ON SIMULTANEOUS APPROXIMATION AND COMBINATIONS OF LUPAS TYPE OPERATORS

T. A. K. SINHA ${ }^{1}$, K. K. SINGH ${ }^{2}$, AND AVINASH K. SHARMA ${ }^{3}$

Abstract

The purpose of the present paper is to study a sequence of linear and positive operators which was introduced by A. Lupas. First, we obtain estimate of moments of the operators and then prove a basic convergence theorem for simultaneous approximation. Further, we find error in approximation in terms of modulus of continuity of function. Finally, we establish a Voronovskaja asymptotic formula for linear combination of the above operators.

1. Introduction

At the International Dortmund Meeting held in Written (Germany, March, 1995), A. Lupas [11] introduced the following Linear positive operators for $f:[0, \infty) \rightarrow \mathbb{R}$ as

$$
\begin{align*}
L_{n}(f, x) & =(1-a)^{n x} \sum_{\nu=0}^{\infty} \frac{(n x)_{\nu}}{\nu!} a^{\nu} f\left(\frac{\nu}{n}\right), \quad x \geq 0 \tag{1.1}\\
(1-a)^{-\alpha} & =\sum_{\nu=0}^{\infty} \frac{(\alpha)_{\nu}}{\nu!} a^{\nu} \tag{1.2}
\end{align*}
$$

where

$$
|a|<1, \quad(\alpha)_{0}=1, \quad(\alpha)_{\nu}=\alpha(\alpha+1) \cdots(\alpha+\nu-1), \quad \nu \geq 1 .
$$

If we impose that $L_{n}(t, x)=x$, we find that $a=1 / 2$. Therefore, operator (1.1) becomes

$$
L_{n}(f, x)=2^{-n x} \sum_{\nu=0}^{\infty} \frac{(n x)_{\nu}}{2^{\nu} \nu!} f\left(\frac{\nu}{n}\right), \quad x \geq 0 .
$$

[^0]It was seen that these opeartors are positive and linear and preseve linear functions. Bernstein polynomials [10] exhibit the property of simultaneous approximation. Simultaneous approximation for Baskakov operators, modified by Durrmeyer, was studied by Heilmann and Müller [8]. Another modification of Baskakov operators for simultaneous approximation was investigated by Sinha et al. [18]. Yet another modification of Baskakov operators viz., integral modification of Baskakov operators shows simultaneous approximation property in Thamer et al. [20]. This was studied for Durrmeyer modification of Bernstein polynomials by Gonska and Zhou [4]. In the summationintegral type operators Gupta et al. [7] explored the simultanoeus approximation. So far research work was done for linear positive operators ([3],[6],[9],[12]-[15], [19]). Singh and Agrawal [17] proved simultaneous approximation by a linear combination of Bernstein-Durrmeyer type polynomials. Gupta [5] studied the differences of operators of Lupas type. So, the Lupas operators play very important role to approximate functions for $f \in C[0, \infty)$.

It turns out that the order of approximation by these operators is at best $O\left(n^{-1}\right)$, however smooth the function may be. Therefore, in order to improve the order of approximation by the operators (1.1), we apply the technique of linear combination introduced by Butzer [2] and Rathore [16].

The approximation process for linear combination is defined as follows.
Let $d_{0}, d_{1}, \ldots, d_{k}$ be $(k+1)$ arbitrary but fixed distinct positive integers. Then, the linear combination $L_{n}(f, k, x)$ of $L_{d_{j} n}(f, x), j=0,1,2, \ldots, k$, is given by

$$
L_{n}(f, k, x)=\frac{1}{\Delta}\left|\begin{array}{ccccc}
L_{d_{0} n}(f, x) & d_{0}^{-1} & d_{0}^{-2} & \cdots & d_{0}^{-k} \\
L_{d_{1} n}(f, x) & d_{1}^{-1} & d_{1}^{-2} & \cdots & d_{1}^{-k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{d_{k} n}(f, x) & d_{k}^{-1} & d_{k}^{-2} & \cdots & d_{k}^{-k}
\end{array}\right|
$$

where Δ is the Vandermonde determinant defined as

$$
\Delta=\left|\begin{array}{ccccc}
1 & d_{0}^{-1} & d_{0}^{-2} & \cdots & d_{0}^{-k} \\
1 & d_{1}^{-1} & d_{1}^{-2} & \cdots & d_{1}^{-k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & d_{k}^{-1} & d_{k}^{-2} & \cdots & d_{k}^{-k}
\end{array}\right|
$$

On simplification, we have

$$
\begin{equation*}
L_{n}(f, k, x)=\sum_{j=0}^{k} C(j, k) L_{d_{j} n}(f, x), \tag{1.3}
\end{equation*}
$$

where

$$
C(j, k)=\prod_{i=0, i \neq j}^{k} \frac{d_{j}}{d_{j}-d_{i}}, \quad k \neq 0 \text { and } C(0,0)=1 .
$$

2. Moment Estimates

Lemma 2.1 ([5]). The following relations hold:

$$
L_{n}(1, x)=1, \quad L_{n}(t-x, x)=\frac{2 a-1}{1-a} x, L_{n}\left((t-x)^{2}, x\right)=\frac{n^{2} x^{2}(2 a-1)^{2}+n a x}{n^{2}(1-a)^{2}} .
$$

Now, we define m th order moment

$$
\mu_{m}(x)=L_{n}\left((t-x)^{m}, x\right)=(1-a)^{n x}\left\{\sum_{\nu=0}^{\infty} \frac{(n x)_{\nu}}{\nu!} a^{\nu}\left(\frac{\nu}{n}-x\right)^{m}\right\} .
$$

Lemma 2.2. $\mu_{m}(x)$ is a polynomial in x of degree $[m / 2]$. Moreover

$$
\mu_{m}(x)=O\left(\frac{1}{n^{\left[\frac{m+1}{2}\right]}}\right), \quad n \rightarrow \infty .
$$

Proof. By definition of moments of m th order, we have

$$
\begin{align*}
\mu_{m}(x)= & (1-a)^{n x} \sum_{\nu=0}^{\infty}(-1)^{m} a^{\nu} \frac{(n x)_{\nu}}{\nu!}\left\{\sum_{r=0}^{m}\binom{m}{r}(-1)^{r} x^{m-r}\left(\frac{\nu}{n}\right)^{r}\right\} \\
= & (-1)^{m}(1-a)^{n x} \sum_{\nu=0}^{\infty} \frac{(n x)_{\nu}}{\nu!} a^{\nu}\left\{\sum_{r=0}^{m}\binom{m}{r}\left(-\frac{1}{n}\right)^{r} x^{m-r}\right. \tag{2.1}\\
& \left.\times\left(\nu^{(r)}+p_{2} \nu^{(r-1)}+p_{4} \nu^{(r-2)}+\cdots\right)\right\},
\end{align*}
$$

where $\nu^{(r)}=\nu(\nu-1)(\nu-2) \cdots(\nu-r+1), p_{2}$ is a polynomial in r of second degree, p_{4} is a polynomial in r of fourth degree and so on.

It follows from (1.2) upon s times differentiation in a that

$$
\begin{equation*}
\sum_{\nu=0}^{\infty} \frac{(n x)_{\nu}}{\nu!} \nu(\nu-1) \cdots(\nu-s+1) a^{\nu-s}=(n x)_{s}(1-a)^{-n x-s} \tag{2.2}
\end{equation*}
$$

Making an use of (2.2) in (2.1)

$$
\begin{aligned}
\mu_{m}(x)= & (-1)^{m} \sum_{r=0}^{m}\binom{m}{r}\left(-\frac{1}{n}\right)^{r} x^{m-r}\left\{\frac{a^{r}}{(1-a)^{r}}(n x)_{r}+p_{2} \frac{a^{r-1}}{(1-a)^{r-1}}(n x)_{r-1}\right. \\
& \left.+p_{4} \frac{a^{r-2}}{(1-a)^{r-2}}(n x)_{r-2}+\cdots\right\} .
\end{aligned}
$$

Again,

$$
\frac{(n x)_{r}}{n^{r} x^{r}}=1+\frac{q_{2}}{n x}+\frac{q_{4}}{(n x)^{2}}+\frac{q_{6}}{(n x)^{3}}+\cdots,
$$

where q_{j} as before is a polynomial in r of degree j.

Therefore, taking $a=1 / 2$ and using fact that $\sum_{r=0}^{m}\binom{m}{r}(-1)^{r} r^{s}=0, s<m$, we find that

$$
\mu_{m}(x)=(-1)^{m} x^{m}\left\{\frac{C}{(n x)^{\left[\frac{m+1}{2}\right]}}+\cdots \text { higher order terms }\right\} .
$$

Therefore, $\mu_{m}(x)$ is a polynomial in x of degree $[m / 2]$. This completes the proof of lemma.

3. Simultaneous Approximation

Theorem 3.1. Let $f^{\prime} \in C_{B}[0, \infty)$. Then, sequence $\left\{\frac{d}{d x}\left(L_{n}(f, x)\right)\right\}_{n=1}^{\infty}$ converges to $f^{\prime}(x)$ pointwise on $[0, \infty)$. Moreover, if S is a compact subset of $[0, \infty)$ then sequence $\left\{\frac{d}{d x}\left(L_{n}(f, x)\right)\right\}_{n=1}^{\infty}$ converges to $f^{\prime}(x)$ uniformly on S.

Proof. We expand

$$
f(w)=f(x)+(w-x) f^{\prime}(x)+\int_{x}^{w}\left(f^{\prime}(t)-f^{\prime}(x)\right) d t
$$

Operating $L_{n}(\cdot, y)$ on both sides of above equation and in view of Lemma 2.1, we obtain

$$
L_{n}(f, y)=f(x)+\left(\frac{a y}{1-a}-x\right) f^{\prime}(x)+(1-a)^{n y}\left\{\sum_{\nu=0}^{\infty} \frac{(n y)_{\nu}}{\nu!} a^{\nu} R_{\nu}\right\}
$$

where $R_{\nu}=\int_{x}^{\nu / n}\left(f^{\prime}(t)-f^{\prime}(x)\right) d t$. Thus,

$$
\begin{align*}
\frac{d}{d x} L_{n}(f, x)= & \frac{a}{1-a} f^{\prime}(x)+n(1-a)^{n x} \tag{3.1}\\
& \times\left\{\ln (1-a) \sum_{\nu=0}^{\infty} \frac{(n x)_{\nu}}{\nu!} a^{\nu} R_{\nu}+\sum_{\nu=1}^{\infty} \frac{d(n x)_{\nu}}{d(n x)} \frac{a^{\nu}}{\nu!} R_{\nu}\right\} .
\end{align*}
$$

We put $n x=\alpha$ and differentiate (1.2) w.r.t. α. Further, we equate coefficient of a^{ν} on both sides, we get

$$
\begin{equation*}
\frac{1}{\nu!} \cdot \frac{d(\alpha)_{\nu}}{d \alpha}=\frac{\alpha_{\nu-1}}{(\nu-1)!}+\frac{1}{2} \cdot \frac{\alpha_{\nu-2}}{(\nu-2)!}+\frac{1}{3} \cdot \frac{\alpha_{\nu-3}}{(\nu-3)!}+\cdots+\frac{1}{\nu} \cdot \frac{\alpha_{0}}{0!} . \tag{3.2}
\end{equation*}
$$

Using (3.2) in (3.1), we get

$$
\begin{align*}
& \frac{d}{d x} L_{n}(f, x)-\frac{a}{1-a} f^{\prime}(x) \\
= & n(1-a)^{\alpha}\left[a\left(R_{1}-R_{0}\right)+a^{2}\left\{\frac{(\alpha)_{1}}{1!}\left(R_{2}-R_{1}\right)+\frac{(\alpha)_{0}}{2}\left(R_{2}-R_{0}\right)\right\}\right. \\
& +a^{3}\left\{\frac{(\alpha)_{2}}{2!}\left(R_{3}-R_{2}\right)+\frac{1}{2} \cdot \frac{(\alpha)_{1}}{1!}\left(R_{3}-R_{1}\right)+\frac{1}{3}(\alpha)_{0}\left(R_{3}-R_{0}\right)\right\}+\cdots \\
& +a^{\nu}\left\{\frac{(\alpha)_{\nu-1}}{(\nu-1)!}\left(R_{\nu}-R_{\nu-1}\right)+\frac{(\alpha)_{\nu-2}}{(\nu-2)!} \cdot \frac{1}{2}\left(R_{\nu}-R_{\nu-2}\right)\right. \\
& +\frac{(\alpha)_{\nu-3}}{(\nu-3)!} \cdot \frac{1}{3}\left(R_{\nu}-R_{\nu-3}\right)+\cdots+\frac{(\alpha)_{1}}{1!} \cdot \frac{1}{\nu-1}\left(R_{\nu}-R_{1}\right) \\
& \left.\left.+\frac{1}{\nu} \cdot \frac{(\alpha)_{0}}{1}\left(R_{\nu}-R_{0}\right)\right\}+\cdots\right] \\
= & n(1-a)^{\alpha}\left[a \left\{(\alpha)_{0}\left(R_{1}-R_{0}\right)+\frac{a(\alpha)_{1}}{1!}\left(R_{2}-R_{1}\right)+\frac{a^{2}(\alpha)_{2}}{2!}\left(R_{3}-R_{2}\right)\right.\right. \\
& \left.+\frac{a^{3}(\alpha)_{3}}{3!}\left(R_{4}-R_{3}\right)+\cdots\right\}+a^{2}\left\{\frac{(\alpha)_{0}}{2}\left(R_{2}-R_{0}\right)+\frac{a(\alpha)_{1}}{1!} \cdot \frac{1}{2}\left(R_{3}-R_{1}\right)\right. \\
& \left.+\frac{a^{2}(\alpha)_{2}}{2!} \cdot \frac{1}{2}\left(R_{4}-R_{2}\right)+\frac{a^{3}(\alpha)_{3}}{3!} \cdot \frac{1}{2}\left(R_{5}-R_{3}\right)+\cdots\right\} \\
& +a^{3}\left\{(\alpha)_{0} \frac{1}{3}\left(R_{3}-R_{0}\right)+\frac{a(\alpha)_{1}}{1!} \cdot \frac{1}{3}\left(R_{4}-R_{1}\right)+\frac{a^{2}(\alpha)_{2}}{2!} \cdot \frac{1}{3}\left(R_{5}-R_{2}\right)+\cdots\right\} \\
= & +\cdots] \\
& n(1-a)^{\alpha}\left[\Sigma_{1}+\Sigma_{2}+\Sigma_{3}+\cdots\right], \operatorname{say.} \tag{3.3}
\end{align*}
$$

The continuity of $f^{\prime}(\cdot)$ at point x implies that for a given $\epsilon>0$ there exists a $\delta=\delta(x)$, (depending on x) such that $\left|f^{\prime}(t)-f^{\prime}(x)\right|<\epsilon$ if $|t-x|<\delta$. We break $R_{p}-R_{q}$ in two parts depending upon $|t-x|<\delta$ and $|t-x| \geq \delta$. In the second part, there may be two terms, where $\left|f^{\prime}(t)-f^{\prime}(x)\right| \leq 2\left\|f^{\prime}\right\|_{C_{B}[0, \infty)} \cdot \frac{1}{\delta^{2}}(t-x)^{2}$.

Using Lemma 2.1, we get

$$
\begin{align*}
\left|\Sigma_{1}\right| & \leq a \frac{\epsilon}{n}\left(\sum_{k=0}^{\infty} \frac{a^{k}}{k!}(\alpha)_{k}\right)+\frac{2 \cdot 2\left\|f^{\prime}\right\|_{C_{B}[0, \infty)}}{\delta^{2}} \cdot \frac{a}{n}\left\{\sum_{k=0}^{\infty} \frac{a^{k}}{k!}(\alpha)_{k}\left(\frac{k}{n}-x\right)^{2}\right\} \\
& =a \frac{\epsilon}{n}(1-a)^{-\alpha}+\frac{4\left\|f^{\prime}\right\|_{C_{B}[0, \infty)}}{\delta^{2}} \cdot \frac{a}{n} \cdot\left\{\frac{n x^{2}(2 a-1)^{2}+a x}{n(1-a)^{2}}\right\}(1-a)^{-\alpha} . \tag{3.4}
\end{align*}
$$

Now,

$$
\begin{align*}
\left|\Sigma_{2}\right| & \leq a^{2} \frac{\epsilon}{n}\left\{\sum_{k=0}^{\infty} \frac{a^{k}}{k!}(\alpha)_{k}\right\}+\frac{4\left\|f^{\prime}\right\|_{C_{B}[0, \infty)}}{\delta^{2}} \cdot \frac{a^{2}}{n}\left\{\sum_{k=0}^{\infty} \frac{a^{k}}{k!}(\alpha)_{k}\left(\frac{k}{n}-x\right)^{2}\right\} \\
& =a^{2} \frac{\epsilon}{n}(1-a)^{-\alpha}+\frac{4\left\|f^{\prime}\right\|_{C_{B}[0, \infty)}}{\delta^{2}} \cdot \frac{a^{2}}{n}\left\{\frac{n x^{2}(2 a-1)^{2}+a x}{n(1-a)^{2}}\right\}(1-a)^{-\alpha} . \tag{3.5}
\end{align*}
$$

The similar estimates for $\Sigma_{3}, \Sigma_{4}, \ldots$ are combined in (3.3) and we take $a=\frac{1}{2}$ due to Agratini [1]. Finally,

$$
\left|\frac{d}{d x} L_{n}(f, x)-f^{\prime}(x)\right| \leq C n\left(\frac{\epsilon}{n}+\frac{1}{n^{2}}\right) .
$$

This completes the proof of the first part.
Proof of second part of Theorem 3.1. Let S be a compact subset of $[0, \infty)$. The pointwise continuity of function $f^{\prime}(\cdot)$ at points of S, imply, by virtue of compactness of S, that $f^{\prime}(\cdot)$ is now uniformly continuous on S. Thus, δ is now independent of x. Moreover S, being compact, is a bounded subset of $[0, \infty)$. Thus $x \in S$ implies $|x|<C_{1}$, a constant. This implies by (3.4) and (3.5) that convergence is uniform.

Theorem 3.2. Let $f^{\prime} \in C_{B}[0, \infty)$. Then for $\delta>0$ and $[a, b] \subset\left(a_{1}, b_{1}\right)$ we have

$$
\sup _{x \in[a, b]}\left|L_{n}^{\prime}(f, x)-f^{\prime}(x)\right| \leq \omega\left(f^{\prime}, \delta,\left[a_{1}, b_{1}\right]\right)+\frac{C}{n}\left\|f^{\prime}\right\|_{C_{B}[0, \infty)} .
$$

Proof. We proceed in similar way as in the proof of Theorem 3.1. In the steps following (3.3) if $|t-x|<\delta$, then $\left|f^{\prime}(t)-f^{\prime}(x)\right| \leq \omega\left(f^{\prime}, \delta,\left[a_{1}, b_{1}\right]\right)$. When $|t-x| \geq \delta$, using boundedness of f^{\prime} the total contribution is of order $\left\|f^{\prime}\right\|_{C_{B}[0, \infty)} O\left(\frac{1}{n}\right)$ as $n \rightarrow \infty$, by Lemma 2.1. Hence, the proof follows.

4. Linear Combinations

Theorem 4.1. Let $f^{(2 k+2)} \in C_{B}[0, \infty)$. Then there holds for each $x \in[0, \infty)$, pointwise:

$$
\begin{equation*}
\frac{d}{d x} L_{n}(f, k, x)-f^{\prime}(x)=\frac{1}{n^{k+1}}\left\{\sum_{j=k+2}^{2 k+2} q_{j}(x) f^{(j)}(x)\right\}+o\left(\frac{1}{n^{k+1}}\right), \quad n \rightarrow \infty \tag{4.1}
\end{equation*}
$$

Moreover, if S is a compact subset of $[0, \infty)$, then convergence (4.1) is uniform on S.

Proof. Using Taylor's series expansion, we write

$$
\begin{aligned}
f(w)= & f(x)+(w-x) f^{\prime}(x)+\frac{(w-x)^{2}}{2!} f^{(2)}(x)+\cdots \\
& +\frac{(w-x)^{2 k+2}}{(2 k+2)!} f^{(2 k+2)}(x) \\
& +\int_{x}^{w} \int_{x}^{t_{1}} \int_{x}^{t_{2}} \cdots \int_{x}^{t_{2 k+1}}\left(f^{(2 k+2)}(u)-f^{(2 k+2)}(x)\right) d t_{2 k+1} d t_{2 k} \cdots d t_{1} d u .
\end{aligned}
$$

Operating $L_{n}(\cdot, y)$ on both sides of above equation and in view of Lemma 2.1, we obtain

$$
\begin{aligned}
L_{n}(f, y)= & f(x)+\left(\frac{a y}{1-a}-x\right) f^{\prime}(x)+\frac{f^{(2)}(x)}{2!} p_{2}(1 / n, y) \\
& +\frac{f^{(3)}(x)}{3!} p_{3}(1 / n, y)+\cdots+\frac{f^{(2 k+2)}(x)}{(2 k+2)} p_{2 k+2}(1 / n, y) \\
& +(1-a)^{n y}\left(\sum_{\nu=0}^{\infty} \frac{(n y)_{\nu}}{\nu!} a^{\nu} R_{\nu}\right),
\end{aligned}
$$

where

$$
R_{\nu}=\int_{x}^{\nu / n} \int_{x}^{t_{1}} \int_{x}^{t_{2}} \cdots \int_{x}^{t_{2 k+1}}\left(f^{(2 k+2)}(u)-f^{(2 k+2)}(x)\right) d t_{2 k+1} d t_{2 k} \cdots d t_{1} d u
$$

and $p_{j}\left(\frac{1}{n}, y\right)$ is a polynomial in y of degree j and in $\frac{1}{n}$ of degree $(j-1)$.
This implies that

$$
\begin{align*}
\frac{d}{d x} L_{n}(f, x)= & \frac{a}{1-a} f^{\prime}(x)+\frac{f^{(2)}(x)}{2!} p_{2}^{\prime}(1 / n, x) \tag{4.2}\\
& +\frac{f^{(3)}(x)}{3!} p_{3}^{\prime}(1 / n, x)+\cdots+\frac{f^{(2 k+2)}(x)}{(2 k+2)} p_{2 k+2}^{\prime}(1 / n, x) \\
& +n(1-a)^{n x}\left\{\log (1-a) \sum_{\nu=0}^{\infty} \frac{(n x)_{\nu}}{\nu!} a^{\nu} R_{\nu}+\sum_{\nu=1}^{\infty} \frac{d(n x)_{\nu}}{d(n x)} \cdot \frac{a^{\nu}}{\nu!} R_{\nu}\right\}
\end{align*}
$$

Let $\phi(n, x)=n(1-a)^{n x}\left\{\log (1-a) \sum_{\nu=0}^{\infty} \frac{(n x)_{\nu}}{\nu!} a^{\nu} R_{\nu}+\sum_{\nu=1}^{\infty} \frac{d(n x)_{\nu}}{d(n x)} \frac{a^{\nu}}{\nu!} R_{\nu}\right\}$. Now, taking linear combinations on (4.2) and using their properties (1.3), we have

$$
\frac{d}{d x} L_{n}(f, k, x)-\left(\frac{a}{1-a}\right) f^{\prime}(x)=\left\{\sum_{j=k+2}^{2 k+2} q_{j}(x) f^{(j)}(x)\right\} \frac{1}{n^{k+1}}+\sum_{j=0}^{k} C(j, k) \phi\left(d_{j} n, x\right)
$$

We analyze last term as in (3.1) and obtain the required result.
The proof of the second part of theorem follows from the proof of the second part of Theorem 3.1.

Acknowledgements. The authors are thankful to the reviewers for helpful remarks and suggestions which lead to essential improvement of the whole manuscript.

References

[1] O. Agratini, On a sequence of linear and positive operators, Facta Univ. Ser. Math. Inform. 14 (1999), 41-48.
[2] P. L. Butzer, Linear combinations of Bernstein polynomials, Canadian J. Math. 5 (1953), 559-567.
[3] F. Özger, H. M. Srivastava and S. A. Mohiuddine, Approximation of functions by a new class of generalized Bernstein-Schurer operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 114 (2020), Article ID 173. https://doi.org/10.1007/s13398-020-00903-6
[4] H. H. Gonska and X. L. Zhou, A global Inverse theorem on simultaneous approximation by Bernstein Durrmeyer operators, J. Approx. Theory 67 (1991), 284-302. https://doi.org/10. 1016/0021-9045(91) 90004-T
[5] V. Gupta, Diffrences of operators of Lupas type, Constructive Mathematical Analysis 1(1) (2018), 9-14. https://doi.org/10.33205/cma. 452962
[6] V. Gupta and H. M. Srivastava, A general family of the Srivastava-Gupta operators preserving linear functions, Eur. J. Pure Appl. Math. 11(3) (2018), 575-579. https://doi.org/10.29020/ nybg.ejpam.v11i3.3314
[7] V. Gupta, M. K. Gupta and V. Vasishtha, Simultaneous approximation by summation integral type operators, Journal of Nonlinear Functional Analysis 8(3) (2003), 399-412.
[8] M. Heilmann and M. W. Müller, On simultaneous approximation by the method of BaskakovDurrmeyer operators, Numer. Funct. Anal. Optim. 10(1-2) (1989), 127-138. https://doi.org/ 10.1080/01630568908816295
[9] A. Kajla and T. Acar, Modified α-Bernstein operators with better approximation properties, Ann. Funct. Anal. 10(4) (2019), 570-582. https://doi.org/10.1215/20088752-2019-0015
[10] G. G. Lorentz, Benstein Polynomials, Chelsea Publishing Company, New York, 1986.
[11] A. Lupas, The approximation by some positive linear operators, in: M. W Müller et al. (Eds.), Proceedings of the International Dortmund Meeting on Approximation Theory, Akademie Verlag, Berlin, 1995, 201-229.
[12] A. Kajla, S. A. Mohiuddine and A. Alotaibi, Blending-type approximation by Lupas-Durrmeyertype operators involving Pólya distribution, Math. Methods Appl. Sci. 44 (2021), 9407-9418. https://doi.org/10.1002/mma. 7368
[13] S. A. Mohiuddine and F. Özger, Approximation of functions by Stancu variant of BernsteinKantorovich operators based on shape parameter α, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 114 (2020), Article ID 70. https://doi.org/10.1007/s13398-020-00802-w
[14] S. A. Mohiuddine, T. Acar and A. Alotaibi, Construction of a new family of BernsteinKantorovich operators, Math. Methods Appl. Sci. 40 (2017), 7749-7759. https://doi.org/ 10.1002/mma. 4559
[15] S. A. Mohiuddine, N. Ahmad, F. Özger, A. Alotaibi and B. Hazarika, Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators, Iran. J. Sci. Technol. Trans. A Sci. 45 (2021), 593-605. https://doi.org/10.1007/ s40995-020-01024-w
[16] R. K. S. Rathore, Linear combination of linear positive operators and generating relations in special functions, Ph. D. Thesis, I. I. T. Delhi, India, 1973.
[17] K. K. Singh and P. N. Agrawal, Simultaneous approximation by a linear combination of Bernstein-Durrmeyer type polynomials, Bull. Math. Anal. Appl. 3(2) (2011), 70-82.
[18] R. P. Sinha, P. N. Agrawal and V. Gupta, On simultaneous approximation by modified Baskakov operators, Bull. Soc. Math. Belg. Ser. B. 43(2) (1991), 217-231.
[19] H. M. Srivastava and V. Gupta, A certain family of summation-integral type operators, Math. Comput. Modelling 37 (2003), 1307-1315. https://doi.org/10.1016/S0895-7177 (03) 90042-2
[20] K. J. Thamer and A. I. Ibrahim, Simultaneous approximation with linear combination of integral Baskakov type operators, Revista De La Union Mathematica Argentina 46(1) (2005), 1-10.
${ }^{1}$ Department of Mathematics, Patliputra University, Bodh-Gaya-824234(Bihar), India
Email address: thakurashok1212@gmail.com
${ }^{2}$ Department of Applied Sciences and Humanities, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow-226021(Uttar Pradesh), India
Email address: kksiitr.singh@gmail.com
${ }^{3}$ PG Department of Mathematics, Magadh University,
Bodh-Gaya-824234(Bihar), India
Email address: ak95257016@gmail.com

[^0]: Key words and phrases. Lupas operators, simultaneous approximation, modulus of continuity, Voronovskaja asymptotic formula, linear combinations,

 2020 Mathematics Subject Classification. Primary: 41A25. Secondary: 41A28, 41A36.
 DOI
 Received: April 14, 2021.
 Accepted: July 24, 2021.

