KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 47(5) (2023), PAGES 691–700.

APPROXIMATION BY AN EXPONENTIAL-TYPE COMPLEX OPERATORS

SORIN G. GAL^{1,2} AND VIJAY GUPTA³

ABSTRACT. In the present paper, we discuss the approximation properties of a complex exponential kind operator. Upper estimate, Voronovskaya-type formula and exact estimate are obtained.

1. INTRODUCTION

In the year 1978, Ismail [10] and Ismail and May [11] introduced and studied some exponential type operators. A type of the operators constructed in [11, (3.11)] is the following sequence

(1.1)
$$Q_n(f,x) = \int_0^\infty W(n,x,t)f(t)dt, \quad x \in (0,\infty), \ n \in \mathbb{N},$$

where the kernel is given by

$$W(n, x, t) = \left(\frac{n}{2\pi}\right)^{1/2} \exp(n/x) t^{-3/2} \exp\left(-\frac{nt}{2x^2} - \frac{n}{2t}\right).$$

The kernel of these operators satisfies the partial differential equation

(1.2)
$$\frac{\partial}{\partial x}W(n,x,t) = \frac{n(t-x)}{x^3}W(n,x,t).$$

Due to its complicated behavior in integration, these operators were not previously much studied by researchers. Recently in case of real variables these operators were studied by Gupta [8], who established some direct results. The asymptotic formula for certain exponential type operators are discussed in [1].

Key words and phrases. Complex exponential kind operator, approximation properties, upper estimate, Voronovskaya-type formula, exact estimate.

²⁰¹⁰ Mathematics Subject Classification. Primary: 30E10. Secondary: 41A36. DOI

Received: April 28, 2020.

Accepted: November 02, 2020.

S. G. GAL AND V. GUPTA

Also, in the recent years, the study of approximation by complex operators on compact disks is an active area of research, see for instance [2–4,6,7,9] and [12] etc.

In this paper, we study the approximation properties of the complex variant in (1.1), obtained by replacing x with z in the formula (1.1). Section 2 contains some auxiliary results used in the next sections. Section 3 deals with upper estimate, while in Section 4, we study a Voronovskaya-type result and the exact estimate in approximation.

2. Auxiliary Results

The proofs of our main results require three additional lemmas, as follows.

Lemma 2.1. If we denote $T_{n,m}(x) = Q_n(e_m, x)$, $e_m(t) = t^m$, then using Mapple, we find that $T_{n,0}(x) = 1$ and there holds the following recurrence relation:

$$nT_{n,m+1}(x) = x^3[T_{n,m}(x)]' + nxT_{n,m}(x), \quad n,m \in \mathbb{N}.$$

In particular

$$\begin{split} T_{n,0}(x) &= 1, \\ T_{n,1}(x) &= x, \\ T_{n,2}(x) &= x^2 + \frac{x^3}{n}, \\ T_{n,3}(x) &= x^3 + \frac{3x^4}{n} + \frac{3x^5}{n^2}, \\ T_{n,4}(x) &= x^4 + \frac{6x^5}{n} + \frac{15x^6}{n^2}, \\ T_{n,5}(x) &= x^5 + \frac{10x^6}{n} + \frac{45x^7}{n^2} + \frac{105x^8}{n^3} + \frac{105x^9}{n^4}, \\ T_{n,6}(x) &= x^6 + \frac{15x^7}{n} + \frac{105x^8}{n^2} + \frac{420x^9}{n^3} + \frac{945x^{10}}{n^4} + \frac{945x^{11}}{n^5}. \end{split}$$

Proof. By definition

$$T_{n,m}(x) = \left(\frac{n}{2\pi}\right)^{1/2} \exp(n/x) \int_0^\infty t^{-3/2} \exp\left(-\frac{nt}{2x^2} - \frac{n}{2t}\right) t^m dt.$$

Thus, differentiating w.r.t x both the sides and using (1.2), we have

$$x^{3}[T_{n,m}(x)]' = \int_{0}^{\infty} x^{3}[W(n,x,t)]'t^{m}dt$$
$$= \int_{0}^{\infty} n(t-x)W(n,x,t)t^{m}dt$$
$$= nT_{n,m+1}(x) - nxT_{n,m}(x).$$

This completes the proof of lemma, other consequences follow from the recurrence relation. $\hfill \Box$

Lemma 2.2. Suppose that $f : \mathbb{C} \to \mathbb{C}$, $f(z) = \sum_{k=0}^{\infty} c_k z^k$, is an entire function satisfying the condition $|c_k| \leq M \frac{A^k}{k!}$, $k = 0, 1, \ldots$, with M > 0 and $A \in (0, 1/2)$ (which implies that f is of exponential growth since $|f(z)| \leq M \exp(A|z|)$ for all $z \in \mathbb{C}$). Then $Q_n(f, z)$ is well defined for any $n \in \mathbb{N}$ and any $z \in \mathbb{C}$ satisfying

(2.1)
$$\operatorname{Re}(z^2) > 0 \quad and \quad \frac{|z|^2}{\operatorname{Re}(z^2)} < \frac{1}{2A}$$

Proof. Since $|\exp(z)| = \exp(\operatorname{Re}(z))$, $\operatorname{Re}(1/z) = \operatorname{Re}(z)/|z|$ and $\operatorname{Re}(1/z^2) = \operatorname{Re}(z^2)/|z|^2$, we get

$$\begin{aligned} &|Q_n(f,z)| \\ \leq &M\left(\frac{n}{2\pi}\right)^{1/2} |e(n/z)| \int_0^\infty t^{-3/2} \exp(-n/(2t) + At) |\exp(-nt/(2z^2))| dt \\ &= &M \exp(n \operatorname{Re}\left(z\right)/|z|) \int_0^\infty t^{-3/2} \exp(-n/(2t)) \exp(-t[n \operatorname{Re}\left(z^2\right)/(2|z|^2) - A]) dt \end{aligned}$$

By the hypothesis on z, we easily seen that $n \operatorname{Re}(z^2)/(2|z|^2) - A > 0$ for all $n \ge 1$. Therefore, for fixed z as in the hypothesis and denoting $n \operatorname{Re}(z^2)/(2|z|^2) - A$ with C > 0, we have to deal with the existence of the integral

$$I := \int_0^\infty t^{-3/2} \exp(-n/(2t)) \exp(-Ct) dt.$$

Changing the variable $t = \frac{1}{v}$, we easily obtain

$$I = \int_0^\infty v^{-1/2} \exp(-nv/2) \exp(-C/v) dv < \infty.$$

Indeed, for K > 0 an arbitrary fixed constant, we have

$$I = \int_0^K v^{-1/2} \exp(-nv/2) \exp(-C/v) dv + \int_K^\infty v^{-1/2} \exp(-nv/2) \exp(-C/v) dv$$

:= I₁ + I₂,

where

$$I_{1} \leq \int_{0}^{K} \exp(-nv/2) v^{-1/2} \frac{v}{C} dv \leq \frac{1}{C} \int_{0}^{K} v^{1/2} \exp(-nv/2) dv < \infty$$

and $I_{2} \leq \frac{1}{\sqrt{K}} \int_{K}^{\infty} e(-nv/2) dv < \infty$.

Lemma 2.3. Suppose that f is an entire function, i.e., $f(z) = \sum_{k=0}^{\infty} c_k z^k$ for all $z \in \mathbb{C}$ such that there exist M > 0 and $A \in (0,1)$, with the property $|c_k| \leq M \frac{A^k}{k!}$ for all $k = 0, 1, \ldots$ (which implies $|f(z)| \leq M \exp(A|z|)$ for all $z \in \mathbb{C}$).

Then for all $n \in \mathbb{N}$ and z satisfying (2.1), we have

$$Q_n(f,z) = \sum_{k=0}^{\infty} c_k Q_n(e_k,z)$$

Proof. Since we can write

$$Q_n(f;z) = \left(\frac{n}{2\pi}\right)^{1/2} \exp(n/z) \int_0^\infty t^{-3/2} \exp\left(-\frac{nt}{2z^2} - \frac{n}{2t}\right) \left(\sum_{k=0}^\infty c_k t^k\right) dt,$$

if above the integral would commute with the infinite sum, then we would obtain

$$Q_n(f,z) = \sum_{k=0}^{\infty} c_k \left(\frac{n}{2\pi}\right)^{1/2} \exp(n/z) \int_0^\infty t^{-3/2} \exp\left(-\frac{nt}{2z^2} - \frac{n}{2t}\right) t^k dt$$
$$= \sum_{k=0}^\infty c_k Q_n(e_k, z).$$

It is well-known by the Fubini type result that a sufficient condition for the commutativity is that

$$\int_0^\infty t^{-3/2} \left| \exp\left(-\frac{nt}{2z^2} - \frac{n}{2t}\right) \right| \left(\sum_{k=0}^\infty |c_k| t^k\right) dt < \infty.$$

Applied to our case, for $n \in \mathbb{N}$ and z satisfying (2.1), we get

$$\begin{split} &\int_{0}^{\infty} t^{-3/2} \left| \exp\left(-\frac{nt}{2z^{2}} - \frac{n}{2t}\right) \right| \left(\sum_{k=0}^{\infty} |c_{k}|t^{k}\right) dt \\ &\leq M \int_{0}^{\infty} t^{-3/2} \exp\left(-\frac{n}{2t}\right) \exp\left(-nt \operatorname{Re}\left(z^{2}\right)/(2|z|^{2})\right) \left(\sum_{k=0}^{\infty} \frac{A^{k}t^{k}}{k!}\right) dt \\ &= M \int_{0}^{\infty} t^{-3/2} \exp\left(-\frac{n}{2t}\right) \exp\left(-nt \operatorname{Re}\left(z^{2}\right)/(2|z|^{2})\right) e^{At} dt \\ &= M \int_{0}^{\infty} t^{-3/2} \exp\left(-\frac{n}{2t}\right) \exp\left(-nt \operatorname{Re}\left(z^{2}\right)/(2|z|^{2}) + At\right) dt < \infty, \end{split}$$

by the proof of Lemma 2.2.

Remark 2.1. It is easy to see that from geometric point of view, the conditions on z in (2.1) means that z belongs to two symmetric cones with respect to origin (but without containing the origin) containing the x axis, which are included in the two symmetric cones with respect to origin between the first and second bisectrix, containing the x axis. Indeed, since $|z|^2 = x^2 + y^2$ and $\operatorname{Re}(z^2) = x^2 - y^2$, simple calculations show that the condition (2.1) satisfied by z = x + iy can easily be written under the form

$$\sqrt{\left(1+\frac{1}{2A}\right)}|y| < \sqrt{\left(\frac{1}{2A}-1\right)}|x|,$$

that is

$$\frac{|y|}{|x|} < \frac{\sqrt{1/(2A)-1}}{\sqrt{1/(2A)+1}} < 1.$$

3. Upper Estimate

The first main result concerns an upper estimate in approximation by $Q_n(f, z)$.

Theorem 3.1. Suppose that f is an entire function, i.e., $f(z) = \sum_{k=0}^{\infty} c_k z^k$ for all $z \in \mathbb{C}$ such that there exist M > 0 and $A \in (0, 1/2)$, with the property $|c_k| \leq M \frac{A^k}{k!}$, for all $k = 0, 1, \ldots$ (which implies $|f(z)| \leq M e^{A|z|}$ for all $z \in \mathbb{C}$). Consider $1 \leq r < \frac{1}{A}$.

Then for all $n \ge r^2$, $|z| \le r$ and z satisfying (2.1), the following estimate hold:

$$|Q_n(f,z) - f(z)| \le \frac{C_{r,M,A}}{n},$$

where $C_{r,M,A} = Mr \sum_{k=2}^{\infty} (k+1)(Ar)^k < \infty$.

Proof. By Lemma 2.1 written with x replaced by z, we easily obtain

$$n[T_{n,m+1}(z) - z^{m+1}] = z^3 [T_{n,m}(z) - z^m]' + nz[T_{m,n}(z) - z^m] + mz^{m+2}.$$

Applying the Bernstein's inequality on $|z| \leq r$ to the polynomial of degree $m, T_{n,m}(z) - z^m$, we get $\|[T_{n,m}(z)-z^m]'\|_r \leq \frac{m}{r}\|T_{n,m}(z)-z^m\|_r$, where $\|P\|_r = \sup_{|z|\leq r} |P(z)|$. Then, denoting $e_m = z^m$, from the above recurrence we immediately obtain

$$||T_{n,m+1} - e_{m+1}||_r \le \left(r + \frac{mr^2}{n}\right) ||T_{m,n} - e_m||_r + \frac{mr^{m+2}}{n}$$

In what follows we prove by mathematical induction with respect to m that for $n \ge r^2$, this recurrence implies

$$||T_{n,m} - e_m||_r \le \frac{(m+1)!}{n}r^{m+1}$$
, for all $m \ge 0$.

Indeed for m = 0 and m = 1 it is trivial, as the left-hand side is zero. Suppose that it is valid for m, the above recurrence relation implies that

$$||T_{n,m+1} - e_{m+1}||_r \le \left(r + \frac{r^2m}{n}\right) \frac{(m+1)!}{n} r^{m+1} + \frac{m}{n} r^{m+2}.$$

It remains to prove that

$$\left(r + \frac{r^2 m}{n}\right) \frac{(m+1)!}{n} r^{m+1} + \frac{m}{n} r^{m+2} \le \frac{(m+2)!}{n} r^{m+2},$$

or after simplifications, equivalently to

$$\left(r + \frac{r^2m}{n}\right)(m+1)! + rm \le (m+2)!r,$$

for all $m \in \mathbb{N}$ and $r \geq 1$.

Since $n \ge r^2$, we get

$$\left(r + \frac{r^2m}{n}\right)(m+1)! + rm \le (r+m)(m+1)! + rm,$$

it is good enough if we prove that

(r+m)(m+1)! + rm < (m+2)!r.

But this last inequality is obviously equivalent with

$$m(m+1)! + rm \le rm(m+1)! + r(m+1)!,$$

which is clearly valid for all $m \ge 1$ (and fixed $r \ge 1$).

Finally, taking into account Lemma 2.3, for all $n \ge r^2$, we obtain

$$\begin{aligned} |Q_n(f,z) - f(z)| &\leq \sum_{k=0}^{\infty} |c_k| \cdot |Q_n(e_k,z) - e_k(z)| \\ &\leq \frac{M}{n} \cdot \sum_{k=2}^{\infty} \frac{A^k}{k!} \cdot (k+1)! r^{k+1} = \frac{C_{r,M,A}}{n}, \end{aligned}$$

= $Mr \sum_{k=2}^{\infty} (k+1) (Ar)^k < \infty.$

where $C_{r,M,A} = Mr \sum_{k=2}^{\infty} (k+1)(Ar)^k < \infty$.

Remark 3.1. The smaller A is, the larger is the portion of the symmetrical cones where the estimation in Theorem 3.1 takes place. This happens because of the intersection between the symmetrical cones and the disk $\{|z| \leq r\}$ with $1 \leq r < \frac{1}{A}$, where if $A \searrow 0$ then $r \nearrow \infty$.

4. VORONOVSKAYA TYPE FORMULA AND EXACT ESTIMATE

The following estimate is a Voronovskaja-kind quantitative result.

Theorem 4.1. Suppose that f is an entire function, i.e., $f(z) = \sum_{k=0}^{\infty} c_k z^k$ for all $z \in \mathbb{C}$ such that there exist M > 0 and $A \in (0, 1/2)$, with the property $|c_k| \leq M \frac{A^k}{k!}$ for all k = 0, 1, ... (which implies $|f(z)| \leq M \exp(A|z|)$ for all $z \in \mathbb{C}$). Consider $1 \leq r < \frac{1}{A}$. Then for all $n \geq r^2$, $|z| \leq r$ and z satisfying (2.1), the following estimate holds:

$$\left| Q_n(f,z) - f(z) - \frac{z^3 f''(z)}{2n} \right| \le \frac{E_{r,M,A}(f)}{n^2},$$

where

$$E_{r,M,A}(f) = 3Mr^2 \sum_{k=2}^{\infty} (k+1)^2 (Ar)^k < \infty$$

Proof. Everywhere in the proof consider z and n as in hypothesis.

By the proof of Lemma 2.3, we can write $Q_n(f, z) = \sum_{k=0}^{\infty} c_k Q_n(e_k, z)$. Also, since

$$\frac{z^3 f''(z)}{2n} = \frac{z^3}{2n} \sum_{k=2}^{\infty} c_k k(k-1) z^{k-2} = \frac{1}{2n} \sum_{k=2}^{\infty} c_k k(k-1) z^{k+1},$$

we get

$$\left|Q_n(f,z) - f(z) - \frac{z^3 f''(z)}{2n}\right| \le \sum_{k=2}^{\infty} |c_k| \left|T_{n,k}(z) - e_k(z) - \frac{k(k-1)z^{k+1}}{2n}\right|.$$

By Lemma 2.1, we have

$$T_{n,k}(z) = \frac{z^3}{n} T'_{n,k-1}(z) + z T_{n,k-1}(z).$$

If we denote

$$J_{n,k}(z) = T_{n,k}(z) - e_k(z) - \frac{k(k-1)z^{k+1}}{2n},$$

then it is obvious that $J_{n,k}(z)$ is a polynomial of degree less than or equal to k + 2and by simple computation and the use of above recurrence relation, we are led to

$$J_{n,k}(z) = \frac{z^3}{n} J'_{n,k-1}(z) + z J_{n,k-1}(z) + X_{n,k}(z),$$

where after simple computation, we have

$$X_{n,k}(z) = \frac{k(k-1)(k-2)z^{k+2}}{2n^2}.$$

Using the estimate in the proof of Theorem 3.1, we have

$$|T_{n,k}(z) - e_k(z)| \le \frac{(k+1)!}{n} \cdot r^{k+1}.$$

It follows

$$|J_{n,k}(z)| \le \frac{r^3}{n} |J'_{n,k-1}(z)| + r |J_{n,k-1}(z)| + |X_{n,k}(z)|,$$

where

$$|X_{n,k}(z)| \le \frac{k(k-1)(k-2)r^{k+2}}{2n^2}.$$

Now we shall find the estimation of $|J'_{n,k-1}(z)|$. Taking into account the fact that $J_{n,k-1}(z)$ is a polynomial of degree $\leq k+1$, we have

$$\begin{aligned} |J'_{n,k-1}(z)| &\leq \frac{k}{r} ||J_{n,k-1}(z)||_r \\ &\leq \frac{k}{r} \left[||T_{n,k-1}(z) - e_{k-1}(z)||_r + \frac{(k-1)(k-2)r^k}{2n} \right] \\ &\leq \frac{(k+1)!}{n} \cdot r^{k-1} + \frac{k(k-1)(k-2)r^{k-1}}{2n}. \end{aligned}$$

Thus,

$$\frac{r^3}{n}|J'_{n,k-1}(z)| \le \frac{1}{n} \left[\frac{(k+1)!}{n}r^{k+2} + \frac{k(k-1)(k-2)r^{k+2}}{2n}\right]$$

and

$$\begin{aligned} |J_{n,k}(z)| \leq & r|J_{n,k-1}(z)| + \frac{1}{n} \left[\frac{(k+1)!}{n} r^{k+2} + \frac{k(k-1)(k-2)r^{k+2}}{2n} \right] \\ & + \frac{k(k-1)(k-2)r^{k+2}}{2n^2}. \end{aligned}$$

This immediately implies

$$|J_{n,k}(z)| \le r|J_{n,k-1}(z)| + \frac{3}{n^2}(k+1)!r^{k+2}.$$

By writing this inequality for $k = 1, 2, 3, \ldots$, we easily obtain step by step the following

$$|J_{n,k}(z)| \le \frac{3}{n^2} r^{k+2} \left[\sum_{j=1}^{k+1} j! \right] \le \frac{3}{n^2} r^{k+2} (k+1)! (k+1).$$

In conclusion,

$$\left| Q_n(f,z) - f(z) - \frac{z^3 f''(z)}{2n} \right| \le \frac{3}{n^2} \cdot \sum_{k=2}^{\infty} |c_k| r^{k+2} \cdot (k+1)! (k+1)$$
$$\le \frac{3Mr^2}{n^2} \cdot \sum_{k=2}^{\infty} (k+1)^2 (Ar)^k.$$

This completes the proof of theorem.

Using the above Voronovskaja's theorem, we obtain the following lower order in approximation.

Theorem 4.2. Under the hypothesis in Theorem 4.1, if f is not a polynomial of degree ≤ 1 , then for all $n \geq r^2$ we have

$$||Q_n(f, \cdot) - f||_r^* \ge \frac{K_{r,M,A}(f)}{n},$$

where $||F||_r^* = \sup\{|F(z)| : |z| \le r \text{ and } z \text{ satisfies } (2.1)\}$ and $K_{r,M,A}(f)$ is a constant which depends only on f, M, A and r.

Proof. For all $n \ge r^2$, $|z| \le r$ and z satisfying (2.1), we have

$$Q_n(f,z) - f(z) = \frac{1}{n} \left[0.5 \, z^3 \, f''(z) + \frac{1}{n} \left\{ n^2 \left(Q_n(f,z) - f(z) - \frac{z^3 \, f''(z)}{2n} \right) \right\} \right].$$

Also, we have

 $||F + G||_r^* \ge |||F||_r^* - ||G||_r^*| \ge ||F||_r^* - ||G||_r^*.$

It follows

$$||Q_n(f,\cdot) - f||_r^* \ge \frac{1}{n} \left[||0.5 e_3 f''||_r^* - \frac{1}{n} \left\{ n^2 \left\| Q_n(f,\cdot) - f - \frac{e_3 f''}{2n} \right\|_r^* \right\} \right].$$

Taking into account that by hypothesis, f is not a polynomial of degree ≤ 1 , we get $||0.5 e_3 f''||_r^* > 0$. Indeed, supposing the contrary it follows that $z^3 f''(z) = 0$, which by the fact that f is entire function, clearly implies f''(z) = 0, i.e., f is a polynomial of degree ≤ 1 , a contradiction with the hypothesis.

Now by Theorem 4.1, we have

$$n^{2} \left\| Q_{n}(f,z) - f(z) - \frac{z^{3} f''(z)}{2n} \right\|_{r}^{*} \leq E_{r,M,A}(f).$$

Therefore, there exists an index n_0 depending only on f and r, such that for all $n \ge n_0$, we have

$$\left|\left|0.5\,e_{3}\,f''\,\right|\right|_{r}^{*}-\frac{1}{n}\left\{n^{2}\left\|\left|Q_{n}(f,z)-f(z)-\frac{0.5\,z^{3}\,f''(z)}{n}\right|\right|_{r}^{*}\right\}\geq\frac{1}{2}\,\left|\left|0.5e_{3}\,f''\,\right|\right|_{r}^{*},$$

which immediately implies

$$||Q_n(f, \cdot) - f||_r^* \ge \frac{1}{2n} ||0.5 e_3 f''||_r^*$$
, for all $n \ge n_0$.

For $n \in \{1, 2, \ldots, n_0 - 1\}$ we obviously have

$$||Q_n(f,\cdot) - f||_r^* \ge \frac{M_{r,n}(f)}{n},$$

with $M_{r,n}(f) = n||Q_n(f, \cdot) - f||_r^* > 0$. Indeed, if we would have $||Q_n(f, \cdot) - f||_r^* = 0$, then would follow $Q_n(f, z) = f(z)$ for all $|z| \leq r, z$ satisfying (2.1), which is valid only for f a polynomial of degree ≤ 1 , contradicting the hypothesis on f. Hence, we obtain $||Q_n(f, \cdot) - f||_r^* \geq \frac{K_{r,M,A}(f)}{n}$ for all n, where

$$K_{r,M,A}(f) = \min\left\{M_{r,1}(f), M_{r,2}(f), \dots, M_{r,n_0-1}(f), \frac{1}{2} \mid \mid 0.5 \, e_3 \, f'' \mid \mid_r^*\right\},\$$

which completes the proof.

Combining Theorem 3.1 with Theorem 4.2, we immediately get the following exact estimate.

Corollary 4.1. Under the hypothesis in Theorem 4.1, if f is not a polynomial of degree ≤ 1 , then we have

$$||Q_n(f,\cdot) - f||_r^* \sim \frac{1}{n}, \quad n \in \mathbb{N},$$

where the symbol \sim represents the well-known equivalence between the orders of approximation.

Remark 4.1. Particular cases of the exponential-type operators studied in the real case in [11], are the Bernstein polynomials, the operators of Szász, of Post-Widder, of Gauss-Weierstrass, of Baskakov, to mention only a few. In the complex variable case, only the approximation properties of the operators of Bernstein, Szász, Baskakov and Post-Widder were already studied, see, e.g., [5,7,9]. It remains as open question to use the method in this paper for other complex exponential-type operators, too.

Acknowledgements. The authors are thankful to the reviewers for helpful remarks and suggestions which lead to essential improvement of the whole manuscript.

S. G. GAL AND V. GUPTA

References

- T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput. 263 (2015), 233-239. https://doi.org/10.1016/j.amc.2015.04.060
- R. P. Agarwal and V. Gupta, On q-analogue of a complex summation-integral type operators in compact disks, J. Inequal. Appl. 2012(1) (2012), Article ID 111. https://doi.org/10.1186/ 1029-242X-2012-111
- S. G. Gal and V. Gupta, Quantitative estimates for a new complex Durrmeyer operator in compact disks, Appl. Math. Comput. 218(6) (2011), 2944-2951. https://doi.org/10.1016/j.amc.2011.08.044
- [4] S. G. Gal, V. Gupta and N. I. Mahmudov, Approximation by a Durrmeyer-type operator in compact disks, Ann. Univ. Ferrara Sez. VII Sci. Mat. 58(2) (2012), 65–87. https://doi.org/ 10.1007/s11565-011-0124-6
- [5] S. G. Gal and V. Gupta, Approximation by a complex Post-Widder type operator, Anal. Theory Appl. 34(4) (2018), 297–305. https://doi.org/10.4208/ata.OA-2018-0003
- [6] S. G. Gal, Approximation by Complex Bernstein and Convolution Type Operators, World Scientific, 2009. https://doi.org/10.1142/7426
- S. G. Gal, Overconvergence in Complex Approximation, Springer, New York, 2013. https: //doi.org/10.1007/978-1-4614-7098-4
- [8] V. Gupta, Approximation with certain exponential operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114(2) (2020). https://doi.org/10.1007/s13398-020-00792-9
- [9] V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-02765-4
- [10] M. Ismail, Polynomials of binomial type and approximation theory, J. Approx. Theory 23(1978), 177-186. https://doi.org/10.1016/0021-9045(78)90105-3
- [11] M. Ismail and C. P. May, On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), 446-462. https://doi.org/10.1016/0022-247X(78)90090-2
- [12] A. S. Kumar, P. N. Agrawal and T. Acar, Quantitative estimates for a new complex q-Durrmeyer type operators on compact disks, UPB Scientific Bulletin, Series A 80(1) (2018), 191–210.

¹DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF ORADEA, 410087 ORADEA, ROMANIA ²ACADEMY OF ROMANIAN SCIENTISTS, SPLAIUL INDEPENDENTEI NR. 54, 050094, BUCHAREST, ROMANIA, *Email address*: galso@uoradea.ro

³DEPARTMENT OF MATHEMATICS, NETAJI SUBHAS UNIVERSITY OF TECHNOLOGY, SECTOR 3 DWARKA, NEW DELHI 110078, INDIA *Email address*: vijaygupta2001@hotmail.com, vijay@nsut.ac.in