
constants, all spaces W k,p

µN (U) are equal as topological vector spaces (and in particular
as sets). Therefore, for any f that is an element of any of these spaces, by Lemma
3.1, we have

|f(z)| ≤ 1
||φµN

z ||W k,p

µN (U)

||f ||W k,p

µN (U).

Taking the limit on the right hand side we get that

|f(z)| ≤ 1
limN→+∞ ||φµN

z ||W k,p

µN (U)

||f ||W k,p
µ (U).

We can use Lebesgue dominated convergence theorem to show that ||f ||W k,p

µN (U) →
||f ||W k,p

µ (U). Moreover, by Lemma 3.1, again

(4.4) 1
||φµ

z ||W k,p
µ (U)

≤ 1
limN→+∞ ||φµN

z ||W k,p

µN (U)

.

Combining (4.3) with (4.4), we obtain (4.2). □

5. Dependence of Minimal Norm Element on Increasing Sequence of
Domains

Theorem 5.1. Let {UN} be an increasing sequence of domains with boundaries of
class C1 and U = ⋃+∞

N=1 UN . Let V1 be the Banach space of functions defined on U1
equipped with the Sobolev norm || · ||W k,p(U1) satisfying the assumptions of Theorem 3.1.
Let V N for N > 1 be the Banach space of functions equipped with the Sobolev norm
|| · ||W k,p(UN ), such that for any f ∈ V N we have f|UN−k

∈ VNk
, for k = 1, 2, . . . , N − 1.

Similarly, let V be the Banach space of functions equipped with the Sobolev norm
|| · ||W k,p(U), such that for any f ∈ V we have f|UN

∈ VN for any N . Let φUN
z,c denote

the unique minimal norm element of the set
{f ∈ V N | f(z) = c}

and similarly φU
z,c denote the unique minimal norm element of the set

{f ∈ V | f(z) = c}.

Then,
lim

N→+∞
φUN

z,c = φU
z,c

and the limit above is locally uniform on U .

As in the previous section, by the minimal norm property, it is sufficient to show
the above theorem only for c = 1. We can also define φUN

z,c (w) ≡ 0 for w ∈ U \ UN .



1692 T. Ł. ŻYNDA

Lemma 5.1. If U1 and U2 are domains such that U1 ⊆ U2, then ||φU1
z,c||W k,p(U1) ≤

||φU2
z,c||W k,p(U2).

Proof. By its very own definition ||φU1
z,c||W k,p(U1) ≤ ||φU2

z,c||W k,p(U1) ≤ ||φU2
z,c||W k,p(U2), it

is clear that φU2
z,c ∈ W k,p(U1). □

We will now prove the main theorem.

Proof of Theorem 5.1. First, let us show that the locally uniform limit of φUN

z exists
on U . For any compact set X ⊂ U there exists j ∈ N such that X ⊂ UN for N > j.
By properties of the integral and Lemma 4.1 for N > j we have

||φUN
z ||W k,p(X) ≤ ||φUN

z ||W k,p(UN ) ≤ ||φU
z ||W k,p(U).

So, the sequence ||φUN
z ||W k,p(X) is bounded. Therefore, by (3.1) sequence φµN

z satisfies
the assumptions of the Arzelá-Ascoli theorem on X and we conclude that there exists
a locally uniformly convergent subsequence of it. Without loss of generality, we can
identify it with the entire sequence. Let us denote its limit by g. By the property of
the minimal norm, it is sufficient to show that

(5.1) ||g||W k,p(U) ≤ ||φU
z ||W k,p(U).

By Fatou’s lemma

(5.2) ||g||W k,p(U) ≤ lim inf
N→+∞

||φUN

z ||W k,p(UN ).

Note that we have W k,p(U) ⊆ W k,p(Uj+1) ⊆ W k,p(Uj). Therefore, for any f ∈
W k,p(U), by Lemma 3.1, we have

|f(z)| ≤ 1
||φUN

z ||W k,p(UN )
||f ||W k,p(UN ).

Taking the limit on the right hand side we get that

|f(z)| ≤ 1
limN→+∞ ||φUN

z ||W k,p(UN )
||f ||W k,p(U).

(We can use Lebesgue dominated convergence theorem to show that

||f ||W k,p(UN ) → ||f ||W k,p(U).

We just need to consider integrals
∫

U |f(w)|pIUndw, where IX is indicator function of
set X, and notice that the integrated functions can be dominated by |f |p.) Moreover,
by Lemma 3.1, again

(5.3) 1
||φU

z ||W k,p(U)
≤ 1

limN→+∞ ||φUN
z ||W k,p(UN )

.

Combining (5.2) with (5.3), we obtain (5.1). □
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6. Examples of Applications

Usually, we want the solutions of differential equations to be elements of some
Sobolev spaces. Classical theory states that in many cases, if boundary or initial
conditions are given, then the solution is unique. If the only set of solutions of
the differential equation under consideration is a vector space that is closed in the
corresponding Sobolev norm, and we want to have a unique solution, we can look
for the solution with minimal possible Sobolev norm in the set of functions that take
given value at a fixed point.

In the rest of the section, we assume without further recalling that our Sobolev
norm satisfies the assumptions of Theorem 3.1. By solution we mean a classical
solution, i.e., a sufficiently smooth function.

Note also that the term ’minimal solution’ of a differential equation is usually used
in a different sense (see e.g. [2, 5]).

Example 6.1. Let us consider the set of solutions of Laplace’s equation that have a
finite Sobolev norm. It is clear that this set forms a vector space. We will show that
this vector space is closed in the Sobolev norm topology.

Let (fn) be a sequence of harmonic functions converging to f in the Sobolev norm
topology on a bounded domain U . Then, fn in particular converges to f in the Lp(U)
topology. It is known that the Lp-limit of harmonic functions implies a locally uniform
limit of the same sequence to the same limit. Indeed, by Mean Value Theorem for
subharmonic functions,

|f(x)|p ≤ Cx

∫
B(x,r)

|f(x)|pdx,

where B(x, r) is the ball with centre in x and sufficiently small radius r > 0 to lie
with its boundary in U . Moreover, Cx = 1

L(r) , where L(r) is Lebesgue measure of a
ball of radius r, i.e. Cx depends only on distance of x to the boundary. It means that
for any compact set X ⊂ U there is constant CX , such that for any x ∈ X

|f(x)|p ≤ CX

∫
B(x,r)

|f(x)|pdx.

Therefore, if fn converges to f in the topology Lp(U), it also converges to the same
limit in the topology of locally uniform convergence. It is known that the locally
uniform limit of harmonic functions is also a harmonic function, therefore the vector
space of solutions of the Laplace equation with finite Sobolev norm is closed in the
topology W k,p(U). This means that there is exactly one harmonic function which
takes a given value in a fixed point with minimal Sobolev norm. Moreover, that
extremal function depends continuously on a weight of integration and an increasing
sequence of domains in precisely defined sense. Note that Vz,c is never empty in this
example, since the constant function is always its element.

Example 6.2. Now let p = 2, i.e., let our Sobolev norm be a norm generated by the
inner product. Moreover, let us consider any homogeneous elliptic partial differential
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equation with C∞ coefficients. It is obvious that the set of solutions of such equation,
which have a finite W k,2 norm, is a vector space. Let (fn) be a sequence of elements
of that space that converges to f in the topology W k,2(U), where U is a bounded
domain. Then, in particular, fn converges to f in L2(U). It can be shown that the
L2-limit of the classical solutions of an elliptic equation with smooth coefficients is
also a classical solution of the same equation (see [6] for the proof). Therefore, the
vector space of solutions with finite W k,2 norm of the homogeneous elliptic equation
with C∞coefficients is closed in W k,2(U) topology. This means that if we want our
solution of the elliptic homogeneous equation with C∞ coefficients to be unique, we
may look for the solution with the minimal W k,2(U) norm among the solutions which
take given value at a fixed point. Moreover, if the equation also has the form

Auxx + Buxy + Cuyy + Dux + Euy = 0,

then Vz,c is never empty, because constant function is always its element.
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