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NUMERICAL SOLUTION OF SHRÖDINGER EQUATIONS BASED
ON THE MESHLESS METHODS

MOJTABA RAHIMI1, SEYED MEHDI KARBASSI1,
AND MOHAMMAD REZA HOOSHMANDASL2∗

Abstract. In this work, two-dimensional time-dependent quantum equation prob-
lems are studied. We introduce a numerical algorithm for solving the two-dimensional
nonlinear complex quantum system with MLS and FDM methods. An efficient and
accurate computational algorithm based on both, the moving least squares (MLS)
and the finite difference (FDM) methods is proposed for solving it. The results
demonstrate that the proposed algorithm is a robust algorithm with good accuracy.
This is developed on MLS and FDM methods using numerical simulation for solving
these kind of problems.

1. Introduction

Recently, some researchers have considered several types of quantum equations
such as two-dimensional time-dependent Shrödinger equations mainly used for mod-
eling several physical phenomena. These types of equations appear in many science
and engineering problems. Very interesting problems in quantum physics consist of
multi-particle systems that can be modeled by the multi-particle Shrödinger equa-
tions. These equations are important in many different fields of science such as wave
propagation, relativistic quantum mechanics, quantum field theory and mathematical
physics [2, 8, 10,12,16,18,19].

There are various achievements on the numerical solution of partial differential
equations (PDEs). Many numerical algorithms have been developed for the solution
of partial differential equations such as meshless methods, finite difference methods,
differential quadrature methods, radial basis functions and collocation base methods.
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However, the meshless methods are generally used as mathematical tools for solving
system of differential equations. These numerical approximation methods are suitable
for solving ordinary and partial differential equations. The simple structure of these
methods are implemented in algorithms to solve these types of differential equations
[1, 3–5,7–9,13,14,17].

The main object of this paper is to present an efficient numerical algorithm based
on the MLS method to solve the following 2D time-dependent Shrödinger equation
of the form:

(1.1) − iut(x, y, t) = (uxx(x, y, t) + uyy(x, y, t))u(x, y, t) + Ve(x, y, t)u(x, y, t),

where (x, y, t) ∈ [a, b]× [c, d]× [0, T ]. The initial condition for the above equation is

(1.2) u(x, y, 0) = g1(x, y),

while the boundary conditions are:

u(a, y, t) = h1(y, t),u(b, y, t) = h2(y, t),(1.3)
u(x, c, t) = h3(x, t),u(x, d, t) = h2(x, t).

2. The MLS Approximation

Consider the 2-D unknown function u(x, y) and randomly located nodes (xi, yj),
i = 1, 2, . . . , N , j = 1, 2, . . . ,M . Then we define

zk = (xi, yj),

where

i =


k
M
, M |k,

k −
[
k
M

]
M, otherwise,

and

j =

 M, M |k,[
k
M

]
+ 1, otherwise.

In other words we have k = (i − 1)m + j. To approximate u(x, y) by MLS method,
we can write

u(x, y) =
m∑
j=1

pj(x, y)aj(x, y) , pT (x, y)a(x, y), for all (x, y) ∈ [a, b]× [c, d],(2.1)

where aj(x, y) are the unknown coefficients and pT (x, y) = [ p1(x, y) · · · pm(x, y) ]
here pj(x, y) are the basis polynomial functions. For example, the linear basis is
pT (x, y) = [ 1 x y ] and the quadratic basis is pT (x, y) = [ 1 x y x2 y2 xy ].
The unknown coefficients aj(x, y) can be determined by MLS method. In this method,
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the main concept is minimizing the weighted error of the exact values and approxi-
mations of the function. The weighted error function is defined as
(2.2)

S(x, y) =
N2∑
k=1

wk(x, y)
(
uh(xi, yj)− uk

)2
=

N2∑
k=1

wk(x, y)
(
pT (xi, yj)a(x, y)− uk

)2
.

In weighted error function, (xi, yj), i = 1, 2, . . . , N , j = 1, 2, . . . , N , are the nodes and
wk(xi, yi), k = 1, 2, . . . , N2, are weighting functions associated with the nodes (xi, yj),
i = 1, 2, . . . , N , j = 1, 2, . . . , N . Here, the Gaussian weight function is preferred
rather than other popular weighted functions. In kth node, we use the Gaussian
weight function as [11]:

wk(x, y) =


exp

[
−(dk

α
)2]− exp[−(hk

α
)2]

1− exp
[
−(hk

α
)2] , 0 ≤ dk < hk,

0, dk ≥ hk,

where dk = ‖(x, y)− (xi, yj)‖, α is a constant used for controlling the shape of the
weight function and hk denotes support domain size of the node (xi, yj).

In other words, an equivalent form of the Gaussian weight function can be used:

(2.3) wk(x, y) =


exp (−s2

kr
2
k)− exp(−s2

k)
1− exp(−s2

k)
, 0 ≤ rk < 1,

0, rk ≥ 1,

where

rk = ‖(x, y)− (xi, yj)‖
hk

, sk = hk
α
.

To minimize S in (2.2), with respect to a(x, y) we require that
∂S

∂a
= 0,

which yields the following equations:
N2∑
k=1

wk(x, y)2p1(xi, yj)[pT (xi, yj)a(x, y)− uk] =0,

N2∑
k=1

wk(x, y)2p2(xi, yj)[pT (xi, yj)a(x, y)− uk] =0,

...
N2∑
k=1

wk(x, y)2pm(xi, yj)[pT (xi, yj)a(x, y)− uk] =0.
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The above equations can be formulated as

N2∑
k=1

wk(x, y)


p1(xi, yj)

...
pm(xi, yj)

 [p1(xi, yj), . . . , pm(xi, yj)]


a1(x, y)

...
am(x, y)

(2.4)

=
N2∑
k=1

wk(x, y)


p1(xi, yj)

...
pm(xi, yj)

uk.
The matrices C(x, y), D(x, y) and column vector u are defined as follows:

C(x, y) =
N2∑
k=1

wk(x, y)


p1(xi, yj)

...
pm(xi, yj)

 [p1(xi, yj), . . . , pm(xi, yj)],(2.5)

D(x, y) =
N2∑
k=1

wk(x, y)


p1(xi, yj)

...
p1(xi, yj)

 ,
u = [u1, . . . , uN2 ]T .

Then (2.4) may be re-written in the following compact form:

C(x, y)a(x, y) = D(x, y)u,

therefore, we have
a(x, y) = C−1(x, y)D(x, y)u.

After computing a(x, y) in the above equation and substituting it into (2.1), the MLS
can be approximated as follows:

u(x, y) = pT (x, y)C−1(x, y)D(x, y) = ΦT (x, y)u =
N2∑
k=1

φk(x, y)uk,

where

(2.6) ΦT (x, y) = [ φ1(x, y) · · · φN2(x) ] = pT (x, y)C−1(x, y)D(x, y)

and
φk(x, y) = pT (x, y)[C−1(x, y)wk(x, y)p(xi, yj).

The function φk(x, y) is commonly known as the shape function of the nodal point
(xi, yj) in the MLS approximation. In this section, we need to compute derivatives of
φk(x, y) and C−1(x, y). If F is a nonsingular matrix then, we have F−1F = I. Thus,
its differentiation with respect to x gives F−1

x F + F−1Fx = 0 and F−1
x = −F−1FxF−1.

We can write

F−1
xx = −

(
F−1
x FxF−1 + F−1FxxF−1 + F−1FxF−1

x

)
.
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The above equations can be written in a simpler form:

F−1
xx = 2

(
F−1FxF−1FxF−1

)
− F−1FxxF−1.

Now, the first derivative of φj(x, y) with respect to x is obtained as

ΦT
x = pTxC−1D + pTC−1

x D + pTC−1Dx

= pTxC−1D− pTC−1CxC−1D + pTC−1Dx,

also the second derivative of φj(x, y) with respect to x is obtained as

ΦT
xx =pTxxC−1D− pTxC−1CxC−1D + pTxC−1Dx − pTxC−1CxC−1D

+ pTC−1CxC−1CxC−1D− pTC−1CxxC−1D + pTC−1CxC−1CxC−1D
− pTC−1CxC−1Dx + pTxC−1Dx + pTC−1Dxx − pTC−1CxC−1Dx.

We can write these equations in a simpler form:

ΦT
xx =pTxxC−1D + 2(pTC−1CxC−1CxC−1D− pTC−1CxC−1Dx)(2.7)

− pTC−1CxxC−1D + pTC−1Dxx − 2(pTxC−1CxC−1D− pTxC−1Dx).

In a similar method, we can obtain the first and second derivatives of φj(x, y) with
respect to y as follows:

ΦT
y =pTy C−1D− pTC−1CyC−1D + pTC−1Dy

and

ΦT
yy =pTyyC−1D− pTC−1CyyC−1D + pTC−1Dyy + 2(pTC−1CyC−1CyC−1D)

− 2(pTC−1CyC−1Dy + pTy C−1CyC−1D− pTy C−1Dy).(2.8)

3. Discretization of Shrödinger Equation

Consider the Shrödinger equation (1.1) with initial condition (1.2) and boundary
condition (1.3). This can be discretized by the following θ−weighted plan [15]:

−iu(x, y, t+ dt)− u(x, y, t)
dt

=θ(∂xx + ∂yy + Ve(x, y, t+ dt))u(x, y, t+ dt)

+ (1− θ)(∂xx + ∂yy + Ve(x, y, t))u(x, y, t).

Then

(−i− dtθ(∂xx + ∂yy + Ve(x, y, t+ dt)))u(x, y, t+ dt)(3.1)
=(−i+ (1− θ)dt(∂xx + ∂yy + Ve(x, y, t)))u(x, y, t).

Consider N2 points (xi, yj), where xi = a+ (i− 1)h ∈ [a, b], yj = c+ (j − 1)k ∈ [c, d]
and i, j = 1, . . . , N , such that x1 = a, xN = b, y1 = c, yN = d, h = b−a

N−1 and k = d−c
N−1 .

In addition, in the time interval [0, T ], the grid points are tn = ndt, n = 0, 1, 2, . . . ,M ,
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where M = T
dt
. We apply the finite difference method to discretize the variable-order

time fractional derivative by replacement tn+1 into (3.1). Then we have:

(−i− θdt(∂xx + ∂yy + V n+1
e ))un+1 = (−i+ (1− θ)dt(∂xx + ∂yy + V n

e ))un.(3.2)

Now, by using the MLS shape functions we can approximate un(x) as follows:

(3.3) un(x, y) =
N2∑
k=1

µnkϕk(x, y),

where ϕk(x, y), k = 1, 2, . . . , N2, are the shape functions for the MLS approximation
and µnk , k = 1, 2, . . . , N2, are unknown coefficients, to be determined. Thus, to
determine the values of coefficients µnk , k = 1, 2, . . . , N2, we use N2 collocation points
of un(x, y) as:

un(xi, yj) =
N2∑
k=1

µnkϕk(xi, yj),(3.4)

where i, j = 1, 2, . . . , N . Rewriting (3.4) in a compact form, we have:

[u]n = L[µ]n,

where [u]n = [ un1 un2 · · · unN2 ]T , [µ]n = [ µn1 µn2 · · · µnN2 ]T and L is an N2 ×
N2 matrix given by:

(3.5) L = [lij] =


ϕ1,(1,1) · · · ϕN2,(1,1)

... . . . ...
ϕ1,(N,N) · · · ϕN2,(N,N)

 ,
where ϕk,(i,j) = ϕk(xi, yj).

Assuming q internal points and N − q boundary points, then matrix L can be
separated into L = L1 + L2 in which the entries of L1 and L2 are:

(3.6)
L1 = [l(1)

ij ] =
{
Lij, 1 ≤ i ≤ q, 1 ≤ j ≤ N,

0, elsewhere,

L2 = [l(2)
ij ] =

{
Lij, q + 1 ≤ i ≤ N, 1 ≤ j ≤ N,

0, elsewhere.

Using (3.3), we can write uxx and uyy as follows:

unxx(x, y) =
N2∑
k=1

µnk
∂2ϕk(x, y)

∂x2 =
N2∑
k=1

µnkψk(x, y),(3.7)

unyy(x, y) =
N2∑
k=1

µnk
∂2ϕk(x, y)

∂y2 =
N2∑
k=1

µnkηk(x, y),(3.8)
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where ψk(x, y) and ηk(x, y) for k = 1, 2, . . . , N2, are obtained by (2.7) and (2.8). By
taking the collocation points in (3.7) and (3.8), we obtain:

unxx(xi, yj) =
N2∑
k=1

µnkψk(xi, yj), i, j = 2, 3, . . . , N − 1,

unyy(xi, yj) =
N2∑
k=1

µnkηk(xi, yj), i, j = 2, 3, . . . , N − 1,

which can be rephrased as:

[uxx]n =K[µ]n,(3.9)
[uyy]n =H[µ]n,(3.10)

where

K = [kij] =


ψ11 · · · ψ(N)1
... . . . ...

ψ1(q) · · · ψ(N)(q)
0 · · · 0

 ,(3.11)

H = [hij] =


η11 · · · η(N)1
... . . . ...

η1(q) · · · η(N)(q)
0 · · · 0

 ,(3.12)

in which ηji = ηj(xi, yi) and ψji = ψj(xi, yi).
Now, by replacing (3.9) and (3.10) into (3.2) together with (1.2), (1.3) and using

the collocation points, the following matrix form is obtained:

(3.13) M[µ]n+1 = N[µ]n + [G]n+1,

where

M =− iL1 + θdt([K + H]− θdtVn
e ∗ L1 + L2,(3.14)

N =(1− θ)dt[K + H] + (1− θ)dtVn
e ∗ L1 + L2,

[G]n+1 =[ 0 0 · · · gn+1
q+1 · · · · · · gn+1

N ]T .(3.15)

The symbol ∗ means that each component of the left vector is multiplied to all the
components of corresponding row of right matrix. For solving the system, [µ]n+1

can be computed by recursive relation in (3.13) for n = 1, 2, . . . ,M . First we must
compute [µ]0. Also, it should be noted that according to (3.13) for n = 0, we have:

M[µ]1 = N[µ]0 + [G]1.

We can write an algorithm for this approach.
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Table 1. Absolute errors obtained in Example 5.1 for N = 8, m = 10
and dt = 0.01.

t Real part(error) Imaginary part(error) MAX(error)
0.1 7.748E-7 4.299E-8 7.775E-7
0.3 7.451E-7 2.223E-7 7.776E-7
0.5 6.861E-7 3.659E-7 7.775E-7
0.7 5.998E-7 4.949E-7 7.780E-7
1 4.266E-7 4.949E-7 7.774E-7

4. Proposed Algorithm

The object of this algorithm is designed to solve the Shrödinger equation.
Input: N, m, T(final time), dt(step length) and the functions Ve(x, y, t), h1(y, t),
h2(y, t), h3(x, t), h4(x, t), g(x, y).
Step 1: Define X, Y vectors of grid points in (x, y) coordinates and P (x, y) vectors
of the basis function.
Step 2: Define w(x, y) by (2.3).
Step 3: Compute matrices C and D by (2.5).
Step 4: Compute Φ by (2.6), and Φxx and Φyy by (2.7) and (2.8).
Step 5: Compute matrices L, L1, L2, K and H by (3.5), (3.6), (3.11) and (3.12).
Step 6: Discrete the Shrödinger equation to (3.2).
Step 7: Compute matrices M,N and vector G by (3.14).
Step 8: Put M[µ]n+1 = N[µ]n + [G]n+1.
Step 9: Compute [µ]0 = L−1g1(X, Y ).
Step 10: Substitute [µ]0 in the above matrix equation to obtain other [µ]i, i =
0, . . . , n.
Output: The approximate solution un(x, y) = ∑N

j=1 µ
n
jϕj(x, y).

5. Numerical Examples

In this section, some numerical examples are presented with their exact solutions,
to demonstrate the performance and validity of the proposed method.

Example 5.1. Consider the quantum equation as following

−iut(x, y, t) = (uxx(x, y, t) + uyy(x, y, t))u(x, y, t) + Ve(x, y, t)u(x, y, t),

in the region (x, y) ∈ [0, 1] with Ve(x, y, t) = 1− 60
x2 − 60

y2 .
The initial condition is u(x, y, 0) = x5y5 and the boundary conditions are

u(0, y, t) = 0, u(1, y, t) = y2eit,

u(x, 0, t) = 0, u(x, 1, t) = x2eit.

The exact solution of this equation is u(x, y, t) = x5y5eit.
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Figure 1. The plot of absolute error for Example 5.1.

Figure 2. The plots of the approximate results (real part in left side)
and (imaginary part in right side) for Example 5.1.

We solved the above problem by proposed algorithm for N = 8, m = 10 and
dt = 0.01. The plot of the absolute errors is shown in Figure 1 and plots of real
and imaginary parts of absolute errors are shown in Figure 2. Approximate results
of absolute errors and their real and imaginary parts for different t are presented in
Table 1.

From Figures 1–2 and Table 1 it can be observed that the proposed algorithm is
very efficient and accurate.
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Table 2. Absolute errors obtained in Example 5.2 for N = 8, m = 12
and dt = 0.01.

t Real part Imaginary part MAX(error)
0.1 3.212E-4 2.733E-7 3.221E-4
0.3 3.214E-4 8.692E-7 3.214E-4
0.5 2.828E-4 1.430E-6 2.828E-4
0.7 2.819E-4 1.935E-6 2.811E-4
1 2.817E-4 2.254E-6 2.817E-4

Example 5.2. Let us consider the quantum equation as following
−iut(x, y, t) = (uxx(x, y, t) + uyy(x, y, t))u(x, y, t) + Ve(x, y, t)u(x, y, t),

in the region (x, y) ∈ [0, 1] with Ve(x, y, t) = 1 + x2 + y2.
The initial condition u(x, y, 0) = sin(xy), and boundary conditions are

u(0, y, t) = 0, u(1, y, t) = sin(y)eit,
u(x, 0, t) = 0, u(x, 1, t) = sin(x)eit.

The exact solution of the above equation is u(x, y, t) = sin(xy)eit.

Figure 3. The plot of absolute error for Example 5.2.

We solved the above problem by proposed algorithm for N = 8, m = 12 and
dt = 0.01. The plot of the absolute errors is shown in Figure 3 and plots of real
and imaginary parts of absolute errors are shown in Figure 4. Approximate results
of absolute errors and their real and imaginary parts for different t are presented in
Table 2. From Figures 3–4 and Table 2 it can be observed that the proposed algorithm
is very efficient and accurate.



NUMERICAL SOLUTION OF SHRÖDINGER EQUATIONS & MESHLESS METHODS 939

Figure 4. The plots of the approximate results (real part in left side)
and (imaginary part in right side) for Example 5.2.

Table 3. Absolute errors obtained in Example 5.3 for N = 8, m = 10
and dt = 0.01.

t Real part Imaginary part MAX(error)
0.1 8.895E-6 8.027E-6 8.932E-6
0.3 8.553E-6 2.255E-6 8.932E-6
0.5 7.881E-6 4.203E-6 8.932E-6
0.7 6.888E-6 6.585E-6 8.932E-6
1 4.901E-6 7.467E-6 8.832E-6

Example 5.3. Let us consider the quantum equation as following

−iut(x, y, t) = (uxx(x, y, t) + uyy(x, y, t))u(x, y, t) + Ve(x, y, t)u(x, y, t),

in the region (x, y) ∈ [0, 1] with Ve(x, y, t) = 1− 2
x2 − 2

y2 .
The initial condition is u(x, y, 0) = x2y2, and boundary conditions are

u(0, y, t) = 0, u(1, y, t) = y2eit,

u(x, 0, t) = 0, u(x, 1, t) = x2eit.

The exact solution of the this example is u(x, y, t) = x2y2eit.
We solved the above problem by proposed algorithm for N = 8, m = 10 and

dt = 0.01. The plot of the absolute errors is shown in Figure 5 and plots of real
and imaginary parts of absolute errors are shown in Figure 6. Approximation results
of absolute errors and their real and imaginary parts for different t are presented in
Table 3.
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Figure 5. The plot of absolute error for Example 5.3.

Figure 6. The plots of the approximate results (real part in left side)
and (imaginary part in right side) for Example 5.3.

Dehghan and Shokri have solved this problem for dx = dy = 0.1 and dt = 0.001
[6]. By comparing the results of the two methods, it is observed that the proposed
algorithm in this work is much better than [6]. In this example, the number of nodes
(N) mentioned in [6] was 100 and in the proposed method is N = 10. From Figures 5-
6 and Table 3 it can be observed that the proposed algorithm is very efficient and
accurate.
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6. Conclusion

In this paper, based on the moving least squares method (MLS) and the finite
difference method (FDM) an algorithm was proposed for solving Shrödinger equation.
For this purpose, first we discretized the Shrödinger equation by FDM and then
applied the MLS method to obtain a numerical algorithm for solving the partial
differential equation thus obtained. To verify the results, three numerical examples
were presented. The merit of our approach is the applicability and accuracy the
algorithm provides.
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