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APPROXIMATION BY AN EXPONENTIAL-TYPE COMPLEX
OPERATORS

SORIN G. GAL1,2 AND VIJAY GUPTA3

Abstract. In the present paper, we discuss the approximation properties of a
complex exponential kind operator. Upper estimate, Voronovskaya-type formula
and exact estimate are obtained.

1. Introduction

In the year 1978, Ismail [10] and Ismail and May [11] introduced and studied some
exponential type operators. A type of the operators constructed in [11, (3.11)] is the
following sequence

(1.1) Qn(f, x) =
∫ ∞

0
W (n, x, t)f(t)dt, x ∈ (0,∞), n ∈ N,

where the kernel is given by

W (n, x, t) =
(
n

2π

)1/2
exp (n/x) t−3/2 exp

(
− nt

2x2 −
n

2t

)
.

The kernel of these operators satisfies the partial differential equation

(1.2) ∂

∂x
W (n, x, t) = n(t− x)

x3 W (n, x, t).

Due to its complicated behavior in integration, these operators were not previously
much studied by researchers. Recently in case of real variables these operators were
studied by Gupta [8], who established some direct results. The asymptotic formula
for certain exponential type operators are discussed in [1].
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Also, in the recent years, the study of approximation by complex operators on
compact disks is an active area of research, see for instance [2–4,6, 7, 9] and [12] etc.

In this paper, we study the approximation properties of the complex variant in (1.1),
obtained by replacing x with z in the formula (1.1). Section 2 contains some auxiliary
results used in the next sections. Section 3 deals with upper estimate, while in Section
4, we study a Voronovskaya-type result and the exact estimate in approximation.

2. Auxiliary Results

The proofs of our main results require three additional lemmas, as follows.

Lemma 2.1. If we denote Tn,m(x) = Qn(em, x), em(t) = tm, then using Mapple, we
find that Tn,0(x) = 1 and there holds the following recurrence relation:

nTn,m+1(x) = x3[Tn,m(x)]′ + nxTn,m(x), n,m ∈ N.

In particular

Tn,0(x) =1,
Tn,1(x) =x,

Tn,2(x) =x2 + x3

n
,

Tn,3(x) =x3 + 3x4

n
+ 3x5

n2 ,

Tn,4(x) =x4 + 6x5

n
+ 15x6

n2 ,

Tn,5(x) =x5 + 10x6

n
+ 45x7

n2 + 105x8

n3 + 105x9

n4 ,

Tn,6(x) =x6 + 15x7

n
+ 105x8

n2 + 420x9

n3 + 945x10

n4 + 945x11

n5 .

Proof. By definition

Tn,m(x) =
(
n

2π

)1/2
exp(n/x)

∫ ∞
0

t−3/2 exp
(
− nt

2x2 −
n

2t

)
tmdt.

Thus, differentiating w.r.t x both the sides and using (1.2), we have

x3[Tn,m(x)]′ =
∫ ∞

0
x3[W (n, x, t)]′tmdt

=
∫ ∞

0
n(t− x)W (n, x, t)tmdt

=nTn,m+1(x)− nxTn,m(x).

This completes the proof of lemma, other consequences follow from the recurrence
relation. �
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Lemma 2.2. Suppose that f : C → C, f(z) = ∑∞
k=0 ckz

k, is an entire function
satisfying the condition |ck| ≤ M Ak

k! , k = 0, 1, . . . , with M > 0 and A ∈ (0, 1/2)
(which implies that f is of exponential growth since |f(z)| ≤ M exp(A|z|) for all
z ∈ C). Then Qn(f, z) is well defined for any n ∈ N and any z ∈ C satisfying

(2.1) Re (z2) > 0 and |z|2

Re (z2) <
1

2A.

Proof. Since | exp(z)| = exp(Re (z)), Re (1/z) = Re (z)/|z| and Re (1/z2) =
Re (z2)/|z|2, we get

|Qn(f, z)|

≤M
(
n

2π

)1/2
|e(n/z)|

∫ ∞
0

t−3/2 exp(−n/(2t) + At)| exp(−nt/(2z2))|dt

=M exp(nRe (z)/|z|)
∫ ∞

0
t−3/2 exp(−n/(2t)) exp(−t[nRe (z2)/(2|z|2)− A])dt.

By the hypothesis on z, we easily seen that nRe (z2)/(2|z|2) − A > 0 for all n ≥ 1.
Therefore, for fixed z as in the hypothesis and denoting nRe (z2)/(2|z|2) − A with
C > 0, we have to deal with the existence of the integral

I :=
∫ ∞

0
t−3/2 exp(−n/(2t)) exp(−Ct)dt.

Changing the variable t = 1
v
, we easily obtain

I =
∫ ∞

0
v−1/2 exp(−nv/2) exp(−C/v)dv <∞.

Indeed, for K > 0 an arbitrary fixed constant, we have

I =
∫ K

0
v−1/2 exp(−nv/2) exp(−C/v)dv +

∫ ∞
K

v−1/2 exp(−nv/2) exp(−C/v)dv

:=I1 + I2,

where

I1 ≤
∫ K

0
exp(−nv/2)v−1/2 v

C
dv ≤ 1

C

∫ K

0
v1/2 exp(−nv/2)dv <∞

and I2 ≤ 1√
K

∫∞
K e(−nv/2)dv <∞. �

Lemma 2.3. Suppose that f is an entire function, i.e., f(z) = ∑∞
k=0 ckz

k for all
z ∈ C such that there exist M > 0 and A ∈ (0, 1), with the property |ck| ≤ M Ak

k! for
all k = 0, 1, . . . (which implies |f(z)| ≤M exp(A|z|) for all z ∈ C).

Then for all n ∈ N and z satisfying (2.1), we have

Qn(f, z) =
∞∑

k=0
ckQn(ek, z).
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Proof. Since we can write

Qn(f ; z) =
(
n

2π

)1/2
exp(n/z)

∫ ∞
0

t−3/2 exp
(
− nt

2z2 −
n

2t

)( ∞∑
k=0

ckt
k

)
dt,

if above the integral would commute with the infinite sum, then we would obtain

Qn(f, z) =
∞∑

k=0
ck

(
n

2π

)1/2
exp(n/z)

∫ ∞
0

t−3/2 exp
(
− nt

2z2 −
n

2t

)
tkdt

=
∞∑

k=0
ckQn(ek, z).

It is well-known by the Fubini type result that a sufficient condition for the commu-
tativity is that ∫ ∞

0
t−3/2

∣∣∣∣exp
(
− nt

2z2 −
n

2t

)∣∣∣∣
( ∞∑

k=0
|ck|tk

)
dt <∞.

Applied to our case, for n ∈ N and z satisfying (2.1), we get∫ ∞
0

t−3/2
∣∣∣∣exp

(
− nt

2z2 −
n

2t

)∣∣∣∣
( ∞∑

k=0
|ck|tk

)
dt

≤M
∫ ∞

0
t−3/2 exp

(
− n2t

)
exp

(
−ntRe (z2)/(2|z|2)

)( ∞∑
k=0

Aktk

k!

)
dt

=M
∫ ∞

0
t−3/2 exp

(
− n2t

)
exp

(
−ntRe (z2)/(2|z|2)

)
eAtdt

=M
∫ ∞

0
t−3/2 exp

(
− n2t

)
exp

(
−ntRe (z2)/(2|z|2) + At

)
dt <∞,

by the proof of Lemma 2.2. �

Remark 2.1. It is easy to see that from geometric point of view, the conditions on z in
(2.1) means that z belongs to two symmetric cones with respect to origin (but without
containing the origin) containing the x axis, which are included in the two symmetric
cones with respect to origin between the first and second bisectrix, containing the x
axis. Indeed, since |z|2 = x2 + y2 and Re (z2) = x2− y2, simple calculations show that
the condition (2.1) satisfied by z = x+ iy can easily be written under the form√(

1 + 1
2A

)
|y| <

√( 1
2A − 1

)
|x|,

that is
|y|
|x|

<

√
1/(2A)− 1√
1/(2A) + 1

< 1.
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3. Upper Estimate

The first main result concerns an upper estimate in approximation by Qn(f, z).

Theorem 3.1. Suppose that f is an entire function, i.e., f(z) = ∑∞
k=0 ckz

k for all
z ∈ C such that there exist M > 0 and A ∈ (0, 1/2), with the property |ck| ≤M Ak

k! , for
all k = 0, 1, . . . (which implies |f(z)| ≤MeA|z| for all z ∈ C). Consider 1 ≤ r < 1

A
.

Then for all n ≥ r2, |z| ≤ r and z satisfying (2.1), the following estimate hold:

|Qn(f, z)− f(z)| ≤ Cr,M,A

n
,

where Cr,M,A = Mr
∑∞

k=2(k + 1)(Ar)k <∞.

Proof. By Lemma 2.1 written with x replaced by z, we easily obtain

n[Tn,m+1(z)− zm+1] = z3[Tn,m(z)− zm]′ + nz[Tm,n(z)− zm] +mzm+2.

Applying the Bernstein’s inequality on |z| ≤ r to the polynomial of degreem, Tn,m(z)−
zm, we get ‖[Tn,m(z)−zm]′‖r ≤ m

r
‖Tn,m(z)−zm‖r, where ‖P‖r = sup|z|≤r |P (z)|. Then,

denoting em = zm, from the above recurrence we immediately obtain

‖Tn,m+1 − em+1‖r ≤
(
r + mr2

n

)
‖Tm,n − em‖r + mrm+2

n
.

In what follows we prove by mathematical induction with respect to m that for
n ≥ r2, this recurrence implies

||Tn,m − em||r ≤
(m+ 1)!

n
rm+1, for all m ≥ 0.

Indeed for m = 0 and m = 1 it is trivial, as the left-hand side is zero. Suppose that
it is valid for m, the above recurrence relation implies that

||Tn,m+1 − em+1||r ≤
(
r + r2m

n

)
(m+ 1)!

n
rm+1 + m

n
rm+2.

It remains to prove that(
r + r2m

n

)
(m+ 1)!

n
rm+1 + m

n
rm+2 ≤ (m+ 2)!

n
rm+2,

or after simplifications, equivalently to(
r + r2m

n

)
(m+ 1)! + rm ≤ (m+ 2)!r,

for all m ∈ N and r ≥ 1.
Since n ≥ r2, we get(

r + r2m

n

)
(m+ 1)! + rm ≤ (r +m) (m+ 1)! + rm,
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it is good enough if we prove that
(r +m) (m+ 1)! + rm ≤ (m+ 2)!r.

But this last inequality is obviously equivalent with
m(m+ 1)! + rm ≤ rm(m+ 1)! + r(m+ 1)!,

which is clearly valid for all m ≥ 1 (and fixed r ≥ 1).
Finally, taking into account Lemma 2.3, for all n ≥ r2, we obtain

|Qn(f, z)− f(z)| ≤
∞∑

k=0
|ck| · |Qn(ek, z)− ek(z)|

≤M
n
·
∞∑

k=2

Ak

k! · (k + 1)!rk+1 = Cr,M,A

n
,

where Cr,M,A = Mr
∑∞

k=2(k + 1)(Ar)k <∞. �

Remark 3.1. The smaller A is, the larger is the portion of the symmetrical cones where
the estimation in Theorem 3.1 takes place. This happens because of the intersection
between the symmetrical cones and the disk {|z| ≤ r} with 1 ≤ r < 1

A
, where if

A↘ 0 then r ↗∞.

4. Voronovskaya Type Formula and Exact Estimate

The following estimate is a Voronovskaja-kind quantitative result.

Theorem 4.1. Suppose that f is an entire function, i.e., f(z) = ∑∞
k=0 ckz

k for all
z ∈ C such that there exist M > 0 and A ∈ (0, 1/2), with the property |ck| ≤ M Ak

k! ,
for all k = 0, 1, . . . (which implies |f(z)| ≤ M exp(A|z|) for all z ∈ C). Consider
1 ≤ r < 1

A
.

Then for all n ≥ r2, |z| ≤ r and z satisfying (2.1), the following estimate holds:∣∣∣∣∣Qn(f, z)− f(z)− z3f ′′(z)
2n

∣∣∣∣∣ ≤ Er,M,A(f)
n2 ,

where
Er,M,A(f) = 3Mr2

∞∑
k=2

(k + 1)2(Ar)k <∞.

Proof. Everywhere in the proof consider z and n as in hypothesis.
By the proof of Lemma 2.3, we can write Qn(f, z) = ∑∞

k=0 ck Qn(ek, z). Also, since
z3f ′′(z)

2n = z3

2n

∞∑
k=2

ckk(k − 1)zk−2 = 1
2n

∞∑
k=2

ck k(k − 1) zk+1,

we get∣∣∣∣∣Qn(f, z)− f(z)− z3 f ′′(z)
2n

∣∣∣∣∣ ≤
∞∑

k=2
|ck|

∣∣∣∣∣Tn,k(z)− ek(z)− k(k − 1)zk+1

2n

∣∣∣∣∣ .
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By Lemma 2.1, we have

Tn,k(z) = z3

n
T ′n,k−1(z) + z Tn,k−1(z).

If we denote
Jn,k(z) = Tn,k(z)− ek(z)− k(k − 1)zk+1

2n ,

then it is obvious that Jn,k(z) is a polynomial of degree less than or equal to k + 2
and by simple computation and the use of above recurrence relation, we are led to

Jn,k(z) = z3

n
J ′n,k−1(z) + zJn,k−1(z) +Xn,k(z),

where after simple computation, we have

Xn,k(z) = k(k − 1)(k − 2)zk+2

2n2 .

Using the estimate in the proof of Theorem 3.1, we have

|Tn,k(z)− ek(z)| ≤ (k + 1)!
n

· rk+1.

It follows
|Jn,k(z)| ≤ r3

n
|J ′n,k−1(z)|+ r |Jn,k−1(z)|+ |Xn,k(z)|,

where

|Xn,k(z)| ≤ k(k − 1)(k − 2)rk+2

2n2 .

Now we shall find the estimation of |J ′n,k−1(z)|. Taking into account the fact that
Jn,k−1(z) is a polynomial of degree ≤ k + 1, we have

|J ′n,k−1(z)| ≤
k

r
||Jn,k−1(z)||r

≤k
r

[
||Tn,k−1(z)− ek−1(z)||r + (k − 1)(k − 2)rk

2n

]

≤(k + 1)!
n

· rk−1 + k(k − 1)(k − 2)rk−1

2n .

Thus,
r3

n
|J ′n,k−1(z)| ≤

1
n

[
(k + 1)!

n
rk+2 + k(k − 1)(k − 2)rk+2

2n

]
and

|Jn,k(z)| ≤r|Jn,k−1(z)|+
1
n

[
(k + 1)!

n
rk+2 + k(k − 1)(k − 2)rk+2

2n

]

+ k(k − 1)(k − 2)rk+2

2n2 .
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This immediately implies

|Jn,k(z)| ≤ r|Jn,k−1(z)|+
3
n2 (k + 1)!rk+2.

By writing this inequality for k = 1, 2, 3, . . . , we easily obtain step by step the following

|Jn,k(z)| ≤ 3
n2 r

k+2

k+1∑
j=1

j!
 ≤ 3

n2 r
k+2(k + 1)!(k + 1).

In conclusion,∣∣∣∣∣Qn(f, z)− f(z)− z3 f ′′(z)
2n

∣∣∣∣∣ ≤ 3
n2 ·

∞∑
k=2
|ck|rk+2 · (k + 1)!(k + 1)

≤3Mr2

n2 ·
∞∑

k=2
(k + 1)2(Ar)k.

This completes the proof of theorem. �

Using the above Voronovskaja’s theorem, we obtain the following lower order in
approximation.

Theorem 4.2. Under the hypothesis in Theorem 4.1, if f is not a polynomial of
degree ≤ 1, then for all n ≥ r2 we have

||Qn(f, ·)− f ||∗r ≥
Kr,M,A(f)

n
,

where ‖F‖∗r = sup{|F (z)| : |z| ≤ r and z satisfies (2.1)} and Kr,M,A(f) is a constant
which depends only on f,M,A and r.

Proof. For all n ≥ r2, |z| ≤ r and z satisfying (2.1), we have

Qn(f, z)− f(z) = 1
n

[
0.5 z3 f ′′(z) + 1

n

{
n2
(
Qn(f, z)− f(z)− z3 f ′′(z)

2n

)}]
.

Also, we have
||F +G||∗r ≥ |||F ||∗r − ||G||∗r| ≥ ||F ||∗r − ||G||∗r.

It follows

||Qn(f, ·)− f ||∗r ≥
1
n

[
|| 0.5 e3 f

′′ ||∗r −
1
n

{
n2
∣∣∣∣∣
∣∣∣∣∣Qn(f, ·)− f − e3 f

′′

2n

∣∣∣∣∣
∣∣∣∣∣
∗

r

}]
.

Taking into account that by hypothesis, f is not a polynomial of degree ≤ 1, we get
||0.5 e3 f

′′||∗r > 0. Indeed, supposing the contrary it follows that z3 f ′′(z) = 0, which
by the fact that f is entire function, clearly implies f ′′(z) = 0, i.e., f is a polynomial
of degree ≤ 1, a contradiction with the hypothesis.

Now by Theorem 4.1, we have

n2
∣∣∣∣∣
∣∣∣∣∣Qn(f, z)− f(z)− z3 f ′′(z)

2n

∣∣∣∣∣
∣∣∣∣∣
∗

r

≤ Er,M,A(f).
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Therefore, there exists an index n0 depending only on f and r, such that for all n ≥ n0,
we have

|| 0.5 e3 f
′′ ||∗r −

1
n

{
n2
∣∣∣∣∣
∣∣∣∣∣Qn(f, z)− f(z)− 0.5 z3 f ′′(z)

n

∣∣∣∣∣
∣∣∣∣∣
∗

r

}
≥ 1

2 || 0.5e3 f
′′ ||∗r ,

which immediately implies

||Qn(f, ·)− f ||∗r ≥
1

2n || 0.5 e3 f
′′ ||∗r, for all n ≥ n0.

For n ∈ {1, 2, . . . , n0 − 1} we obviously have

||Qn(f, ·)− f ||∗r ≥
Mr,n(f)

n
,

with Mr,n(f) = n||Qn(f, ·)− f ||∗r > 0. Indeed, if we would have ||Qn(f, ·)− f ||∗r = 0,
then would follow Qn(f, z) = f(z) for all |z| ≤ r, z satisfying (2.1), which is valid
only for f a polynomial of degree ≤ 1, contradicting the hypothesis on f . Hence, we
obtain ||Qn(f, ·)− f ||∗r ≥

Kr,M,A(f)
n

for all n, where

Kr,M,A(f) = min
{
Mr,1(f),Mr,2(f), . . . ,Mr,n0−1(f), 1

2 || 0.5 e3 f
′′ ||∗r

}
,

which completes the proof. �

Combining Theorem 3.1 with Theorem 4.2, we immediately get the following exact
estimate.

Corollary 4.1. Under the hypothesis in Theorem 4.1, if f is not a polynomial of
degree ≤ 1, then we have

||Qn(f, ·)− f ||∗r ∼
1
n
, n ∈ N,

where the symbol ∼ represents the well-known equivalence between the orders of ap-
proximation.

Remark 4.1. Particular cases of the exponential-type operators studied in the real
case in [11], are the Bernstein polynomials, the operators of Szász, of Post-Widder, of
Gauss-Weierstrass, of Baskakov, to mention only a few. In the complex variable case,
only the approximation properties of the operators of Bernstein, Szász, Baskakov and
Post-Widder were already studied, see, e.g., [5, 7, 9]. It remains as open question to
use the method in this paper for other complex exponential-type operators, too.

Acknowledgements. The authors are thankful to the reviewers for helpful remarks
and suggestions which lead to essential improvement of the whole manuscript.
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