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ENERGY LANDSCAPES AND NON-ARCHIMEDEAN
PSEUDO-DIFFERENTIAL OPERATORS AS TOOLS FOR

STUDYING THE SPREADING OF INFECTIOUS DISEASES IN A
SITUATION OF EXTREME SOCIAL ISOLATION

VICTOR A. AGUILAR-ARTEAGA1, I. S. GUTIÉRREZ2,
AND ANSELMO TORRESBLANCA-BADILLO

Abstract. In this article, we introduce a new type of pseudo-differential equations
naturally connected with non-archimedean pseudo-differential operators and whose
symbols are new classes of negative definite functions in the p-adic context and in
arbitrary dimension. These equations are proposed as a mathematical models to
study the spreading of infectious diseases (say COVID-19) through a random walk
on a complex energy landscape and taking into account social clusters in a situation
of extreme social isolation.

1. Introduction

In the archimedean setting the nonlocal evolution equations of the form

(1.1) ut(x, t) = (J ∗ u− u)(x, t) =
∫
Rn
J(x− y)u(y, t)dy − u(x, t)

have been widely used to model diffusion processes. Here, J : Rn → R be a nonnega-
tive, radial, continuous function with∫

Rn
J(z)dz = 1.
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The model (1.1) can be interpreted as follows: if u(x, t) is thought of as a density at a
point x at time t and J(x− y) is thought of as the probability distribution of jumping
from location y to location x, then∫

Rn
J(y − x)u(y, t)dy = (J ∗ u)(x, t)

is the rate at which individuals are arriving at position x from all other places. In
the same way, −u(x, t) = −

∫
Rn J(y− x)u(x, t)dy is the rate at which they are leaving

location x to travel to all other sites. This consideration, in the absence of external
or internal sources, leads immediately to the fact that the density u satisfies equation
(1.1). For further details the reader may consult [12, 16], and the references therein.
In [6, 7] Avetisov et al. developed a class of p-adic pseudo-differential equations in
dimension one with the aim of studying the dynamics of a large class of complex
systems such as macromolecules, glasses and proteins. In these models, the time-
evolution of the system is controlled by a master equation of the form

∂u (x, t)
∂t

=
∫
Qp
j
(
|x− y|p

)
{u (y, t)− u (x, t)} dy, t ≥ 0,

where j : Qp × Qp → R+ is the probability of transition from state y to the state
x per unit time, and the function u(x, t) : Qp × R+ → R+ is a probability density
distribution.

In the latest years, p-adic nonlocal evolution equations and variations of it have
been studied extensively. For example, modeling of geological processes (such as
petroleum reservoir dynamics, fluid flows in porous media such as rock); the dynamics
of myoglobin (myoglobin is a monomeric protein that gives muscle its red color); the
relaxation of spin glasses, etc., see e.g. [1, 2, 5, 11, 21,22,24–29,37] and the references
therein. In this models the dynamics of complex systems is described by a random
walk on a complex energy landscape. An energy landscape (or simply a landscape)
is a continuous function U : X → R that assigns to each physical state of a system
its energy. The term complex landscape means that function U has many local
minima. In this case the method of interbasin kinetics is applied, in this approach,
the study of a random walk on a complex landscape is based on a description of
the kinetics generated by transitions between groups of states (basins). This concept
can be outlined as follows. A complex system is assumed to have a large number of
metastable configurations which realize local minima on the potential energy surface.
The local minima are clustered in hierarchically nested basins of minima, namely, each
large basin consists of smaller basins, each of these consisting of even smaller ones,
and so on. Minimal basins correspond to local minima of energy, and large basins
have hierarchical structure. Minimal basins correspond to local minima of energy, and
large basins have hierarchical structure. The transition rate between basins depends
on the energy barrier between these basins. By using these methods, the configuration
space of the system is approximated by an ultrametric space (a rooted tree) and by
a function on the tree which describes by stochastic motions the distribution of the
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activation energies. Procedures for constructing hierarchies of basins kinetics from
any energy landscapes have been studied extensively, see e.g. [6–8, 22, 27, 31, 32, 37]
and the references therein.

In [7] an Arrhenius type relation was used, that is,

j (x | y) ∼ A(T ) exp
{
−U (x | y)

kT

}
,

where U (x | y) is the height of the activation barrier for the transition from the state
y to state x, k is the Boltzmann constant and T is the temperature. This formula
establishes a relation between the structure of the energy landscape U (x | y) and the
transition function j (x | y).

In this paper, we introduce new classes of p-adic pseudo-differential equations nat-
urally connected with certain types of non-archimedean pseudo-differential operators
whose symbols are associated with new classes of negative definite functions on the
p-adic numbers. This type of pseudo-differential equations may be seen as a general-
ization of the equations studied in [6, 7, 30, 36–38] and the references therein.

We establish rigorously that such equations are ultradiffusion equations, i.e., we
show that the fundamental solutions of the Cauchy problems naturally associated to
these equations are transition density functions of some strong Markov processes X
with state space Qn

p , see Theorem 3.2, Theorem 4.2 and Theorem 5.1.
Given the non-archimedean topology of Qn

p we have that two balls in Qn
p have

nonempty intersection if and only if one is contained in the other. Moreover, any ball
can be represented as disjoint union of balls of smaller radius, each of the latter can
be represented in the same way with even smaller radius and so on, see e.g. [4, 38].
The above implies that every ball in Qn

p can be identified with a rooted tree. For
this reason, a particular population group in a human society can be represented as
a system of hierarchically coupled disjoint clusters. Any cluster is slit into disjoint
sub-cluster, each of the latter is split into its own disjoint) sub-clusters and so on.
Therefore, the ultrametric spaces (in particular the p-adic numbers) are proposed as a
natural, necessary and essential structure to study the spreading of infectious diseases
(say COVID-19) through a random walk on a complex energy landscape and taking
into account social clusters in a situation of extreme social isolation. For more details,
the reader can consult [3, 19, 20,23,34].

From a mathematical, physical and computational point of view, we consider that
the spread of infectious diseases (such as the COVID-19 epidemic and new variants
with very high rates of contagion) on social clusters in a situation of extreme social
isolation, can be modeled as a random walk in an complex energy landscape. Therefore,
an interesting open problem consists in determine if our p-adic pseudo-differential
equations (in combination with the method of interbasin kinetics) can be applied,
among other things, to study the dynamics of the spread infectious diseases through
in a random walk in a complex energy landscape.
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It should also be noted that, recently in [36] and [37], the authors Torresblanca-
Badillo and Zúñiga-Galindo introduce a large class of non-archimedean pseudo-diffe-
rential operators whose symbols are negative definite functions. Since then, in the
last four years, the first author and his collaborators have been studied new classes
of non-archimedean pseudo-differential operators whose symbols are associated with
negative definite functions on the p-adic numbers, see [9, 13–15,34,35].

This article is organized as follows. In Section 2, we will collect some basic results
on the p-adic analysis and fix the notation that we will use through the article. In
Section 3, we introduce a large class of negative definite functions of the semi-smooth
and elliptic types, see Theorem 3.1 and Corollary 3.1, respectively. These functions
are the symbols of a large class of non-archimedean pseudo-differential operators (de-
noted by A) which determine certain ultradiffusion equations on Qn

p , see Theorem 3.2.
In Section 4 we also introduced new classes of non-archimedean pseudo-differential
operators whose symbols are new classes of negative definite functions (in the p-adic
context) associated with logarithmic functions, see Theorem 4.1 and Corollary 4.1.
This operators determine certain Lévy process X (t, ω) with state space Qn

p , see Theo-
rem 4.2. In Section 5 we will study a new class of non-archimedean operators (denoted
by Aψ) associated with a non-archimedean negative definite function ψ. Imposing cer-
tain conditions to the function ψ we obtain that Aψ is a pseudo-differential operator
which also determine ultradiffusion equations, see Theorem 5.1.

2. Fourier Analysis on Qn
p : Essential Ideas

2.1. The field of p-adic numbers. Along this article p will denote a prime number.
The field of p-adic numbers Qp is defined as the completion of the field of rational
numbers Q with respect to the p-adic norm | · |p, which is defined as

|x|p =

0, if x = 0,
p−γ, if x = pγ a

b
,

where a and b are integers coprime with p. The integer γ := ord(x), with ord(0) :=
+∞, is called the p-adic order of x.

Any p-adic number x 6= 0 has a unique expansion of the form x = pord(x)∑∞
j=0 xjp

j,
where xj ∈ {0, 1, 2, . . . , p − 1} and x0 6= 0. By using this expansion, we define the
fractional part of x ∈ Qp, denoted {x}p, as the rational number

{x}p =

0, if x = 0 or ord(x) ≥ 0,
pord(x)∑−ordp(x)−1

j=0 xjp
j, if ord(x) < 0.

We extend the p-adic norm to Qn
p by taking

||x||p := max
1≤i≤n

|xi|p, for x = (x1, . . . , xn) ∈ Qn
p .

For r ∈ Z, denote by Bn
r (a) = {x ∈ Qn

p | ||x − a||p ≤ pr} the ball of radius pr with
center at a = (a1, . . . , an) ∈ Qn

p and take Bn
r (0) =: Bn

r .
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Note that Bn
r (a) = Br(a1)×· · ·×Br(an), where Br(ai) := {x ∈ Qp | |xi−ai|p ≤ pr}

is the one-dimensional ball of radius pr with center at ai ∈ Qp. The ball Bn
0 equals

the product of n copies of B0 = Zp, the ring of p-adic integers of Qp. We also
denote by Snr (a) = {x ∈ Qn

p | ||x − a||p = pr} the sphere of radius pr with center at
a = (a1, . . . , an) ∈ Qn

p , and take Snr (0) =: Snr . The balls and spheres are both open
and closed subsets in Qn

p . The group of invertible elements in Zp constitutes the set
Z×p = {x ∈ Zp | |x|p = 1}. As a topological space

(
Qn
p , || · ||p

)
is totally disconnected,

i.e. the only connected subsets of Qn
p are the empty set and the points. A subset of

Qn
p is compact if and only if it is closed and bounded in Qn

p , see e.g. [38, Section 1.3],
or [4, Section 1.8]. The balls and spheres are compact subsets. Thus,

(
Qn
p , || · ||p

)
is

a locally compact topological space.
We will use Ω (p−r||x− a||p) to denote the characteristic function of the ball Bn

r (a).
We will use the notation 1A for the characteristic function of a set A. Along the article
dnx will denote a Haar measure on Qn

p normalized such that
∫
Znp d

nx = 1.

2.2. Some function spaces. A complex-valued function ϕ defined on Qn
p is called

locally constant if for any x ∈ Qn
p there exists an integer l(x) ∈ Z such that

ϕ(x+ x′) = ϕ(x), for x′ ∈ Bn
l(x).

Denote by ε(Qn
p ) the linear space of locally constant C-value functions on Qn

p .
A function ϕ : Qn

p → C is called a Bruhat-Schwartz function (or a test function) if
it is locally constant with compact support. The C-vector space of Bruhat-Schwartz
functions is denoted byD(Qn

p ) =: D. LetD′(Qn
p ) =: D′ denote the set of all continuous

functional (distributions) on D. The natural pairing D′(Qn
p )×D(Qn

p )→ C is denoted
as 〈T, ϕ〉 for T ∈ D′(Qn

p ) and ϕ ∈ D(Qn
p ), see e.g. [4, Section 4.4].

Denote by L1
loc(Qn

p) := L1
loc the set of functions f : Qn

p → C such that f ∈ L1(K)
for any compact K ⊂ Qn

p . Every f ∈ L1
loc defines a distribution f ∈ D′

(
Qn
p

)
by the

formula
〈f, ϕ〉 =

∫
Qnp
f (x)ϕ (x〉 dnx.

Such distributions are called regular distributions.
Given ρ ∈ [0,∞), we denote by Lρ

(
Qn
p , d

nx
)

= Lρ
(
Qn
p

)
:= Lρ, the C−vector

space of all the complex valued functions g satisfying
∫
Qnp |g (x)|ρ dnx < ∞, L∞ :=

L∞
(
Qn
p

)
= L∞

(
Qn
p , d

nx
)
denotes the C−vector space of all the complex valued

functions g such that the essential supremum of |g| is bounded.
Let denote by C(Qn

p ,C) =: CC the C−vector space of all the complex valued
functions which are continuous, by C(Qn

p ,R) =: CR the R−vector space of continuous
functions. Set

C0(Qn
p ,C) := C0(Qn

p ) =
{
f : Qn

p → C | f is continuous and lim
||x||p→∞

f(x) = 0
}
,
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where lim||x||p→∞ f(x) = 0 means that for every ε > 0 there exists a compact subset
B(ε) such that |f(x)| < ε for x ∈ Qn

p\B(ε). We recall that (C0(Qn
p ,C), || · ||L∞) is a

Banach space.

2.3. Fourier transform. Set χp(y) = exp(2πi{y}p) for y ∈ Qp. The map χp(·) is an
additive character on Qp, i.e. a continuous map from (Qp,+) into S (the unit circle
considered as multiplicative group) satisfying χp(x0 +x1) = χp(x0)χp(x1), x0, x1 ∈ Qp.
The additive characters of Qp form an Abelian group which is isomorphic to (Qp,+),
the isomorphism is given by ξ 7→ χp(ξx), see e.g. [4, Section 2.3].

Given x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn) ∈ Qn
p , we set x · ξ := ∑n

j=1 xjξj. If
f ∈ L1(Qn

p ), its Fourier transform is defined by

(Ff)(ξ) = Fx→ξ(f) = f̂(ξ) :=
∫
Qnp
χp(ξ · x)f(x)dnx, for ξ ∈ Qn

p .

The inverse Fourier transform of a function f ∈ L1(Qn
p ) is

(F−1f)(x) = F−1
ξ→x(f) =

∫
Qnp
χp(−x · ξ)f(ξ)dnξ, for x ∈ Qn

p .

The Fourier transform is a linear isomorphism from D(Qn
p ) onto itself satisfying

(F(Ff))(ξ) = f(−ξ),

for every f ∈ D(Qn
p ), see e.g. [4, Section 4.8].

The set L2(Qn
p ) is the Hilbert space with the scalar product

(f, g) =
∫
Qnp
f(x)g(x)dnx, f, g ∈ L2(Qn

p ),

so that ||f ||L2 =
√

(f, f).
If f ∈ L2(Qn

p ), its Fourier transform is defined as

(Ff)(ξ) = lim
k→∞

∫
||x||≤pk

χp(ξ · x)f(x)dnx, for ξ ∈ Qn
p ,

where the limit is taken in L2(Qn
p ). We recall that the Fourier transform is unitary on

L2(Qn
p), i.e., ||f ||L2 = ||Ff ||L2 for f ∈ L2(Qn

p) and that (2.3) is also valid in L2(Qn
p),

see e.g. [33, Chapter III, Section 2].

3. Non-Archimedean Pseudo-Differential Operators with
Semi-Smooth and Elliptic Symbols

In this section we introduce a large class of non-archimedean pseudo-differential
operators whose symbols are new classes of negative definite functions on p-adic
numbers. Moreover, we introduce a new class of non-archimedean ultradiffusion
equations. From now on denote by N = {1, 2, . . .} the set of (positive) natural
numbers and by R+ = {x ∈ R | x ≥ 0} the set of non-negative real numbers.
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Definition 3.1. A function ψ : Qn
p → C is called negative definite, if∑m

i,j=1

(
ψ(ξi) + ψ(ξj)− ψ(ξi − ξj)

)
λiλj ≥ 0,

for all m ∈ N, ξ1, . . . , ξm ∈ Qn
p , λ1, . . . , λm ∈ C.

Remark 3.1. We denote by N(Qn
p) the set of negative definite functions on Qn

p and
by CN(Qn

p) the set of continuous negative definite functions on Qn
p . The following

assertions hold:
(i) N(Qn

p ) is a convex cone which is closed in the topology of pointwise convergence
on Qn

p ;
(ii) the non-negative constant functions belong to N(Qn

p );
(iii) CN(Qn

p ) is a convex cone which is closed in the topology of compact convergence
on Qn

p ;
(iv) if ψ : Qn

p → R is negative definite function, then ψ(−x) = ψ(x) and ψ(x) ≥
ψ(0) ≥ 0 for all x ∈ Qn

p .
For the basic results on negative definite functions the reader may consult [10].

Remark 3.2. (i) It is relevant to mention that for any locally bounded negative definite
function ψ ∈ N(Rn) there exists a constant Cψ > 0 such that |ψ(ξ)|Rn ≤ Cψ(1+ |ξ|2Rn),
for all ξ ∈ Rn, see e.g. [17, Lemma 3.6.22]. However, in the p-adic context this is not
always the case, see e.g. [36].

(ii) Another aspect to be highlighted is the fact that the function y 7→ ||y||α is
continuous and negative definite on Rn for all α ∈ (0, 2], see [10, 10.5, page 74].
However, in the p-adic context for all fixed α > 0 and β > 0, the function y 7→ α||y||βp
is continuous and negative definite on Qn

p , see [36, Example 3.5].

Definition 3.2. We say that a function a : Qn
p → R+ is a semi-smooth symbol, if it

satisfies the following properties.
(i) a is a continuous function.
(ii) a is a increasing function with respect to || · ||p.
(iii) a is a radial function on Qn

p , i.e. a(x) = g(||x||p) for some g : R+ → R+. To
make the radial dependence clear we use the notation a(x) = a(||x||p) for all
x ∈ Qn

p .
(iv) a(||x||p) = 0⇔ x = 0.
(v) There exist positive constants C0 := C0(a) and d := d(a) such that

C0||x||dp ≤ a(||x||p), for every x ∈ Qn
p .

Example 3.1. (i) The simplest example of semi-smooth symbols is the elliptic polyno-
mial of degree d (in particular the p-adic norm || · ||p). For more details the reader
may consult [27].

(ii) Taking C0 = d = 1 in the above definition, we have that the function a(x) :=
e||x||p − 1, x ∈ Qn

p , is a semi-smooth symbol.
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Remark 3.3. (i) For t > 0 note that∫
Qnp
e−ta(||ξ||p)dnξ =

∞∑
j=0

e−ta(p−j)
∫
||ξ||p=p−j

dnξ +
∞∑
j=1

e−ta(pj)
∫
||ξ||p=pj

dnξ

= (1− p−n)
 ∞∑
j=0

e−ta(p−j)p−nj +
∞∑
j=1

e−ta(pj)pnj


≤ (1− p−n)

 ∞∑
j=0

p−nj +
∞∑
j=1

e−tC0pjdpnj

 <∞,

i.e., e−ta ∈ L1(Qn
p ).

Consider the operator non-archimedean pseudo-differential operator A given by
A(ϕ)(x) : = F−1

ξ→x (a(||ξ||p)ϕ̂(ξ))

=
∫
Qnp
χp(−x · ξ)a(||ξ||p)ϕ̂(ξ)dnξ,

where ϕ ∈ D(Qn
p ) and a is a semi-smooth symbol, and the Cauchy problem (or p-adic

heat equation)

(3.1)


∂u
∂t

(x, t) = Au(x, t), t ∈ [0,∞), x ∈ Qn
p ,

u(x, 0) = u0(x) ∈ D(Qn
p ).

Then, the fundamental solution (or heat Kernel) of the Cauchy problem (3.1) is
defined as
(3.2) Zt(x) = Z(x, t) :=

∫
Qnp
χp (−x · ξ) e−ta(||ξ||p)dnξ, for x ∈ Qn

p and t > 0.

Therefore, by [33, (1.6), page 118] we have that Zt(x) ∈ C0(Qn
p ).

(ii) For all t > 0 we have that Zt(·) ∈ L1
loc, i.e., Zt(·) is a regular distribution on

Qn
p . Therefore, for ϕ ∈ D(Qn

p ) and [4, Section 4.9] we have that

〈F(Z(x, t)), ϕ〉 = 〈Z(x, t), ϕ̂〉 =
〈
e−ta(||x||p), ϕ

〉
.

The above implies that F(Z(x, t)) = e−ta(||x||p).

Lemma 3.1. The fundamental solution Zt(x) has the following properties:
(i) Zt(x) ≥ 0 for any t > 0;
(ii)

∫
Qnp Zt(x)dnx = 1 for any t > 0;

(iii) Zt+s(x) =
∫
Qnp Zt(x− y)Zs(y)dny for all t, s > 0;

(iv) Zt(x) ≤ t||x||−np for all t > 0 and x ∈ Qn
p \ {0}.

Proof. (i) If x = 0, the assertion is clear. Then, for x ∈ Qn
p\ {0} with ||x||p = p−γ,

γ ∈ Z, t > 0 and making the change of variable w = pjξ, we have that

Zt(x) =
∑

−∞<j<∞
e−ta(pj)

∫
||ξ||p=pj

χp (−x · ξ) dnξ
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=
∑

−∞<j<∞
e−ta(pj)

∫
||pjξ||p=1

χp (−x · ξ) dnξ

=
∑

−∞<j<∞
pnje−ta(pj)

∫
||w||p=1

χp
(
−p−jx · w

)
dnw.

By using the formula

∫
||w||p=1

χp
(
−p−jx · w

)
dnw =


1− p−n, if j ≤ γ,

−p−n, if j = γ + 1,
0, if j ≥ γ + 2,

we have that

Zt(x) = (1− p−n)
∞∑

j=−γ
p−nje−ta(p−j) − pnγe−ta(pγ+1)

≥ e−ta(pγ)
∞∑

j=−γ
(1− p−n)p−nj − pnγe−ta(pγ+1)

= pnγ
(
e−ta(pγ) − e−ta(pγ+1)

)
≥ 0.

(ii) As a direct consequence of Remark 3.3 (ii) we have that F(Z(0, t)) = 1. On
the other hand, F(Z(x, t)) =

∫
Qnp χp(ξ · x)Z(x, t)dnx and F(Z(0, t)) =

∫
Qnp Z(x, t)dnx.

Therefore,
∫
Qnp Z(x, t)dnx = 1 for all t > 0.

(iii) For t, s > 0, we have by (3.2) that

Zt+s(x) =
∫
Qnp
χp (−x · ξ) e−ta(||ξ||p)e−sa(||ξ||p)dnξ

= Zt(x) ∗ Zs(x)

=
∫
Qnp
Zt(x− y)Zs(y)dny.

(iv) For t > 0, x = pγx0 6= 0 such that γ ∈ Z and ||x0||p = 1, and making the
change of variable z = pγξ, we have that

Z(x, t) =
∫
Qnp
χp (−pγξ · x0) e−ta(||ξ||p)dnξ

= ||x||−np
∫
Qnp
χp (−x0 · z) e−ta(pγ ||z||p)dnz

= ||x||−np
∑

−∞<j<∞
e−ta(||x||−1

p pj)
∫
||pjz||p=1

χp(−x0 · z)dnz

= ||x||−np
∑

−∞<j<∞
e−ta(||x||−1

p pj)pnj
∫
||z||p=1

χp(−x0p
−j · z)dnz.
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By using the formula

∫
||z||p=1

χp
(
−x0p

−j · z
)
dnz =


1− p−n, if j ≤ 0,
−p−n, if j = 1,
0, if j ≥ 2,

we get

Z(x, t) = ||x||−np

(1− p−n)
∞∑
j=0

p−nje−ta(||x||−1
p p−j) − e−ta(||x||−1

p p)


≤ ||x||−np

{
1− e−ta(||x||−1

p p)
}
.

By applying the Mean value theorem to the real function g(v) = e−va(||x||−1
p p) on [0, t],

t > 0, we have that
1− e−ta(||x||−1

p p) = te−τa(||x||−1
p p),

for some τ ∈ (0, t). So that,
Z(x, t) ≤ t||x||−np . �

Theorem 3.1. If a is a semi-smooth symbol, then a is a negative definite function.

Proof. Due to Lemma 3.1 the proof of this theorem is completely similar to the proof
given in [14, Theorem 3]. �

The converse of the previous theorem generally does not hold. For example, the
non-negative constant functions are negative definite functions but they are not semi-
smooth symbol.

Definition 3.3. A function f : Qn
p → R+ is called an elliptic symbol, if it satisfies

the following properties:
(i) f is a continuous and radial function on Qn

p ;
(ii) f(||x||p) = 0⇔ x = 0;
(iii) f is a increasing functions with respect to || · ||p and there exist positive

constants C0 := C0(f), C1 := C1(f) and d := d(f) such that

C0||x||dp ≤ f(||x||p) ≤ C1||x||dp,

for every x ∈ Qn
p .

Example 3.2. (i) For any d > 0 and β > 0, the function f(x) = β||x||dp, x ∈ Qn
p , is an

elliptic symbol.
(ii) Let h(x) ∈ Zp[x1, . . . , xn] with h(0) = 0 be a non constant homogeneous

polynomial of degree d with coefficients in Z×p such that h(x) is strongly elliptic
modulo p, see [30, Definition 3]. Defining f(x) = |h(x)|p with x ∈ Qn

p , by [30, Lemma
15 ] we have that f is a elliptic symbol.
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(iii) [27] For any n ∈ N and p 6= 2, there exists an elliptic polynomial h(ξ1, . . . , ξn)
with coefficients in Z×p and degree 2d(n) := 2d such that

|h(ξ1, . . . , ξn)|p = ||(ξ1, . . . , ξn)||2dp .

Therefore, proceeding analogously to the previous case, we can obtain infinitely many
elliptic symbols.

Since every elliptic symbol is a semi-smooth symbol, then as a direct consequence
of Theorem 3.1 we obtain the following result.

Corollary 3.1. If f is an elliptic symbol, then f is a negative definite function.

Next we will show that the heat Kernel Zt associated with the non-archimedean
pseudo-differential operator A determine a transition function of some strong Markov
processes X with state space Qn

p .
Let B(Qn

p) denote the σ-algebra of the Borel sets of (Qn
p). For the basic results on

positive bounded measure and Markov processes the reader may consult, respectively,
[10] and [18].

Definition 3.4. A function pt(x,E), defined for all t ≥ 0, x ∈ Qn
p and E ∈ B(Qn

p ), is
called a Markov transition function on Qn

p if it satisfies the following four conditions:
(i) pt(x, ·) is a measure on B(Qn

p ) and pt(x,Qn
p ) ≤ 1 for all t ≥ 0 and x ∈ Qn

p ;
(ii) pt(·, E) is a Borel measurable function for all t ≥ 0 and E ∈ B(Qn

p );
(iii) p0(x, {x}) = 1 for all x ∈ Qn

p ;
(iv) (The Chapman-Kolmogorov equation) for all t, s ≥ 0, x ∈ Qn

p and E ∈
B(Qn

p ), we have the equations

pt+s(x,E) =
∫
Qnp
pt(x, dny)ps(y, E).

Definition 3.5. For E ∈ B(Qn
p ), we define

pt(x,E) =

Zt(x) ∗ 1E(x), for t > 0, x ∈ Qn
p ,

1E(x), for t = 0, x ∈ Qn
p ,

where Zt(x) is the fundamental solution defined in (3.2).

Theorem 3.2. pt(x, ·) is a transition function of some strong Markov processes X
with state space Qn

p whose paths are right continuous and have no discontinuities other
than jumps.

Proof. The result follows from Lemma 3.1 by using the argument given in the proof
of [14, Theorem 2]. �
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4. Non-Archimedean Pseudo-Differential Operators with Negative
Definite Logarithmic Symbols

In this section we introduce a large class of non-archimedean pseudo-differential
operators whose symbols are new classes of negative definite functions (in the p-adic
context) associated with logarithmic functions. Moreover, we introduce a new class
of non-archimedean ultradiffusion equations.

Definition 4.1. (i) A function ϕ : Qn
p → C is called positive definite, if∑m

i,j=1 ϕ(xi − xj)λiλj ≥ 0,

for all m ∈ N\{0}, x1, . . . , xm ∈ Qn
p and λ1, . . . , λm ∈ C.

(ii) A C∞-function f : (0,∞)→ R is said to be a Bernstein function, if
f ≥ 0 and (−1)mDmf ≤ 0, for all integers m ≥ 1.

The set of positive definite functions on Qn
p is denoted as P(Qn

p) and the subset
of P(Qn

p ) consisting of the continuous positive definite functions on Qn
p is denoted as

CP(Qn
p ). For a more detailed discussion of positive definite functions and its properties

the reader may consult [10].

Remark 4.1. The following assertions hold:
(i) P(Qn

p ) is a convex cone which is closed in the topology of pointwise convergence
on Qn

p ;
(ii) if ϕ1, ϕ2 ∈ P(Qn

p), then ϕ1ϕ2 ∈ P(Qn
p); the non-negative constant functions

belong to P(Qn
p );

(iii) CP(Qn
p) is a convex cone which is a closed subset of the set of continuous

complex-valued functions in the topology of compact convergence.

Theorem 4.1. Let ψ : Qn
p → [1,∞) be a continuous negative definite function. Then,

the function ln(ψ) : Qn
p → R+ is negative definite.

Proof. First, for fixed t ∈ [0, 1] we consider the function ft : (0,∞) → R+ given by
ft(x) = xt. Clearly, f ≥ 0 and by a direct calculation one verifies that

(−1)mDm(f) = (−1)m
m−1∏
i=0

(t− i)xt−m ≤ 0,

i.e., ft is a Bernstein function. Then, for fixed t ∈ [0, 1] and by [10, 9.20, page 69] we
have that
(4.1) (ft ◦ ψ)(ξ) = ψt(ξ) : Qn

p → [1,∞)
is a continuous negative definite function. Moreover, by [10, Corollary 7.9] we have
that 1

ψt
is a positive definite function for fixed t ∈ [0, 1].

On the other hand, for fixed t1, t2 ∈ [0, 1] we have that the product 1
ψt1
· 1
ψt2

is
a continuous positive definite function on Qn

p , see [10, Proposition 3.6]. Therefore,



p-ADIC EVOLUTION EQUATIONS AND STRONG MARKOV PROCESS 839

1
ψt

= e−t ln(ψ) is a continuous positive definite function on Qn
p for all t > 0, and by [10,

Theorem 7.8] we have that the function ln(ψ) is negative definite. �

As an immediate consequence of the theorem above and Remark 3.1, the following
corollary is obtained.

Corollary 4.1. Let ψj : Qn
p → R+, j = 1, . . . ,m, be radial, continuous, negative

definite functions such that at least one function ψj satisfies ψj : Qn
p → [1,∞). Then

the function ln
(∑m

j=1 ψj(||ξ||p)
)
is negative definite.

Example 4.1. For every fixed k > 1, α, β > 0, the function ψ : Qn
p → R+ given by

ψ(ξ) = ln
(
k + α||ξ||βp

)
is negative definite. By Remark 3.2-(ii), we have that in the

real context the function ψ′ : Rn → R+ given by ψ′(ξ) = ln
(
k + ||ξ||βRn

)
is not a

negative definite function for β > 2.

Corollary 4.2. Let ψ : Qn
p → [1,∞) be a continuous negative definite function. Then

the function lnα(ψ) : Qn
p → [1,∞), α > 1, is negative definite.

Proof. The result follows from Theorem 4.1, (4.1) and Remark 4.1 (ii). �

Example 4.2. By Remark 3.1 and Remark 3.2 we have that the function f(x) =
1 + ||x||p, x ∈ Qn

p , is negative definite and f(x) ≥ 1 for all x ∈ Qn
p . Then, by above

corollary we have that lnα(1 + ||x||p) : Qn
p → [1,∞), α > 1, is a negative definite

function. Moreover, by [10, Corollary 7.9] we have that 1
lnα(1+||x||p) , α > 1, is a positive

definite function.

Consider the operator non-archimedean pseudo-differential operator Ã given by
Ã(ϕ)(x) := F−1

ξ→x {ln(ψ(ξ))ϕ̂(ξ)}

=
∫
Qnp
χp(−x · ξ) ln(ψ(ξ))ϕ̂(ξ)dnξ, ϕ ∈ D(Qn

p ),

and the Cauchy problem (or p-adic heat equation)

(4.2)


∂u
∂t

(x, t) = Ãu(x, t), t ∈ [0,∞), x ∈ Qn
p ,

u(x, 0) = u0(x) ∈ D(Qn
p ),

where ψ is a continuous negative definite function satisfies hypothesis of Theorem
4.1. Then the fundamental solution (or heat Kernel) of the Cauchy problem (4.2) is
defined as

Z̃t(x) = Z̃(x, t) :=
∫
Qnp
χp (−x · ξ) e−t ln(ψ(ξ))dnξ =

∫
Qnp
χp (−x · ξ) 1

ψt(ξ)d
nξ,

for x ∈ Qn
p and t > 0.

Lemma 4.1. The family
(
Z̃t
)
t>0

determine a convolution semigroup on Qn
p , i.e.,(

Z̃t
)
t>0

satisfies the following properties:
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(i) for all t > 0, Z̃t is a positive bounded measure on Qn
p ;

(ii) for all t > 0, Z̃t(Qn
p ) ≤ 1;

(iii) for all t, s > 0, we have that Z̃t ∗ Z̃s = Z̃t+s;
(iv) limt→0 Z̃t = δ, where δ is the Dirac delta function.

Proof. Following the proof of Theorem 4.1, we have that 1
ψt
, t > 0, is a continuous

positive definite function on Qn
p . Moreover, by [10, Theorem 3.12] we have that Z̃t,

t > 0, is a positive bounded measure on Qn
p . The desired result follows by application

of [10, Theorem 8.3]. �

Theorem 4.2. There exists a Lévy process X (t, ω) with state space Qn
p and transition

function p̃t(x, ·) given by

p̃t(x,E) =

Z̃t(x) ∗ 1E(x), for t > 0x ∈ Qn
p ,

1E(x), for t = 0, x ∈ Qn
p ,

for E ∈ B(Qn
p ),

Proof. Due to Lemma 4.1 the proof of this Theorem is completely similar to the proof
given in [37, Theorem 2]. �

5. Other Classes of Non-Archimedean Pseudo-Differential Operators
Associated with Certain Types of Negative Definite Functions

In this section we will study a new class of non-archimedean operators (denoted by
Aψ) associated with a non-archimedean negative definite function ψ. Imposing certain
conditions to the function ψ we obtain that Aψ is a pseudo-differential operator which
also determine ultradiffusion equations.

Along this section ψ : Qn
p → R+\ {0} will denote a radial, continuous and negative

definite function such that there exist positive real constants C2 and β, β > n, such
that ψ(||x||p) ≥ C2||x||βp for all x ∈ Qn

p .
By Remark 3.1 (iv) note that ψ(||x||p) ≥ ψ(0) > 0 for all x ∈ Qn

p . For examples of
this type of functions, the reader can consult [36].

We now note that∫
Qnp

dnx

ψ(||x||p)
=
∫
Znp

dnx

ψ(||x||p)
+
∫
Qnp\Znp

dnx

ψ(||x||p)
= I1 + I2.

Now, since ψ is a continuous function on Znp and given the normalization of the norm
|| · ||p, we have that I1 <∞.

On the other hand, note that

I2 ≤
1
C2

∞∑
j=1

1
pjβ

∫
||x||p=pj

dnx = 1− p−n
C2

∞∑
j=1

pj(n−β) <∞.
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Therefore, 1
ψ
∈ L1(Qn

p ) and consequently there is a positive real constant C such that

(5.1) C
∫
Qnp

dnx

ψ(||x||p)
= 1.

We define the operator

Aψ(ϕ)(x) = C
∫
Qnp

ϕ(x− y)− ϕ(x)
ψ(||y||p)

dny, ϕ ∈ D(Qn
p ),

where C is the constant given by (5.1).

Lemma 5.1. The application

D
(
Qn
p

)
→ D

(
Qn
p

)
,

ϕ→ Aψ(ϕ),

is a well-defined non-archimedean pseudo-differential operator.

Proof. The condition (5.1) implies that

Aψ(ϕ)(x) =
(
C

ψ
∗ ϕ

)
(x)− ϕ(x)

=
∫
Qnp
χp (−x · ξ)

(̂
C

ψ

)
(||ξ||p)ϕ̂(ξ)dnξ −

∫
Qnp
χp (−x · ξ) ϕ̂(ξ)dnξ

= −
∫
Qnp
χp (−x · ξ)

1−
(̂
C

ψ

)
(||ξ||p)

 ϕ̂(ξ)dnξ

= −F−1
ξ→x

1−
(̂
C

ψ

)
(||ξ||p)

 ϕ̂(ξ)
 ,

i.e., Aψ is a pseudo-differential operator with symbol 1−
(̂
C
ψ

)
.

On the other hand, since C
ψ

is a radial function, then by [34, Lemma 1] and the
n-dimensional version of [38, Example 8, page 43] we have that1−

(̂
C

ψ

)
(||ξ||p)

 ϕ̂(ξ) ∈ D
(
Qn
p

)
.

Therefore, by [38, VII, Section 2] we have that Aψ(ϕ)(x) ∈ D
(
Qn
p

)
. �

Due to the condition (5.1) we have that C
ψ

codify the structure of the function J
given in [9] and [37]. Therefore, by Lemma 5.1 and proceeding analogous to these
references, we can prove the following theorem.
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Theorem 5.1. There exists a Lévy process X (t, ω) with state space Qn
p and transition

function qt(x, ·) given by

qt(x,E) =

Zψ(t, x) ∗ 1E(x), for t > 0, x ∈ Qn
p ,

1E(x), for t = 0, x ∈ Qn
p ,

where Zψ(t, x) is the fundamental solution of the Cauchy problem
∂u
∂t

(x, t) = Aψu(x, t), t ∈ [0,∞), x ∈ Qn
p ,

u(x, 0) = u0(x) ∈ D(Qn
p ).

Remark 5.1. Note that the above Cauchy problem corresponds to the p-adic non local
evolution equation

∂u (x, t)
∂t

=
∫
Qnp

(
C

ψ

)
(x− y)u(y, t)dy − u(x, t) =

((
C

ψ

)
∗ u− u

)
(x, t).

For further details the reader may consult [7] and [6].
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